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RANK TESTS FOR INDEPENDENCE FOR BIVARIATE
CENSORED DATA!

BY DoroTA M. DABROWSKA

Carnegie-Mellon University

The paper discusses statistics that can be used to test whether two
failure times, say X; and X,, are independent. The two variables are subject
to right censoring so that what is observed is Y; = min(X;, Z;) and §; =
I(X; = Y,), where (Z,, Z,) are censoring times independent of (X, X,).
Statistics that generalize the Spearman rank correlation and the log-rank
correlation are considered, as well as general linear rank statistics. The
Chernoff-Savage approach is adopted to show that suitably standardized
versions of these statistics are asymptotically normal under both fixed and
converging alternatives.

1. Introduction. Let X, = (X,,, X,,) and Z, = (Z,,,Z,,), n=1,..., N,
be mutually independent sets of nonnegative bivariate random variables (rv)
defined on a common probability space (2, #, P). The X,’s and Zs are
independent identically distributed (iid) rv’s with continuous joint distribution
functions (cdf) F and G, respectively, and marginal cdf’s F), F, and G,, G,. For
each n=1,..., N, the observable rv’s are given by Y, = (Y,,,Y;,) and §, =
(8,,,9,,), where Y, = min(X,,, Z;,), é,, = I(X;, = Y,,), and I(A) is the indica-
tor function of the set A. The variables X, and X,, are thought of as survival
or failure times, and may represent lifetimes of twins or married couples, times
from initiation of a treatment until first response in two successive courses of
treatment in the same patient, etc. For each subject we observe his survival time
X, or censoring time Z,,, i = 1,2, whichever occurs first, together with an rv §,,
indicating if he has left the study due to death or withdrawal. Further discussion
of this type of censoring can be found in Campbell (1981, 1982), Clayton (1978),
Hanley and Parnes (1983), Langberg and Shaked (1982), and Leurgans et al.
(1982).

This paper deals with the problem of testing the hypothesis of independence of
survival times J#,: F = F,F,. For uncensored data, tests for independence are
often based on rank statistics of the form ¥_,2(R,,, R,,), where R, and R,,
are ranks of X,,’s and X,,’s and (i, j) is a real valued function. The scores =
are typically generated by some functions #(u, v) on the unit square by taking
expectations a(i, j) = EZ(U;,, V), where U, < --- <Upy,and V;, < --- <
V. n, are independent ordered samples from the uniform distribution on (0, 1) [see
Shirahata (1974) and Ruymgaart (1973)]. A

Censored-data ranks of X,,’s can be defined as in Prentice (1978) and
Kalbfleisch and Prentice (1980). Let N, be the number of uncensored observa-
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tions among Y,,’s, i = 1,2, and let R, = (R,,..., R,y) be given by R,, =r,,,
where r;, = #{(m: Y, < Y,,, §,,, = 1}. Here uncensored observations are ranked
among themselves whereas censored observations are assigned the same rank as
the nearest uncensored observation on the left. For each d = (d,, d,), d, = 0 or
L let Ay = {n:§,,=d,,d,, = d,}. The censored data ranks of X,,’s are thought
of as the collection of all possible rankings of X;,’s.that are compatible with the
observed values R;, = r,, and A,.

Let us assume that the joint and marginal distributions of X, = (X,,, X,,)
have densities (pdf) fy4(s, £), fo(s), and f,, (t), where the parameter 6 belongs to
an open subset ® C R contalmng the ongln and the hypothesis of independence
is equivalent to #,: 6 = 0. Then, in the uncensored version of the experiment,
the joint probability of the set of censored-data ranks of X,,’s is given by

(11) (NN " ETTTT0( B (Uin,). Fin' () 0).

where U;, < -+ < Uy, and V(2 -++ <V, are independent ordered sam-
ples of sizes N, and N, from the uniform distribution on (0,1) and

®,(s, 8 0) = f5: () R () fo(s, ¢) if d = (1,1),
=f&‘(8)ft°°fo(s,v)dv if d = (1,0),

= fa'(0) “fo(u, t)du if d = (0,1),

= [ [“ta(u, v) dudo it d = (0,0).

