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When a panel of experts is asked to provide some advice in the form of a
group probability distribution, the question arises as to whether they should
synthesize their opinions before or after they learn the outcome of an
experiment. If the group posterior distribution is the same whatever the
order in which the pooling and the updating are don, the pooling mechanism
is said to be externally Bayesian by Madansky (1964). In this paper, we
characterize all externally Bayesian pooling formulas and we give conditions
under which the opinion of the group will be proportional to the geometric
average of the individual densities.

1. Introduction. Let (O, u) be a measure space and let A be the class of
p-measurable functions f: ® — [0, c0) such that f > 0 p-a.e. and [fdp = 1. In
the language of multiagent statistical decision theory (cf. Weerahandi and Zidek,
1981), a pooling operator is any function T: A" - A which may be used to
extract a ‘“consensus” T(f,,..., f,) from the different subjective opinions
fis--+» f, € A of the n members of a group. The current interest for pooling
operators seems to stem from a theorem due to Wald (1939) concerning the
‘optimality of Bayesian decision rules. When formulated in the context of a group
decision problem, this theorem suggests that at least in the case where all the
members of the group have the same utility function, it is generally preferable
for them to agree on an “average opinion” T( f,, ..., f,) and to adopt that action
which maximizes their common utility with respect to T( f,, ..., f,), rather than
to take an “average decision” based on the optimal decisions of each of the
individuals (see de Finetti, 1954).

A few years ago, Madansky (1964, 1978) suggested the use of pooling formulas,
T, which have the following property:

T(lfl/flfld,u,...,lfn/flfndp)

= (s f,,)//lT( firo fa) dp,  prae,

whenever I: ® — (0, ) is such that

(1.1)

(1.2) O</lf,~dp<oo, i=1,...,n.
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A function ! which satisfies condition (1.2) above is hereafter called a likelihood
for (f,..., f,). Implicit in the statement of (1.1) is that the integral
JIT(f,,..., f,) dp is finite whenever [ is a likelihood for ( f,,..., f,)-

A different but obviously equivalent formulation of Madansky’s condition
would be to specify that

(1'3) fl/gla o & n/gnalz;’T(fli""fn)/T(gli""gn)ql'

Pooling operators which obey (1.1) or (1.3) are called externally Bayesian. By
adopting an externally Bayesian formula, a group assures itself that when
additional information [ is perceived jointly, their collective opinion can be
modified (using Bayes rule), producing the same result as if the pooling operator
had been applied after each individual distribution has been revised. Raiffa
(1968, pages 221-226) shows with reference to a concrete example how using a
pooling formula which fails (1.1) may lead the members of the group to act
strangely. In Raiffa’s example, as it were, all the individuals try to increase the
influence of their opinion on the consensus by insisting that it be computed
before the outcome of an experiment is known. This happens because the
members of the group know that whether the f,’s are updated or not, the
consensus will be computed using the same weighted arithmetic average of their
opinions, viz.

(1.4) T(f..., f,) = L w;f, pae.,
i=1

a formula which violates (1.1) unless w; = 1 for some i and w; = 0 for all j # 7.

To ensure that the order in which the pooling and updating are done is
immaterial, Bacharach (1972) suggests that the consensus should be computed
using a logarithmic pooling operator, viz.

(1.5) T(fryeeesfn) = l:[]fi“"//l:[lfi“" dp, p-ae.,

where w,,...,w, are nonnegative weights such that ¥ w,=1 as in (1.4).
According to Bacharach, it is Peter Hammond who first observed that the
operator (1.5) is externally Bayesian. In a recent article, Genest (1984b) has
shown that this is also the only solution of the functional equation (1.1) when
there exists a function G: (0, )" — (0, o) which is Lebesgue measurable and
such that

(1.6) T(frsees F)(8) X G(f1(8),..., f.(0)),  pae,

where the proportionality constant must be independent of 8. (A precise state-
ment of this result is to be found in Section 2.) The formula (1.6) means that,
except for a normalizing constant, the value of T' at a particular 6 depends on
the f’s only through their values at 6. The import of this theorem is still
limited, however, especially because the proof given in Genest (1984b) does not
apply when the space (0, p) is purely atomic, an assumption which excludes the
important case where O is finite or countable.
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In this paper, we will provide all the solutions of the functional equation (1.1),
that is, without restriction to those operators which obey (1.6) and without
imposing regularity conditions on the space (0, ). The form of the solutions is
given in (2.1) below and is worked out explicitly in Section 3 for the case where
individual opinions are represented as probabilities of a single event. When the
function G in (1.6) is indexed by # and (©, ) can be partitioned into at least
four nonnegligible sets, we show that all the solutions must be of the form

