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LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES
FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME
SERIES

BY RoBERT Fox! AND MURAD S. Taqqu?:3

Cornell University

A strongly dependent Gaussian sequence has a spectral density f(x, @)
satisfying f(x, 0) ~ |x| " *® Ly(x) as x — 0, where 0 < a(f) < 1 and Ly(x)
varies slowly at 0. Here 6 is a vector of unknown parameters. An estimator
for 6 is proposed and shown to be consistent and asymptotically normal
under appropriate conditions. These conditions are satisfied by fractional
Gaussian noise and fractional ARMA, two examples of strongly dependent
sequences.

1. Introduction. Let X;, j > 1, be a stationary Gaussian sequence with
mean p and spectral density o2f(x,0), —7 < x < 7, where p,0? > 0 and the
vector § € E C RP are unknown parameters. Denote the covariance by o2r,(9),
so that '

E(X;— p)(Xjup— 1) =0’ry(0) = ozfjwe‘k"f(x,ﬂ) dx.

(We are not assuming that o2 is the variance of X ) Let Ry(0) be the N X N
matrix with j, kth entry r;_,(6). Thus 62R () is the covariance matrix of
X,,..., Xy. Our object is to estimate § and o® based on the observations
X, XN

We are interested in strongly dependent sequences X, that is, in sequences
f(x,0) ~ |x|“®L,(x) as x > 0, where 0 < a(f) < 1 and Ly(x) varies slowly at
0. These sequences have covariances that decrease too slowly to permit the
normalized partial sums

LNTIX,
Sty = ——, t>0
[Nt] /N

to converge weakly to Brownian motion. Because of this fact, strongly dependent
sequences play an important role in the theory of self-similar stochastic processes.
Two examples, fractional Gaussian noise and fractional ARMA'’s, are described at
the end of this section. We will estimate simultaneously all the unknown
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518 R. FOX AND M. S. TAQQU

parameters symbolized by the vector 6, and not just the exponent «(f) in
isolation.

A number of approaches to parameter estimation for strongly dependent
sequences have been considered in the literature. These include the R/S tech-
nique, periodogram estimation, and maximum likelihood estimation. Theoretical
properties of the R/S estimates have been investigated by Mandelbrot (1975)
and Mandelbrot and Taqqu (1979). Periodogram estimation has been considered
by Mohr (1981), Graf (1983), and Geweke and Porter-Hudak (1983). Hipel and
McLeod (1978) have discussed computational considerations involved in the
application of maximum likelihood estimation. See also Todini and O’Connell
(1979).

The study of maximum likelihood estimation for strongly dependent sequences
is a special case of the problem of maximum likelihood estimation for dependent
observations. Sweeting (1980) has given conditions under which the maximum
likelihood estimator is consistent and asymptotically normally distributed.
Basawa and Prakasa Rao (1980) and Basawa and Scott (1983) survey theorems
and examples in this area. In order to apply these results it would be necessary to
study the second derivatives of R '(6). To avoid this difficulty we will follow the
approach suggested by Whittle (1951). This involves maximizing

1 Z'A\(0)Z
(1.1) e"p{ 2No? }

¢
Here Z = (X, — Xp,.-, Xy — Xy, Xy=@Q/N)Z,X;, and Ay(8) is the
N X N matrix with entries [Ay(0)],, = a;_4(6), where

(1.2) a,(6) = " et f(x,0)]

(2m)’
For the approximation of the inverse of (R(0)); ¢ ;>0 by (An(8))i50, =05 S€€
Bleher (1981) and also Beran and Kuensch (1985). Notice, that, by Parseval’s
relation, the doubly infinite matrix A(8) with entries a;_,(8), —0 <J, k < oo,
is the inverse of the doubly infinite matrix R(#) with entries r;_,(0), —oo <
Jr k< o0.