A locally most powerful rank test (LMPRT) for #,: § = 0 against 5#;: § > 0 can
be based on the score statistic from (1.1). The term “LMPRT” refers here to the
rank test that is LMPRT in the uncensored version of the experiment, given the
observed pattern of deaths and withdrawals. A straightforward calculation shows
that, under suitable regularity conditions (Hajek and Sidak, 1967, page 70), this
test is based on a statistic L)_,a(R,,, R;,, 8,,, 8,,), where

a(l7 ]9 dla d2) = E}{(l](i)’ ‘/(j)y dla d2)
(1.2) N,

X ﬂ mlk( (k))alk H m2,( V(l))aw-

Here 4, = #{n: R,,=%k,5,,=0}, m;,,= #{n: R,, >k} for 1—1 2 and
k=1,..., N,, and Fu, v, dl,d ) = &,(F5Y(u), Fg;'(v); 0)/
®,(F;, ‘(u), Fy;'(v); 0), where @ (s, ¢; §) is the partial derivative of ®,(s, ¢ 0)
with respect to 6.
The score generating functions ¢ often take form of a product so that the
corresponding test is based on a linear rank statistic Z)_,2,(R,,,, 8,,)25( R, 82,),
where for i = 1,2

N,
(1.3) ai(J,d) = E£(U), d) D (1 = Uyy)™
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and #,(u, d),d = 0,1, are functions satisfying
u
(14) [ Filo,1) do = =(1 - u) £i(,0).

These scores were considered by Prentice (1978) and Kalbfleisch and Prentice
(1980) in the two-sample problem for time transformed location models. In the
context of testing for independence, Cuzick (1982) and Wu (1982) have derived
(1.3) as scores of the locally most powerful tests in the so-called Bhuchongkul
(1964) model.

With J(u,d)=In(1 — u) + d we are led to the log-rank (Savage) scores
statistic

N A A
Ty= Z (Al(Yln) - 81n)(A2(Y2n) - 82n)’
n=1

where A, are Nelson (1972) estimators of the marginal cumulative hazard
functions A; = —In(1 — F,). The choice of #,(u, d) = d — (1 + d)u corresponds
to the censored-data version of the Spearman test. In general the exact scores
(1.3) might be hard to compute. Therefore, following Prentice (1978), Kalbfleisch
and Prentice (1980), and Cuzick (1982), we shall consider approximate scores
statistics

N
Sy = E fi(Fl(Yln): aln)fz(Fz(Yu)’ 82n)’
n=1
where F are estimators close to the usual Kaplan-Meier (1958) estimators of the
margmal cdf’s. The exact definitions of A and F are given in Section 2. In
Sections 3-5 suitably standardized versions of these statistics are shown to be
asymptotically normal under both fixed and converging alternatives. The proof of
the asymptotic normality of 7, and S, patterns the Chernoff-Savage (1958)
approach to the asymptotic distribution of the two-sample linear rank statistics,
and extends results of Ruymgaart et al. (1972), Crowley (1973), and Crowley and
Thomas (1975). The results can be used to derive Pitman efficiencies of these tests
under general, not necessarily contiguous, alternatives. This problem will be
considered elsewhere.

2. Asymptotic distribution of log-rank and approximate scores statis-
tic: assumptions and results. First let us introduce some assumptions to be
used throughout this and subsequent sections.

AssuMPTION A21. Foreach N =1,2,..., X,,..., Xy, and Z,,..., Zy, are
mutually independent sets of iid nonnegative bivariate rv’s with continuous cdf ’s
F, and G, = G and marginal cdf ’s F,y, F, and G,,G,. For some (continu-
ous) cdf F, F, > Fas N - oo.

-

For each N =1,2,..., define Lp(s,t,d,,d,)=PY,,<s,Y,,<t34,

1n =

dl’ 82n = d2)7 HN(S’ t) = P(Yln <s, Y2n < t)’ tN(s) - P( in = S), and

K,n(s)=1-P(,,>s, §,=1), i =1,2. Under assumption A.3.1 these cdf’s
may be easily expressed in terms of Fy, and G. Moreover, L, H, H;, and K, their
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limiting distributions, exist and depend on F and G only. Finally, let L, H, H,,
and K; denote the corresponding empiricals. In terms of these empiricals we have

dRk AR ()

A(s)=[—‘ and F(s)=1-[]|1- ~ ,
(s) fo1—H; and  F(s) I 1-A (1) + N

where A, is the left-continuous version of H,.