(17) T( fla"'afn) =gI=—[lfiw'/fgI;[1fiw'd:U" p-a.e.,

g being an arbitrary bounded function on ® and w,,...,w, being arbitrary
weights adding up to 1. Pooling operators of the form (1.7) have already been
characterized by McConway (1978), but only in the case where the measure p is
purely atomic (thereby forcing ® to be countable). Obviously, the weights in
(1.7) can be negative, but only when 0 is finite.

It may not always be reasonable to require a pooling formula to satisfy the
criterion of Madansky (1964, 1978), viz. (1.1). Such would be the case if, for
instance, the group itself were not required to make a decision, but rather were
only asked to provide a group opinion to an external decision maker. In
situations where a decision maker is present, French (1981, 1985) and Lindley
(1985) have argued rightly that it would seem more reasonable for this decision
maker to adopt the Bayesian approach and to treat the opinions of the members
of the group as data which he/she would use to update his/her own subjective
probability distribution. In certain circumstances, French and Lindley have
shown how the formula T(f,,..., f,) representing the decision maker’s opinion
after hearing the experts could well violate (1.1). In this paper, however, we
address what French (1985) would call the “group decision problem,” that in
which there is no natural decision maker and the group is either unwilling or
unable to provide one.

Whether it involves a decision maker or not, the problem of determining a
sensible formula for representing the opinions of a group has received a lot of
attention in recent years. Let us mention, for example, the papers of French
(1980, 1981), Morris (1974, 1977), Winkler (1968, 1981), and Genest and Schervish
(1985), all of which adopt the Bayesian viewpoint. References on the so-called
“group problem” include Laddaga (1977), McConway (1981), Wagner (1982,
1984), and Genest (1984a, c). An extensive bibliography has recently been
compiled on both versions of the problem by Genest and Zidek (1986).

2. Characterizing externally Bayesian pooling operators. First observe

that the class A is nonempty if and only if the measure u is o-finite, and that the
operator (1.7) is well-defined since

0 < [gTT/"dp<ligll,IT [ffidu] = llgll < oo
=1 =1

by Hoélder’s inequality. For convenience, we will assume that every singleton



490 C. GENEST, K. J. MCCONWAY, AND M. J. SCHERVISH

subset of © is measurable. The following theorem is a slight modification of a
theorem of Genest (1984b).

THEOREM 2.1. Let (O, p) be a measure space, and suppose that p. is not
purely atomic. Let also T: A" — A be a pooling operator for which (1.6) holds.
Then T is externally Bayesian if and only if it is logarithmic, i.e., if and only if
there exist nonnegative weights w,, ..., w, such that ¥ w, = 1 for which (1.5)
holds.

Proor. The proof is the same as in Genest (1984b), since the o-field on
which p is defined always contains nonnegligible sets with arbitrarily small
measure, except in the case where the measure u is purely atomic. (See Halmos
(1950), Exercise 1, page 174). O

In the following, our main objective is to generalize Theorem 2.1 by char-
acterizing all the pooling operators which have property (1.1) without imposing
condition (1.6), and without restricting the underlying measure space (0, ). To
do this, we first consider the case in which the “group” consists of a single
expert, and we show that every externally Bayesian pooling operator is then of
the form (1.7).

THEOREM 2.2. Let T: A —» A be a pooling operator. Then T is externally
Bayesian if and only if there exists a bounded function g: ® — [0, c0) such that
g > 0 p-a.e. and

T(7) =g fefdn, wac.
for all p-densities f in A.

Proor. Let f and A be arbitrary in A. Set g = T(h)/h and consider the
likelihood function / = f/h. Since T is externally Bayesian, we have

T(f) = T(lh/flhdu) =lT(h)/flT(h)du =gf//gfdp, p-ae.,

for all f e A. We also have [gfdu < oo for all f, which implies that g is
essentially bounded. (See, for example, Theorem 20.15 in Hewitt and Stromberg
(1965).) The definition of T does not depend on the choice of A, since g is unique
up to a constant multiple. O