Thus we define estimators 8y and 63 to be those values of § and ¢® which
maximize (1/¢)exp{ —(1 /2No2)Z’A ~(0)Z}. This is equivalent to choosing 0y to
mll’lllee

Z'A(0)Z
13 Ce(0) = 22
(1.3) an(0) N
and then setting 62 = 62(fy). It will be convenient to use the fact that
, 1 - B
(1.4) of(0) = o= [ [1(x,0)] 'Iy(x) dx,
TY—a
where

BV (X, — Xy)[|
(1.5) In(x) = 27rN
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Walker (1964) showed that @, is consistent and asymptotically normal in
many cases in which the sequence { X} is weakly dependent (and not necessarily
Gaussian). Hannan (1973) improved these results and was able to use them to
prove consistency and asymptotic normality of the maximum likelihood estima-
tor. Dunsmuir and Hannan (1976) gave extensions to the case of vector-valued
observations.

We show that for strongly dependent Gaussian sequences { X} the estimator
6 is consistent and asymptotlcally normal. The conditions under which this
result holds are given in Section 2. Our results apply to fractional Gaussian noise
and fractional ARMA’s.

Fractional Gaussian noise was introduced by Mandelbrot and Van Ness (1968)
and has been widely used to model strongly dependent geophysical phenomena.
It is a stationary Gaussian sequence with mean 0 and covariance

c
rn=EXX; ,= E{|k + 127 — 21k)2H + |k — 12H},

where H is a parameter satisfying { < H < 1 and C > 0. This covariance satisfies
r,~ CH(2H — 1)k?H-% ask - 0.

The spectral density f(x, H) of fractional Gaussian noise is given by

(1.6) f(x, H) = CF(H)fy(x, H),

where

(1.7)  fo(x,H)=(1— cosx) i |x + 2kw| "' —m<x<wm,
and o

(1.8) F(H) = {]_2(1 - cosx)|x|_1_2de}l

[see Sinai (1976)]. As x — 0 we have

CF(H
f(x, H) ~ ; Do
Fractional Gaussian noise is the unique Gaussian sequence with the property that
S~ = L7NX; has the same distribution as m#S,, for all m, N > 1. Further
properties are discussed in Mandelbrot and Taqqu (1979).
Another example to which our results apply is fractional ARMA. To define it,

let g(x,§) = X2 _o§; x/ and h(x,¢) = 0<1>ij where £ = (§,...,&,) and ¢ =
(Do -+ -5 Dg)- Suppose that g(x, £) and h(x ¢) have no zeros on the unit circle
and no zeros in common. For 0 < d < }, define the spectral density

gle™,¢) |

(1.9) f(x,d, ¢ ¢) = Cle™ — 1|72

h(e®, )

A Gaussian sequence with mean 0 and spectral density f(x, d, §, ¢) is called a
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fractional ARMA process. Heuristically, it is the sequence which, when
differenced d times, yields an ARMA process with spectral density

gle™ &) |
h(eix, ¢)

Granger and Joyeux (1980) and Hosking (1981) have proposed the use of frac-
tional ARMA'’s to model strongly dependent phenomena, since

g1, 8
h(1,¢)

|x| 24 asx — 0.

f(x,d, & ¢) ~ C‘

2. Statements of the theorems. Let X, ;> 1 be a stationary Gaussian
sequence with mean p and spectral density o?f(x, ), where yu,0%2 > 0and § € E
are unknown parameters. The set E C R? is assumed to be compact. Let o2 and
0, be the true values of the parameters. We assume that §, is in the interior of E.

If 6 and 6’ are distinct elements of E, we suppose that the set {x: f(x, 8) #
f(x,8’)} has positive Lebesgue measure, so that different 6’s correspond to
different dependence structures. Assume the functions f(x, #) are normalized so
that

[“10gf(x,6)ax =0, 6€E.
Let f ~Y(x,0) = 1/f(x, 0).