The proof of the asymptotic normality of suitably standardized versions of T,
and S, relies on a decomposition into sums of leading terms which are asymptoti-
cally normal, and remainder terms, which are asymptotically negligible. As
regards the statistic S, we assume that the score generating function #, and %,
satisfy the following smoothness and boundedness conditions.

AsSSsUMPTION A.22. For i=1, 2 and d=0,1, #(u,d) are continuously
differentiable functions on [0,1) such that

(2.1) | £u, d)| < er(u)® and | £/(u, d)|< or(u)®,
where r(u) = (1 —u) ' and ¢ > 0, a,, b, > 0 are constants satisfying

(2.2) a, +a,<jy, b, +a,<3, a, + b, <3.
Further, we eliminate degenerate cases by assuming
AssuMPTION A2.3. K;(0) < 1.

iN)s f.‘(ﬁi) denote functions

With an abuse of notation, in what follows #;(F;
F.(F.n(s),d) and Z,(F(s), d), respectively. For N = 1,2,..., define

Aoy = le/yl(FlN)j2(F'2N)d(i‘ - LN)’
Ain= fN1/2W1N(1 - FlN)f{(FlN)f'z(Fsz) dLy,

Agn = fN1/2VV2N(1 = Fn) A(Fiy) F5(Fyn) dLy,
where for i = 1,2
S, A 9 s A
(2.3) Win(s) =/(;(Hi — Hyy)r(H;y) dK;y + _/(;r(HiN)d(Ki - Kin)-
LeEMMA 2.1. Let the assumption A.2.1 be satisfied and let ¢, and ¢, be
functions such that A.2.2 holds with (2.2).replaced by
(2.4) a, +a,<i, b<a, +1, b, <a,+1.

Then with probability 1, N'/2¥2_ A, is a sum of iid rv’s with mean zero and
absolute moment of order 2 + 7, uniformly bounded above for some n > 0.
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The proof is deferred to Section 3. To standardize T, and S, for location and
scale define

In = #(FN: G)= Efl(FlN(Yln): 81n)f2(F2N(Y2n): 8271)’

o%(Fy,G) = Var( i AkN).
k=0

(2.5)

ON
Under conditions of Lemma 2.1, 6% is well defined and converges to of =
oX(F,G) = Var(£2_,A,,), where the variance of is evaluated under F and G,
and the terms A, are defined as A,y, £ =0,1,2, with Fy, H,y, K;y and Ly

replaced by their limiting distributions. Further, with probability 1

2
N'Y*(Ty - py) = XL Apy+ By and
k=0
(2.6)

2
NSy —py) = X Apn + Cy,
k=0

where By and C, are remainder terms.

THEOREM 2.1. Let the assumptions A.2.1 and A.2.3 be safisfied. Suppose
that o > 0 for #(u,d)=2,u,d)=1In(l — u) +d or £, and g, satisfying
A2.2. Then NV¥ Ty — py) and NV*(Sy — py) converge in distribution to
N, o2).

The proof of the theorem is given in subsequent sections. For uncensored data,
the Chernoff-Savage approach to linear rank statistics strongly hinges on certain
probability bounds for the empirical processes and the Brownian Bridge [Pyke
and Shorack (1968) and Govindarajulu, Le Cam, and Raghavachari (1967)].
When censoring is present, it is not known if these bounds are satisfied by the
Kaplan—Meier estimator or the estimator ﬁ’ therefore assumption A.2.2 imposes
stronger boundedness conditions on the score functlons than is necessary for
uncensored data. Note that for uncensored data F(s) = (N + 1)"'¥N_ I(X,, <
s), i = 1,2, and the conclusions of Theorem 2.1 follow from results of Ruymgaart
et al. (1972).