In the case where n > 1, the basic idea consists of reducing the problem to the
context of Theorem 2.2 by dividing the domain of T into equivalence classes in
such a way that, given the value of T at one member of an equivalence class, the
externally Bayesian property defines the value of T at all other members of that
class.
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DEFINITION 2.3. Two vectors ( f,,..., f,) and ( f*,..., f,*) in A" are said to
be equivalent and we write (f,,..., f,) ~ (fi* ..., f,*) if and only if

Vi,jdc, ;>0 suchthat f/f=c, ;(f*/f*), pae
It is obvious that ~ is an equivalence relation on A" and that two vectors of
densities belong to the same equivalence class if and only if there exists a
likelihood function I: ® — (0, o0) such that

=1, / f If,dp, pae.,

for all i =1,...,n. In the sequel, we use the Greek letter a to refer to an
arbitrary element of the quotient-space &/ = A"/~ .'For each a € &/, we denote
(f& ..., f*) an arbitrary but fixed vector of p-densities in a. That such a
representative can be chosen for each equivalence class a follows from the Axiom
of Choice.

ExaMPLE 2.4. Let (f2,..., f,%) be a vector of exponential densities such that
£5%0) = X exp{ —\,0} for > 0, X, being a nonnegative parameter, i = 1,..., n.
It is easy to see that a vector ( f,,..., f,) belongs to the same equivalence class as
(fr ..., %) if and only if [fiexp{(A\, — A,)0}d# < oo for all £ =1,...,n, and
f, « fexp{(A, — A,)8}, p-a.e. for i > 1. The condition on f, means that its
moment generating function is finite at each point A, — A, k= 2,..., n.

We are now in a position to state the main result of this section.

THEOREM 2.5. Let T: A" — A be an arbitrary pooling operator. Then T is
externally Bayesian if and only if

(2‘1) T( fl""’ fn) & bavafl/fla’ [.L-a.e.,

where (using the above notation) a represents the equivalence class of
(fir---» f,), and for each a, b, is some essentially bounded function and v, is
some function such that v, > max{f?,..., '}, p-a.e.

PROOF. It is easy to see that for any fixed b, and v,, pooling operators of the
form (2.1) are well-defined and externally Bayesian. The crux of the proof
consists in showing that these are the only ones.

For each a € &, denote h,= T(fS,..., f*). For an arbitrary (f,..., f,)
which is equivalent to (ff,..., f.%), consider the likelihood function I = f,/f".
Since £.*/f{ = ¢, f,/f wae. one has [Ifdu=c,, < % and If¢/[lf;" dp = f,
for all i = 1,..., n. Since T is externally Bayesian, it follows that

T(fryeees £,) @ ITCEE, .., £2) = Lo/ pae,

and this remains true as long as ( f,,..., f,) belongs to the equivalence class a.

To complete the proof, assume that v, > max{f? ..., f;'}, p-a.e. To show
that A, /v, = b, is essentially bounded, pick an arbitrary g in A and define
f, = gf/v,, n-ae. Since [f, [*/fdp < oo, for all i=1,...,n, we can define
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fas---s [, € A such that (f,,..., f,) ~ (f{,..., f) by putting f, o« f, f*/f for
it > 2. Then T({,,..., f,) < gh,/v, and hence

[&ha/vdn < o

for all g € A. The conclusion now follows from Theorem 20.15 in Hewitt and
Stromberg (1965). O

At first glance, it may appear as though formula (2.1) is based solely on the
opinion f, of the first expert, which is intriguing. In reality, however, the
opinions of all the individuals influence the consensus since it is necessary to
know them all in order to determine the equivalence class corresponding to the
vector (f,,..., f,)- Note that each equivalence class' is characterized by an
arbitrary vector (f7,..., f,%) in the class or, equivalently, by a component f2
and the ratios f;*/f2, which ratios are invariant (up to constant multiples)
within a given class. For this reason, the operator (2.1) could also be written in
the form

T(fl""’fn)abavaflf/f;’ p-a.e.,

or alternatively as
n

(2.2) T(fireeos fu) @O0 LT £/F5], peae,

i=1
provided that the weights w; add up to 1. In principle, a different set of weights
could even be chosen for each vector ( f,,..., f,), since the ratios f,/f,* are equal
to one another up to constant multiples. Another trivial observation is that
every measurable function is bounded when © is finite. In this case, therefore,
the requirement that b, be bounded is vacuous.