REMARK. The condition [7_log f(x,8)dx > — oo guarantees that the se-
quence { X} admits a backward expansion

X/ =0 Z bk(a)ajfk’
k=0

where ¢;, j > 1, are independent standard normal random variables. The first
coefficient by(0) is the one-step prediction standard deviation of the sequence
Y, = X;/0. It is given by

by(0) = 27rexp{%/_ﬂﬂlog f(x,86) dx}

[See Hannan (,1970), page 137.]1 If /7 log f(x, 8) dx = O for all @, it follows, that
by(0) = 27 and so {Y;} has one-step prediction standard deviation independent
of 4.

We will refer to the following conditions.

CoNDITIONS A. We say that f(x,6) satisfies conditions A.1-A.6 if there
exists 0 < a(f) < 1 such that for each 6 > 0

(A1) g(8) = /7 log f(x,0)dx can be differentiated twice under the integral
sign.
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(A.2) f(x,8) is continuous at all (x,0), x # 0, f ~!(x, 0) is continuous at all
(x,8), and

f(x,0) = O(x|"*®~?%) asx — 0.
(A.3) 9/36, f ~'(x,0) and 92/, 80, f ~'(x, 0) are continuous at all (x, 9),

ad
ﬁf “x,0) = O(|x|*" %) asx—>0, 1<j<p,
J

and

2

80‘80kf“(x,0)=O(|x|"‘“9”5) asx >0, 1<j,k<p.
J

(A.4) 3/9xf(x,0) is continuous at all (x,8), x # 0, and
0
a—f(x, 0) = O(x| *®~'7?) asx — 0.

(A.5) 3%/9x 30; f ~'(x, 8) is continuous af all (x, 8), x # 0, and
32
dx 30,

J

fYx,0) =O0(x|<""1"%) asx—>0, 1<j<p.

(A8) 3°/3% a0 f ~'(x, ) is continuous at all (x,8), x # 0, and

3

FEFT)

fYx,0) =0(x|*"~%27%) asx—>0, 1<j<p.

REMARK. The constants that appear in the O(-) conditions may depend on
the parameters 6 and 8. If L(x) varies slowly as x — 0, then L(x) = O(|x|~?) as
x — 0 for every & > 0. [See Feller (1971), page 277]. Thus (A.1)~(A.6) will be
satisfied if the indicated continuity holds, f(x, §) varies regularly as x — 0 with
exponent —a(0), 3/3x/ f(x, 8) with exponent —a(8) — 1, /30, f "x,8), and
32/, 00, f ~'(x,0) with exponent «(8), d2/3x 36, f ~'(x,0) with exponent
a(f) — 1, and 33/9%x 36, f ~'(x, 6) with exponent a(f) — 2.

DEFINITION OF THE ESTIMATOR. Consider the quadratic form ¢3(6) given in
(1.3). Let 8, be a value of § which minimizes o3(6). Put o5 = ox(0y). The
following theorem establishes the strong consistency of the estimators 8y and o3.

THEOREM 1. If f(x, 0) satisfies conditions (A.2) and (A.4), then with prob-
ability 1

. Yy _ . _.2 _ 2
lim 6y =6, and lim oy = o;.
N-— o0 N-oc



522 R. FOX AND M. S. TAQQU

To state the next theorem, let W(#) be the p X p matrix with j, kth entry
2

- 9 ,
w; () = /_/(x’a)a@aokf (x,6) dx.

THEOREM 2. If conditions (A.1)-(A.6) are satisfied then the random vector
VN (8 — 6,,) tends in distribution to a normal random vector with mean 0 and
covariance matrix 47W ~'(,).

Theorems 1 and 2 are proven in Section 3.

REMARK 1. As in Hannan (1973), it can be shown that the results hold if
6%(0) in (1.4) is replaced by

R 27k 01 27k

: f N ’ N N ’

where — N /2 < k < [ N/2]. This last expression may be useful for computational
purposes.

REMARK 2. 0y — 8, is asymptotically of the order of 1/ VN. Geweke and
Porter-Hudak (1983) have obtained asymptotic results for an estimator resulting
from a regression based on the periodogram estimates. This estimator converges
to the true value of the parameter at a slower speed than 1/ VN .