In general the asymptotic mean and variance of Ty and S, depend on the
underlying joint distributions of both survival and censoring times. If there is no
censoring, formulas (2.5) reduce to the mean and variance given by Ruymagaart
et al. (1972). Under the null hypothesis H,: F = F|F,, if the condition (1.4) holds
then E[ £.(F(Y,),5,.)Z;,] =0, the asymptotic null mean is equal to zero, and
02 = EFYF(Y,,),8,,) fi(FyY,;,), 8,,) [see also Cuzick (1982)]. The variance
can be further simplified by applying the following result on integration by parts
in two dimensions.

LEMMA 2.2 (Young, 1917). Let f(s,t) be a function of bounded variation
such that f(s,0) = f(0,t) = 0. Then for any bivariate cdf G we have
18&f(s, t) dG(s, t) = [CfEG(s, t) df(s, t), where G(s,t) = [2[* dG(u,v) is
the joint survival function corresponding to G.
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Conditioning on (Z, ,, Z,,), applying (1.4) and Lemma 2.2 we obtain after some
algebra

(2 7) 2 = Eflz(F(Yln))}f(F(Yv2n))81n82n’
where #(u) = Z(u, 1) F(u,0). Note that (2.7) implies o(F,G) < 002(F G)
whenever G and G’ are cdf’s such that G(s, t) < G'(s, t) for all s, t > 0, i.e., the
asymptotic null variance increases as the dependence between the censoring times
Z,, and Z,, increases in the sense of Lehmann’s (1966) quadrant ordering.
Furthermore, o2(F, G) < [}#X(u,1) dufy.#7(u,1) du so that the asymptotic null
variance is bounded by the asymptotic null variance of the corresponding rank
statistic for uncensored data [based on scores #;(u,1)].

In the case of the log-rank statistic Ty, (2.7) amounts to oZ(F, G) = E$,,0,,,
so that tests based on NY2T\é., 6%p= N'ZN_.8,,8,, are asymptotically
distribution free [see also Cuzick (1982)]. Further

THEOREM 2.2. Under assumptions of Theorem 2.1, if (1.4) holds then 6%g =
N 1]12(F1N( n))jzz(pzN(an))slnszn is a consistent estimator of the
asymptotic null variance of Sy.

The outline of the proof is given in Sections 3 and 5.

For most purposes it is enough to consider the null hypothesis, fixed and
contiguous alternatives. If either only one variable is subject to censoring or the
censoring variables are independent, exact permutation distributions are avail-
able under the null hypothesis [see Cuzick (1982) and Wu (1982)]. Furthermore,
as pointed out by a referee, it should be possible to derive asymptotic normality
results under the null hypothesis and contiguous alternatives by applying a
suitable modification of the Aalen (1978), Gill (1980), and Anderson and Gill
(1982) martingale approach to linear rank statistics. In particular, under 5}, by
conditioning on the potential censoring times (Z,, Z,) and the scores generated
by Y,,, and using the formulation of Mehrotra, Michalek, and Mihalko (1982),
the conditional expectation required for the martingale property should appear
straightforward, and similar to Cuzick (1985).

Theorem 2.1 can be easily extended to the case of independent but noniid
continuous survival or censoring distributions. It can be also generalized to allow
score generating functions with a finite number of discontinuities of the first kind
and discrete underlying distributions. Assumptions needed for these extensions
are similar to those in Ruymgaart (1974, 1979); due to cumbersome notation we
shall not discuss this problem in more detail.

3. Proofs of Theorem 2.1 and 2.2: leading terms. The proof of Lemma 2.1
rests on a repeated application of inequalities

(3.1) |I(Y,, <s) — Hin(s)], ’

II( m—s)_ ,‘N(S)|Sr( . .))l_yr(HiN(s))—(l—v)

for any y € (0.1). Further, F,y < H;, and A 2 2. imply
(3.2) 'fi(EN(S):dHS"( iN(S)) ) | £/ (Fin(s), d)|<r(H, N(S))bi
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for d = 0 or 1. Finally, we shall need Hélder’s inequality

@9 floHweston) atty < [l ) [ ot ar) ™,

where ¢, and ¢, are functions on (0,1) and p,, p, > 1 satisfy 1/p, + 1/p, = 1.
Note that if a, + a, < ; then for any 5, 0 <4n <1 — a, — a,, there exist
Pi»q; > 1such thatl/p, +1/p,=1,1/q, + 1/q, = 1, and

(3.4) (al +3+ 2’7)171 <1l,ay,p,<1,a4q, <1,
. (a2+§+2n)q2<1

[see Ruymgaart et al. (1972)].