Formula (2.1) is more general than the logarithmic opinion pool (1.7), but this
operator is included as a particular case. To verify this, it suffices to choose the
function b, in (2.2) equal to gI'T™ ,(f*)*:/v,, where g is essentially bounded.
This choice is legitimate since [17_,( f;*)*' /v, < TT_ (f*)*/max{f5 ..., ¥} <1,
p-a.e. More generally, the operator

T(fieeor fo) = 8 L1/ [ TT 1% dn, e,

is well-defined:and is externally Bayesian when the functions g, are essentially
bounded and X7 ,w;(a) = 1. That is, the function g and the weights w; in (1.7)
may vary with the equivalence class to which the vector (f,,..., f,) belongs
without conflicting with (1.1) or (1.3).

In order to synthesize the group’s opinions using a formula of the form (2.1), it
will generally be necessary to first determine the equivalence class to which the
observed vector of opinions belongs. In the following section, we will show what
this involves in the specific case where each individual in the group is asked to
provide his /her subjective probability for the realization of an event of interest.

3. The event case. In this section, we consider in detail the special case in
which the space © consists of only two points, say ® = {0,1}. This is the case in
which each expert opinion can be thought of as the probability assigned to the
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event E = {f = 1}. In this case, the equivalence class to which a particular
vector of probability assessments belongs is easy to construct. First note that
each probability assessment consists of two positive numbers adding to unity,
say p and 1 — p. (The requirement that p be strictly between 0 and 1 is
equivalent to the general assumption that the experts’ densities are strictly
positive almost everywhere.) A vector p = (p,,1 —p,},...,[P,,1 — p,]) of
such assessments is equivalent to another such vector q = ([¢,,1 — q4],--.,
[¢,1 — gq,]) in the sense of Definition 2.3 if and only if, for each i = 2,..., n, we
have a constant k; such that

(3.1) p./p=kq,/q,,(1 -p)/(1—p,)= k;(l -q;)/(1 - q,).

If we let 2, and 2; be the odds ratios p,/(1 — p;) and gq,(1 — g;), respectively,
(3.1) simplifies to #,/P, = 2,/2, for i = 2,..., n. Hence two vectors of probabil-
ity assessments for an event are equivalent if and only if the pairwise ratios of
assessed odds within one set are equal to the corresponding ratios in the other
set. For example, with n = 2, the two vectors ([0.5, 0.5], [0.7, 0.3]) and ([0.75,
0.25], [0.875, 0.125]) are equivalent since the odds ratio of the second expert is
7 /3 times as big as the odds ratio of the first expert in each case. The equivalence
class a(p) to which a vector p of probability assessments belongs can be char-
acterized by the n — 1 coordinates of the vector = (2,/?,,..., #,/?,). That
is, the equivalence classes are in one-to-one correspondence with the n —1
dimensional vectors of positive numbers. The equivalence class corresponding to a

vector (a,,...,a,) contains all vectors of probability assessments such that
P, = a;,2,. A canonical representative p* can be chosen from each class a with
2, = 1, and we can identify a with the vector (ay,..., a,).

Next, we will look at what the externally Bayesian formulas are. Without loss
of generality, we can assume that v, in Theorem 2.5 is identically 1 for all a,
since all densities are probabilities in this problem. It follows that each exter-
nally Bayesian formula can be represented as

i bVP, b(O)(1 ~ p)
b,(1)p, + b,(0)(1 =) b(1)p, + b,(0)(1 — py) ’

where b, is an arbitrary (bounded) function on ® for each «, and a =
(P,/P,,...,P,/P,). Another way to express (3.2) is to say that the odds ratio
for T(p) is 2,b,(1)/b,(0). Now it is trivial to see that we can assume 5,(0) = 1,
without loss of generality, by simply altering b,(1). So the odds ratio for T(p) is
just 2, b(1). For example, if (1) = 1, then T is the dictatorship that simply
follows expert 1. Or if b(1) = a,, then T is the dictatorship that simply follows
expert i. If b (1) = r[1" ,a% for arbitrary numbers w,, i =2,...,n,and r >0
then

(32)  T(p)

qll_, pi"
g’ p + (1 = ¢)IT_,(1 — p;)

T(p) = o
(3.3)
(1- I, -p)“

qll)_, p/ + (1- Q)n:;l(l _pz)w' ’
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where w, =1 — 2'_,w, and q = r/(1 + r). Formula (3.3) is an analogue of (1.7)
in the event case.