REMARK 3. The sample mean X, converges to p = EX ; at a slower speed
than 6, converges to 6, because (up to a slowly varying function in the
normalization) N'/2~*/%(X,, — u) converges to a normal distribution [see Taqqu
(1975)].

APPLICATIONS. Theorems 1 and 2 can be applied to fractional Gaussian noise
and to fractional ARMA. In order to apply them to fractional Gaussian noise,
restrict the parameter H to a compact subset of (3, 1) and choose the normaliza-
tion constant CF(H) in (1.6) as

(2.1) CF(H) = exp[— %f_ﬂﬂlog{(l — cos x) i |x + 2k7r|“72H} dx},

k=—-oc
so that
/W log f(x, H) dx = 0.

Similarly, Theorems 1 and 2 can be applied to a fractional ARMA process by
restricting the parameter (d, £, ¢) to a compact set and choosing C in (1.9) as

gle, &) [
seng) }dx |

1 /= .
(22) C=C(d, ¢ ¢) =exp|— —f log{|e”‘ — 1|2
20/ _n
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THEOREM 3. The conclusions of Theorems 1 and 2 hold if X, — pu is frac-
tional Gaussian noise with ;< H <1 or a fractional ARMA process with
0<d< !l

Theorem 3 is proven in Section 4.

REMARK. We have supposed that the mean p of the sequence X is unknown.
If it is known, merely replace the periodogram I, (x) in (1.5) by

. =2 et (X, - )|
Iy(x) = ZwN .

CoroLLARY 1. When p = EX; is known, Theorems 1, 2, and 3 hold if Iy(x)
is replaced by N(x)

3. Proofs of Theorems 1 and 2. Retain the assumptions and definitions
made in Section 2 prior to the statement of Theorem 1. Introduce r,(0) =
/7 .e*f(x, 0) dx, so that E(X;,—p)X X p— )= olr,(6,). Adopt the conven-
tion that functions defined in [ —, 7] are extended to [ —2#,27] in such a way
as to have period 2.

LEMMA 1. Let g(x, 8) be a continuous functionon [ —m, 7] X E. If (A.2) and
(A.4) hold, then with probability 1

Jim /wg(x, 0)Iy(x)dx = o(?f_wg(x, 8)f(x,0,) dx
uniformly in 6.

Proor. Note that Iy(x) has Fourier coeflicients

L W(k, N), |k| <N,
thx —
[ eIn() {o, k] > N,
where
W(k, N) = N }: (%= X (X - K)

ZN MX = w) (X, — -k )
_ < N><, BNk
— ZN=_1k T — Z/ k+1\; T
(R 2R (g el

The sequence { X} is ergodic since it is Gaussian with spectral density f(x, 6,)
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that satisfies (7 f(x, 6,) dx > — oo. Therefore (Xy — 1) tends to 0 as N — o,
as do the last three terms on the right-hand side. Hence

1 N-Fk
lim W(k,N) = lim = ,-}=:1 (X = 1)(Xn = 1)
= U()Zrk(ao)-

This means that the proof of Lemma 1 can be carried out exactly as that of
Lemma 1 of Hannan (1973). O

Proor oF THEOREM 1. The proof uses Lemma 1 and the fact that
(7 log f(x,8)dx = 0 for all §. Proceed as in the proof of Theorem 1 of Hannan
(1973). O

To establish Theorem 2, we use the following four lemmas.

LEMMA 2. Let {by} be a sequence of constants tending to co. Let 3/30 af(0)
be the random vector with jth component equal to d/96; c(9). If (A2)-(A4)
hold and Y is a random vector such that by 3/30 a3(8,) tends to Y in distri-
bution as N — oo, then by(8y — 8,) tends to (—27/02)W ~'(8,)Y in distribution
as N - co.