ProoF oF LEMMA 2.1. We shall show that each of the terms A, ,, 2 =0,1,2,
is a sum of iid rv’s with mean zero and absolute moment of order 2 + 7 uniformly
bounded above for some 1 > 0. By symmetry it is enough to consider the terms
A,y and A,y only.

Let M denote a generic constant, independent of N and underlying cdf’s. Set
a = a, + a, and without loss of generality assume that (2.1) is satisfied with
bj=a,+1.

We have N'2Aoy = L3 £1(Fin(Y1,), 81,) 2o Fyn(Yy,), 85,) — py which is a
sum of iid mean zero rv’s. Applying (3.2) and (3.3) with p, = a/a; we obtain

2 1 a
E'(fl(FlN(Yln):sln)fz(FzN(an)’azn)’ o =< Mj(; r(u) @ du < 0

provided 1 > 0 is chosen so that a(2 + n) < 1. This however can always be
achieved since a = a, + a, < ;. The upper bound does not depend on N or
underlying cdf’s.

Further, we have N'/24 \, = TN_ A

1n» Where

A, = /Wln(l - FlN)fll(FlN)jz(FzN) dLy.

The process W,, is defined as W,y with A, and R, replaced by H (s)=
I(Y,, <s) and K,,(s)=1-I(Y;,>s,8,,=1). Applying (3.2) and (3.1) with
y = 3 + m, we obtain after some algebra

Aunl = M{r(Hi (%)) 7"+ ()" du) [r(Hip) "5 (Hyy)  dHy
The 2 + n moment of the random part on the right-hand side is finite and

independent of N because (3 — 7)(2 + 5) < 1 for all n > 0. The second term is
bounded above by

1/p 1/py
(flr(u)(a1+1/2+2'l)111 du) l(flr(u)azpz du) < o
0 0
provided 0 < 49 < §; — a, — a, and p, and p, are as in (3.4). O

Proor oF THEOREM 2.1. The proof of the asymptotic negligibility of the
remainder terms By and C, is given in Section 5. With an appropriate choice of
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functions ¢, and _#,, Lemma 2.1 and Esseen’s theorem imply that N'/*(Ty —
pn)/on and NV2(Sy — py)/on converge in distribution to A47(0,1), provided
liminfy _, o2 > 0. Finally, applying Theorems 5.5 and 5.4 in Billingsley (1968) it
is easy to verify that 0% — o} as N —» c0. O
PrOOF OF THEOREM 22. Let L, n(s,t)=P(Y,<s, Y, <t &,
8,,=1) and let L, be the empirical counterpart of L, 5. Under the null
hypothesis

(3.5) 6%s — ofs = [FHF) FHF) d(Ly, — Lyy) + Dy,

where Dy, is a remainder term. The first term is an average of iid mean zero rv’s
whereas the second term is asymptotically negligible (see Section 5). Therefore,
by the law of large numbers, 635 — o’ as N = c0. O

4. Decomposition of remainder terms. Set A =A; X A, where A; =
(0,max,Y; ], i=1,2

For #, and ¢, satisfying assumption A.2.2, the remainder term C, in (2.6) is
given by Cy, = X3 _,C,x Where

Ciy = /A N'2( g F) - £((Fiy)) £ Fon) dL — Ay,
C. N~ ANl/yl(F1N)(f2(ﬁ}) _fz(FzN)) dﬁ - A2N’

Cin = leﬂ(]l(ﬁl) _]1(F1N))(d¢2(ﬁ‘2) _jz(F?N)) dL.

The remainder term B, in (2.6) is given by By = X3_ B,y where B,, are
defined as C,, 5 with f(u d) =In(1 — u) + d and F replaced by 1 — exp(— A, -
The terms B,y and B,,, C,, and C,, are symmetric so in what follows we shall
consider B, and C,, only.