The form of the most general externally Bayesian rule (3.2) is very general. It
is possible, for example, for b,(1) to vary in an arbitrary fashion as a function of
a. However, it would not usually be desirable for a small change in p to produce
a large change in T(p). It is easy to see that (3.2) is continuous as a function of p
within each equivalence class a. In order for T to be continuous overall as a
function of p, all that is required is that b (1) be a continuous function of « (with
the convention that b,(0) = 1). For example, we could let the weights w, in (3.3)
be continuous functions of a and obtain a generalized logarithmic pool with
weights which depend on the degrees to which the experts differ.

4. The logarithmic opinion pool. Genest (19845) conjectured that if an
externally Bayesian pooling operator T: A" — A were such that

T(f,,-.., £,)(0)
= G(0, fl(a)""’ fn(a))/fG(’ fl""r fn)dnu’r p-a.e.,

for some p X Lebesgue measurable function G: © X (0, )" — (0, o), then T
must be a “modified logarithmic opinion pool,” viz.

(4.2) T(fis s fa) =gl:[l fi“"/fgl:[lfi“" dp, pae,

(4.1)

where g is an arbitrary bounded function on ® and w,...,w, are (not neces-
sarily nonnegative) weights summing up to one. This result was actually proven
by McConway (1978) in the case where © is countable and p is a counting-type
measure. In this section, we will extend this result by removing the restriction
that the measure space should be purely atomic. Indeed, the only assumption
which we will make here is that (0, u) can be partitioned in at least four
nonnegligible sets. We call a measure space which has this property quaternary,
by analogy with the term tertiary introduced by Wagner (1982).

Our proof is a hybrid of that of Theorem 2.1 in Genest (1984b) and an
argument which was developed by McConway (1978) for the countable case. In
accordance with the convention adopted at the beginning of Section 2, each
6 € © will either be an atom or will have measure zero. We begin by addressing
the case in which the measure space contains atoms.

LEMMA 4.1. Let (0O, n) be quaternary and let T: A" — A be an externally
Bayesian pooling operator. Suppose that (0, p.) contains at least two atoms and
that there exists a u X Lebesgue measurable function G: © X (0, 00)" — (0, 0)
such that (4.1) holds for all f,,..., f, € A. Then for every pair of atoms (0, 1) in
©2, the identity

T( fl""’ fn)(o) _ T(hl""’ hn)(a)
T(flr'“: fn)(n) T(hh'"?hn)(n)

(4.3)
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holds for all densities f,,..., f, and hy,..., h, € A for which
(4.4) 1(8)/f.(n) = hi(6)/hi(n), i=1,...,n

Before we present the proof of this lemma, let us mention parenthetically that
the implication (4.4) = (4.3) is weaker but similar in spirit to the so-called axiom
of relative propensity consistency (RPC) of Genest, Weerahandi, and Zidek
(1984). In view of Lemma 4.1, it is not surprising, therefore, that their RPC
condition should imply a logarithmic opinion pool, at least when the space (©, 1)
is purely atomic.

PrROOF. First observe that if two vectors of p-densities (fy,..., f,) and
(hl, .., h,) satisfy (4.4) and belong to the same equivalence class, the conclusmn
is 1mmed1ate from (2.1) in Theorem 2.5. Hence, the proof will be complete if we
can show that whenever there exist f,,..., f,, Ay...,h, in A such that
f.60)/f(m) = hy(8)/h(n), i =1,..., n, such densities exist which belong to the
same equivalence class. To do this, ﬁrst set x; = f; (0), ¥, =f; (n), x¥ = hy0),and

y* = hy(n) so that x,/x} = y,/y*=t, say, for i=1,. . Since (0, p) is
o- ﬁmte and quaternary, there must exist a partition of E') 1nto four sets A; with
0 < u(A)) < oo, for j=1,2,3, p(A,) >0, and such that x,u(A4,) + ylu(A2) <1,
and x; ,u(A ) + y*u(Ay) <1, for all i=1,...,n. In particular, we can take
A = {0} and A, = {n}. We will construct densmes fir-+-, f, and a likelihood I

for (fiy---s f) such that f(0) = x, f(n) = and h, (0) = =¥, B(m) = 32
where h; = If /[If,dp, i = 1,.
Denote v, = x;u(A) + ylu(Az), and note that 0 < y; < min{¢;,1} for each i.
This is true because
xp(A,) + ym(Ay) = t[xF(A) + yu(4,)] <t
forall i = 1,...,n. Choose 0 < A, £ < oo such that
A < min {[1 —v]7'(¢, - yi)} < max {[1 7 7 Y,-)} <.

.....