ProoF. Let 92/30%6%(8) be the p X p random matrix with j, kth entry
8?/88; 80),0%(0). According to the mean value theorem

8 8 82
where |0% — 8,] < |8y — 6,|. Since 6, is in the interior of E, Theorem 1 implies

that @ is in the interior of E for large N. Since 8, minimizes o2(8), it follows
that 8/ 3002(8y) = 0 for large N. Thus for large N
2

00 = |- o)
%"N(ao) = aaQON(oN) (0 )

Because
2
G535,°M0) = 5, f_ﬂ g0, (= OI(x) dx,
it follows from Lemma 1 and Theorem 1 that with probability 1
2 2
35,30, 08) = 8.
Therefore

2
0, _ _
bN 20 W (00)(0N - 00)
T

tends in distribution to Y, completing the proof of Lemma 2. O
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LEmMA 3. If (A1), (A.2), and (A.3) hold then

T 8 1 1 2
w;(8) = /_W(a—%f (x,o))(b-a;f (xo) (x,6) dx.

Proor. If the right-hand side is denoted <J, then by (A.1),
2

36, 00,

1%ﬂxwm_—J+/fwxm f(x,0) dx.

» 00,30,

Hence
2

7 d R
() = [ 16,0 G5zt " (x,0) d

2

aoa@

=2J - ff" 8)

=dJ. O

f(x,0)dx

LEMMA 4. If conditions (A.2) and (A.4) hold, then for every § > 0
r(0) = O(k*®~1%%) ask - 0.

Proor. Fix 6 and put f(x) = f(x, ). Since f is periodic,
T T
< f_w f(x) — f(x + E)
—2n/k w/k U
= + + [ .
f—‘n’ /—2w/k w/k
Conditions (A.2) and (A.4) imply that there is a constant C = C(4, §) such that
f(x) < Clx| =2

2|r,(0)] =

i e+ T

dx

and

< Clxl—a(a)—l—s

)

for x bounded away from +2m, say |x| < 27 — 1. (Since f is periodic, f need not
be continuous at 27.) By the mean value theorem

/‘ 2a/k

™

—a(f)-1-8

dx

b

Zw/k

ﬂ)—dx+~iw<ckf

_C —m/k le—a(!))—l—adx=O(kaw)—us)

k —-n+a/k
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as k — 0. A similar argument shows that

'[r/k

f(x) - f(x + %)'dx = O(Ra® -1+3),
We also have

2 i Slfas [ peraes 7 sl 7]

—2m/k —2m/k k

7/ k
<cf |8 gy
—2a/k

n/k aT —a(f)-8
w77 lx+ —L dx
—2m/k k
=92C n/k lef(x(O)—deZ0(ka(9)71+8)'
—-2a/k

This completes the proof of Lemma 4. O

LEMMA 5. If conditions (A.3), (A.5), and (A.6) hold, then for every § > 0
and everyl <j < p,

-

o d
f e‘k"[——f_l(x,ﬂ)]dx=0(k"“0’”8) ask — .
o,

ProoF. Since 3/30; f ~'(x, 8) is symmetric, integration by parts yields

e,(0) = f e‘kxb—af “Nx,0)dx

—_TT

1 4 kx 82 —1( 0) dx
=) ek (RO

The argument in Lemma 4 can now be applied since
2

dx 90,
We thus get ‘

f Y (x,0) =0(x|*"~1'7?) with0 < —(a(8) — 1) < 1.

1
ek(0)=_1;0(k7(a(0)71)71+8)
=0k~ “O-1%) a5k > 0. O

The proof of Theorem 2 uses the following result which is a consequence of
Theorem 4 of Fox and Taqqu (1983).

PROPOSITION 1. Let f(x) and g(x) be symmetric real-valued functions whose
sets of discontinuities have Lebesgue measure 0. Suppose that there exist a < 1
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and B < 1 such that o + B < } and such that for each 8 > 0
f(x) = O(x1~ %) asx -0
and
g(x) =0(x]"#7?%) asx —0.

If {X} is a stationary, mean 0, Gaussian sequence with spectral density f(x),
then

W[ I(x)e(x) dx - B[ Iy(x)g(x) dx)
tends in distribution to a normal random variable with mean 0 and variance

an [ [H(x)g(x)] ds.