Fixing A € A an arbitrary density, now define

= () +yr(ag) + o) gy

3 1 1 i 2 (A3)(£ )\) 3
(4.5)

g(l - Yt) - (tl - Yz)
ht(A,),

where R = [#(A,)hdp > 0 and, in general, F(A) denotes the indicator of the
set A. Clearly, [f;dp =1 and f(0) x;, f(n) ¥, i =1,...,n. To generate
the A,’s, consider the likelihood
(4.6) 1=5(A) +F(A,) +££(A;) + A\ (A,).

It is easy to see that [If; du = ¢;, so that h,(0) = x¥* and h(n)=y*i=1,...,n
O
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Lemma 4.1 shows that if T: A” — A is externally Bayesian and satisfies (4.1)
for some function G on ® X (0, c0)", then for all pairs of atoms (8, 7) in ©2, there
must exist a Lebesgue measurable function (8, n): (0, c0)"* — (0, o) such that
for all f,,..., f, €4,

T(fy,..., f,)(0) f,(8) f,l(ﬂ)}
T(fy,..., f,)(n) film)” 7 fum) |

We will now derive a more specific form for the right-hand side of (4.7).

(4.7) = Q(ﬂ,n){

LEmMA 4.2.  In addition to the conditions of Lemma 4.1, suppose that (0, )

contains at least three atoms. Then, there exist constants v,,...,v,, such that
forallx,,...,x, > 0 and every pair of atoms (6,7) in 02, we have
n
(4.8) Q(0,n)(xy,...,x,) = Q(0,m)1) [T,
=1
where 1 denotes the n-dimensional vector (1,...,1).

ProoF. In the same manner as Genest, Weerahandi and Zidek (1984), define
new functions NQ(6, n): (0, c0)" — (0, ) by

Q(a, n)(xl""’xn)
NQ(aa n)(x1’~"’xn) = Q((),n)(l,...,l)

for all atoms 8 # 7. Let 6, 1, and { be three distinct atoms in ® and pick ¢ > 0
small enough that there exist densities in A which assume any of the values &,
ex,, or ¢/y, at any of these three atoms. Writing ¢ = (¢,..., €), x = (x,..., X,),
andy = (y,..., ¥,), and assuming that all operations on vectors are performed
componentwise, we have

G 0, X G )y €
NQ(6,n)(xy) = E;(a e))//G((nn e/)y)

_ G(,9)/G(n,¢/y) G(6,)/G 5, ¢)
G, e)/G(n,e) G(8,0)/G(5,e)
= NQ(8, H)(EINQ(S, m)(y)

for all x and y in (0, 0)". The argument now proceeds exactly as that beginning
at (2.1) of Genest, Weerahandi, and Zidek (1984), except that in our case, the
nonmeasurable solutions are automatically eliminated because G, @, and hence
NQ@ were assumed to be Lebesgue measurable. It follows that (4.8) holds for all
X,..., %, > 0and all pairs of atoms 8 and 5. O

To complete the proof of (4.2) for atoms, fix ¢{ an atom in ® and choose &
strictly between 0 and 1/u({). For all atoms 6 € ®, now define g(f) =
Q(, H)1)G[¢, e]le ¥, where v = L"_,v,. Then for all atoms 6, we find

G(0,x,,...,x,) =g(0) lj[le',
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for all 0 < x,,..., x, < 1/p(8), which implies that
(4.9) T(fi---» £,)(6) =g(0)1:[lfi(0)”‘/fgil=]1f,-”' dp

for all atoms 6.
Next, we derive a formula similar to (4.9) for those § which are not atoms.

LEMMA 4.3. Let T: A" > A be externally Bayesian and assume that (4.1)
holds for some u X Lebesgue measurable function G: © X (0, 0)" = (0, o).
Assume also that (O, ) is not purely atomic. Let N be the complement of the set
of atoms. Then

T(fises £,)(8)
(4.10) .
0)1j[1fl(0) l ‘[G(':fl:“'yfn)d.u, ,u-a.e.onN,
for some nonnegative weights w,, ..., w, € R adding up to unity.

Proor. Define a new function NG: © X (0, c0)" — (0, ) by

NG(6,z,,...,2,) =G(0,z,...,2,)/G(6,1,...,1)
for all z,,..., z, € (0, ). It will be enough to show that NG(0)(z,,...,2,)isa
function of the z,’s only, say NG(zy,..., z,,). For, once this is done, we can define

a new pooling operator T* A" —> A by

T*(fyy-os £)(0) = NG(f,(6),..., fn(a))/fNG( fio-e £a) dp.

It is easy to see that T* is externally Bayesian and of the form (1.6) with G
replaced by NG. We can then apply Theorem 2.1 to conclude that

NG(z,,...,2,) = l_[z
for some nonnegative constants w,,...,w, adding up to one. Letting g(0) =
G(6,1,...,1) for all 8 in N, we arrive at (4.10).
To see that NG(8, z,,..., 2,,) is a function of the z,’s alone, we proceed along
the same lines as in the proof of Lemma 4.1. Given z,,..., 2, > 0, choose ¢ > 0
such that ¢ <min,_, £1/2,1/2z;) and let A, 1 <j < 4, be a partition of N

suchthat0<u(A)<£for1—1 2; 0 < u(A, )< o0 and p(A,) > 0. That such
a partition of N exists follows from the fact that (8, p) is o-finite and nonatomic
on N.

Next, define f asin (4.5) using x,=y,=land t;,=1/2, 1= 1,. n If the

likelihood for ( f,, .. f ) is defined by (4.6), we have [If; dp = 1/2,, =1,...,n.
Letting &, = If./[If; d,u, we have that f() = 1and h, =z, for§ € A, U A, and
i=1,...,n. Now, since T is externally Bayesian, we know that

T(hy,..., h,)(8)

UO)T(fy,..., [,)(8)
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is constant p-almost everywhere. Also, since /() = 1 on A, U A, and since (4.1)
holds p-almost everywhere on N, it follows that

_ T(hy,-., y)(8)
~UO)T(fy,..., f,)(6)

on A, UA,. Hence NG(9, z,,..., z,) is essentially constant as a function of 8 on
A, U A,. Denote the constant value NG(z,,..., z,). To see that NG is essen-
tially constant on N as a function of #, assume to the contrary that there
exists a subset B of N with u(B) > 0 and such that NG(,z,,...,z2,) >
(<)NG(z,,...,2,) for almost all § in B. Since p is nonatomic on N, choose a
subset of B with positive measure at most e. Let this new set be A,, and repeat
the above construction, keeping A, the same as before. The conclusion still holds
that NG(4, z,, ..., z,) is essentially constant on A; U A, in contradiction to the
assumption that NG9, z,,..., z,) > (<)NG(z,,...,z,)on A,. O

NG(9, z,,..., z,)

We are now in a position to prove the main result of this section.

THEOREM 4.4. Let (0, p) be a quaternary measure space and let T: A" — A
be an externally Bayesian pooling operator. If there exists a p X Lebesgue
measurable function G: © X (0,0)" = (0, 0) such that (4.1) holds for all
vectors of opinions ( f,,..., f,) in A", then T is of the form (1.7), i.e.,

(411) T( flv"'v fn) =gl:.[1fiw'/fgl:[1fzw' dﬂ, p-a.e.,

for some essentially bounded function g: ® — (0,0) and some constants
w,...,w, €R such that ¥}_.w; = 1. Moreover, the weights w, are nonnegative

unless O is finite or there does not exist a countably infinite partition of (0, n)
into nonnegligible sets.

Proor. If (O, pn) does not contain any atoms, (4.11) is immediate from
Lemma 4.3. If (0, p) is purely atomic, then (4.11) derives easily from (4.9) with
w,=v;, i=1,...,n. It is straightforward to see that ¥7_,w; = 1 from the fact
that T is externally Bayesian.

More difficult is the case in which p has atoms but is not purely atomic. In
this case, we can use Lemma 4.3 to obtain the result on the set N, the
complement of the set of atoms of p. Label the atoms 6,, 6,,... and let
G(x,,...,x,) denote G(6;, x,,...,x,) for all x,,..., x, strictly between 0 and
1/u(8;). From the definition of externally Bayesian, we have

1(6)G(8, {,(8),..., ,(0))
G(6, h(0),...,h,(0))

whenever A, is proportional to If; for all i. From (4.10), we have that on N, the

left-hand side of (4.12) equals I'17_ ¢!, where ¢, is the integral of If, for each i.