REMARK. Proposition 1 is established by showing that the cumulants of
order greater than two tend to zero as N — 0. Non-Gaussian limits may occur if
the { X;} are non-Gaussian [see Fox and Taqqu (1985)].

PROOF OF THEOREM 2. Let a,denote a(f,). Define my = E 3/36 6%(8,) and
let my ;= E 3/36,05(6,) be the jth coordinate of my. Let c,,..., c, be fixed
constants and consider the random variable

ad
Yy = Zc[—ﬁo,\,(ﬂ) mN,J]

“5:

-T

[Z 78 ‘1(x,00)}IN(x)dx— Y e;my .

J=1 J=1

Under condition (A.3) the function in brackets is O(|x|* ~%) as x — 0 for every
6 > 0. Apply Proposition 1 with

a = ag,
B=—aqa
f(x) = 002f(xs00):

and

glx) - Z c,a—of “(x,0y),

and conclude that YN Yy tends in distribution as N — oo to a normal random
variable with mean 0 and variance s? given by

/ T, 0)[2: %54 -‘(x,oo)} dx

P » 4 - a a
= Z Z cjck?,l;.—)/¥wf2(x»0())(50_jf ¥1(xs0()))(—a—0;f ¥1(x’0())) dx

J=1k=1
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An application of Lemma 3 yields
4

Z E cck 11(0())

J=1k=1
Since cy,..., ¢, were arbitrary, we have shown that VN(3/366%(8,) — my)
tends in dlstrlbutlon to a normal random vector with mean 0 and covariance
matrix o) /7W(6,). Therefore Theorem 2 will follow from Lemma 2 if we show
that under the conditions of Theorem 2

lim \/_le—O l=1,...,p.

N—oc
To prove this, define

= B [ g a0 ),

where
l X 2
j(x)_lz g Xf_“)l
N 2aN
It follows from Lemma 8.1 of Fox and Taqqu (1983) that lim y_ VN (m NI
pn, ;) = 0. Thus it suffices to show

(3.1) lim \/_,uN, l=1,...,p.

N—- oo

We have

N N
(2ﬂ) N Z k{:lejfk(ao)(Xj_ H)(Xk - 1),

Un =

where
a 0
e, =ey0) = f e‘kx%—f “Nx,0) dx.
— ,

Set also r), = r,(0,). Then
o2

Z Z €kl k-

(2W)Nj 1 k=1

Note that e,rj, is the £th Fourier coefficient of the convolution

x [ d
) = [ [t 000 | 0

KN =

Note also that

>

—_

(=]

SN
|

_ fjﬂ(aiolf ‘(y,ﬂo))f(y, ,) dy

x4
~[ g o8 (2. 6) dy =0,

where we have used (A.1).
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To prove (3.1), observe that by Lemmas 4 and 5, thereisa 0 < § < | such that
as k — oo,

(3.2) ekrk= O(k_2+28).
Observe also that e,r, is the kth Fourier coefficient of A, so that
o
(3.3) Y e,r,=h(0)=0.
k=—oc
We have
(277) Z ZJ 1 J— krj—k
Ny = I S
k
|k| <N

=Z\]1/2 Z ekrk—N_l/Z Z kekrk.
k| <N k| <N
Because of (3.3), the first term equals —~N'/?L , . ye,r,, which is O(N ~1/2+2?)
by (3.2). The second term is also O(N ~1/2+2%) by (3.2). These terms tend to zero
as N — oo, establishing (3.1). This completes the proof of Theorem 2. O

REMARK. Conditions (A.4), (A.5), and (A.6) were used in the proofs of
Lemmas 4 and 5 to show that r, = O(k*?~1*%) and e, = O(k ~«»~1*%) a5
k — oo. In specific cases, a Tauberian theorem may be applied to f(x, §) and
/00, f ~'(x, 8) to yield such estimates on r;, and e,.

4. Proof of Theorem 3. In order to verify that conditions A are satisfied for
fractional Gaussian noise and fractional ARMA’s, it is convenient to check the
following conditions which are stronger than conditions A.