Now fix ¢,,..., t, and pick a single atom 6,. Let ¢ be small enough so that ¢/¢,
is strictly between 0 and 1/p(6;) for each i. Let A, = {6,} and construct the

(4.12) = constant a.e. y,
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same densities as in the proof of Lemma 4.1, setting x, = ¢ and x} = ¢/¢, for
each i. (Here A,, A,;, A,, and the y’s and y* are arbitrary sets and values
satisfying the restrictions described in the proof of Lemma 4.1.) Also construct
the same likelihood / as in that proof. Using the fact that (4.12) holds on all of
®, we have

G(e,..., ¢ n
(4.13) i ) _ ¢,
Gi(e/t),...,e/t,) =i
It follows directly from (4.13) that for all z,,..., z, between 0 and 1/u(6)),

G(zy,...,2,) = Ge,...,e)e " TIiL 2" By letting g(6)) = Gi(e, ..., e)e !, we
have proven (4.11). N

Finally, note that the weights are automatically nonnegative provided that p
is not purely atomic. If (©, p) is purely atomic but includes a countably infinite
number of atoms, it is fairly easy to construct densities f,..., f, which will
make the integral

(4.14) /gg £, dp

infinite and lead to a contradiction unless all the weights are nonnegative. Of
course, (4.14) is always finite when © is finite and p is some sort of counting
measure, so negative weights cannot be ruled out in this case. Similarly, g must
be essentially bounded, or else there exists f such that (4.14) is infinite when all
of the f; are equal to f (c.f. Theorem 20.15 of Hewitt and Stromberg, 1965). O

Unless the group of experts is reporting its opinions to an outside decision
maker who chooses to aggregate them using (4.9), it is difficult to interpret g, let
alone offer advice as to how it could be selected. To some extent, the same
applies to the interpretation and determination of the weights, although some
heuristics are available (for example, see Winkler, 1968 or Genest and Schervish,
1985). In fact, even if the pooling operator (4.9) is adopted by a decision maker, it
is not so clear what g and the weights stand for. In particular, we should guard
from concluding too hastily that the function g represents the decision maker’s
“prior.” After all, there is no reason why a prior density should necessarily be
bounded, nor is every bounded function a possible prior density.

One way around the choice of g in (4.9) would be to insist that the pooling
operator T preserves unanimity. In general, an aggregation procedure T: A" — A
preserves unanimity if and only if T(f,..., f) = f for all f € A. As the following
corollary indicates, this is enough to reduce (4.9) to an ordinary logarithmic
opinion pool.

COROLLARY 4.5. Let (0O, ) be a quaternary measure space and let T:
A" — A be an externally Bayesian pooling operator which preserves unanimity.
If there exists a p X Lebesgue measurable function G: © X (0, )" — (0, 00)
such that (4.1) holds for all vectors of opinions (f,,..., f,) in A", then T is a
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logarithmic opinion pool, i.e.,

n n
T(fieos fy) = Hlfiwf/fnlf,-"'f du, e,
= i=
for some arbitrary reals w,, ..., w, adding up to 1. Moreover, the weights w, are
nonnegative unless © is finite or there does not exist a countable partition of
(O, p) into nonnegligible sets.

5. Discussion. The purpose of this paper has been two-fold. On the one
hand we have provided a characterization of all externally Bayesian pooling
operators in Theorem 2.5. The form of these operators is quite general, as it was
derived under the sole assumption that all densities are strictly positive almost
everywhere. On the other hand, when the space © is assumed to be quaternary
and the operator is required to satisfy a “locality” condition (4.1), we show that
the operator must be logarithmic in the sense of (1.7). This latter result does not
apply to the cases in which © consists of merely two or three atoms.

If the space © contains only two points, then it is trivial to see that every
pooling operator satisfies (4.1). In this case, one can easily construct externally
Bayesian operators which are not logarithmic. One such example is constructed
from (3.2) as follows. Let b,(0) = 1 and let b,(1) = max{1, a,,..., a,}. It is easy
to see that T(p) equals [max,{p,},1 — max,{p;}], which is externally Bayesian,
satisfies (4.1), and is clearly not logarithmic. If (®, u) consists of only three
atoms, it is not known whether logarithmic opinion pools are the only externally
Bayesian operators which satisfy (4.1). Theorem 2.5 still holds in this case,
however. The case of one atom is left to the reader.

The theorems of this paper shed some light on the mechanics of externally
Bayesian behavior. If, however, a decision maker wishes to treat the opinions of
a group of experts as data, little is known about the implications of the
externally Bayesian criterion for the modeling process. In the Bayesian model
proposed by Lindley (1985), conditions are given under which the decision
maker’s posterior distribution would be externally Bayesian, but his conditions
are not easily interpretable.
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