CoNDITIONS B. We say that f(x, 6) satisfies conditions B.1-B.4 if there is a
continuous function 0 < a(f) < 1 and constants C(8), C,(6) such that for each
§>0

(B.1) f(x,8) is continuous at all (x, ), x # 0 and
f(x,0) = Cy8)jx| ==+

(B.2) f(x,0) < C(8)|x|~ @3,

(B.3) 4/36; f(x,0) and 3*/36; 36, f(x,0) are continuous at all (x, §), x # 0,

<C(8)x|="=%  1<j<p,

d
ngf(x’a)

and
2

36, 0,

f(x,8)] < C(8)x|~ "%  1<j,k<p.
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(B.4) d/dxf(x,0), 3°/dx 36, f(x,0), and 3°/9x* 80; f(x, §) are continuous at all

(x,0), x # 0,
2 i(x,0)] = C(8)z =10
ax - ’
2
aw g (0] < C(O)x|~*717% 1 <j<p,
J
and
33
——f(x,0)| < C(8)|x| " «~-2-9 1<j<p.
8x280jf(x ) (8)1x| . J<p

Note that conditions B do not involve the function f ~!(x, #). The constants
C(8) and C(8) which appear in conditions B are required to be independent of 4.

LEMMA 6. If f satisfies conditions B.1-B.4, then f satisfies conditions A.1-A.6.

PrOOF. Suppose that f satisfies conditions B. It is easily seen that conditions
A.2-A.6 are satisfied. For example

d
—f(x,0
’ f~Y(x,0) ” ) o)
Y x, =<
d6; f%(x,0) C;(8)
This implies that 9/d0; f ~'(x, ) is continuous and that d/96; f ~'(x,0) =
O(|x|¥®~3%) as x — 0.
We check that condition A.1 is satisfied. Let v, be the jth unit vector in R?,

that is, the vector with jth component equals 1 and all other components equal
0. Then we have

/7 Jog f(x,0 + ev;) dx — [ log f(x,0) dx
€

_ /w log f(x,8 + ev;) — log f(x,0) "

€

|x|a(0) — 38.

By the mean value theorem this integrand is majorized for each x # 0 by

a *
=515, 07(x))

J
fx,0%(x))

where |60*(x) — 0| < |e|. Under conditions B.1 and B.3 this quotient is at most
C(8)/Cy(8)|x|*m~m~ 28 where

= 1 [/}
@, = mina(f)

d
jﬁjlog f(x, 0%(x))
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4 = max 0 .

Since a,, — a,, > —1 we can choose 8§ so that a,, — a), — 26 > —1, and thus

f |x|am—aM728dx < 0.

Hence the dominated convergence theorem implies that 7 log f(x, 8) dx can be
differentiated under the integral sign. A similar argument shows that a second
differentiation under the integral sign can also be performed. O

Proor OF THEOREM 3. For fractional Gaussian noise, f(x, H) =
CF(H)f,(x, H), where f(x, H) is defined in (1.7) and CF(H) is defined in (2.1) as

CF(H) = exp{— 2—1;fjﬂlog fo(x, H) dx}.

According to Lemma 6 it suffices to show that f(x, H) satisfies conditions
B.1-B.4 with a(H) = 2H — 1. We will show that f,(x, H) satisfies conditions B
with a(H) = 2H — 1. Then Lemma 6 implies that CF(H) is twice continuously
differentiable, which means that f(x, H) satisfied conditions B.

Note that

fo(x, H) = (1 — cosx)[|x|_1_2H + fi(x, H)],
where
flx,H) = Y |x + 2kn| 1724,
k0

Since 1 — cosx ~ |x|?>/2 as x — 0, conditions B will hold for fy(x, H) if f(x, H)
is three times continuously differentiable at all (x, H). A standard theorem on
differentiation of series [Theorem 7.17 of Rudin (1964), for example] shows that
this is indeed the case. Thus conditions B are satisfied for fractional Gaussian
noise.

It is even simpler to verify conditions B for a fractional ARMA process
because the divergent term is already factored out in that case O
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