For any 7 € (0,1) let A, = A,, X A,,, where A, =[0,v;,] and v, = inf(s:
H(s)>1-1),i=1,2Then C,y =Xi_,C,, and C,y = X3_,C;,;, where

C, = Nl/leN(l - FIN)]II(FIN)]2(F2N) d(i/ - LN):

ANA,

Cp= - A(UI“CZ\/VIﬂW/'lN(1 - FlN)fll(FlN)fz(FzN) dLy,

Cl.‘} ='/;m Nl/z(/l(F) jl(FlN) - (1 - lN)Wlel(FlN))j2(F2N)dL

Cuu= [, NVAA(R) = A Fu) Al Fox) AL = =
C:n = A Nl/z(]l(ﬁl) _fl(Fw))(fz(ﬁz) _fz(FzN)) dL

C32='/;n Nl/z(]l(F) jl(FlN))f2(F)dL
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(the dependence of these terms on N is taken as understood) Here the process
W,y is given by (2.3). Analogously, B,, = X;_,B,, and B,y = Y3_,B;, where
B,, and B;, are defined as C,, and Cj;, with £(u,d)=In(1 — u) + d and F,
replaced by 1 — exp(— A,)

Let us recall now some properties of estimators F and A = 1,2. Both F
and A are right-continuous step functions with jumps at uncensored observa-
tions. Further for any s > 0

(4.1) F(s) <N(N+1)7'H(s), i=1,2,

which can be verified by applying a similar argument as in Gill (1980, page 36). If
F,; satisfy smoothness conditions of A.2.2 then by the mean value theorem

(4.2) (F(S) d) f( in(s), d) = (F(s) iN(s))fi'(q:'i(s)’d)

for s € A, and d = 0 or 1. The function ®, is defined by ®, = F, + 8,(F, — Fy),
where 6, = 6,(w, N, d, s) is a random function valued in (0,1). Without loss of
generality let us assume that ; does not depend on the value of d. Further, if ¢,
and ¢, satisfy boundedness conditions of Lemma 2.1, then by (4.1) and van
Zuijlen (1978), for N = 1,2,...

(4.3) Sgplji(ﬁi)lr(HiN)_ai = 0p(1) and Sgplf{i/(d)i”r(HiN)_bl = 0p(1)

uniformly in N and underlying distributions.
Finally, let us recall consistency and weak convergence results. For i = 1,2

(4.4) SuP|Fi — Fin| =50, SUPVA\i — Ayl =50
i Au

as N — oo [Foldes and Rejté (1978) and Gill (1980)]. The processes N'/%(A, —

A;y) and NV E, - F.\) converge weakly in D(A,) to W, and (1 — F)yw,
respectively, where W, is a mean zero Gaussian process with almost all sample
paths continuous and covariance cov(W,(s), W(t)) = [qmns:Or(F)2r(G;) dF,
[Breslow and Crowley (1974) and Gill (1980)].

In the course of the proof of Theorems 2.1 and 2.2 we shall also use

sup N'/2|Q;n| = 0x(1), sup N'?|R;y| = 0p(1),

A Air

(4.5) s
sup N'/2|Wy| = Op(1)

for Qv = F; — Fy — (1 = F\)W,y, Riy = A, — A,y — Wiy, and N sufficiently

large.

5. Proofs of Theorems 2.1 and 2.2: asymptotic negligibility of remainder
terms. The asymptotic negligibility of the terms B, and C, in Theorem 2.1
will be established by a sequence of lemmas showing that B,,, C,,, B,, and C,,
converge in probability to 0 as 7 = 0 and N — o, whereas the remaining terms
tend in probability to 0 for any fixedr € (0,1) and N — oo.

LEMMA 5.1.  For fixed 7 € (0,1), Cy3, Cy, By, and By converge in prob-
ability to 0 as N - oo.
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PROOF. Let us consider first the term C,;. Using (4.2) we can write it as a
sum of

Ci = '/;nA N1/2Q1Nj1'(d)l)f2(F2N) di/’

Cl32 = '/;nA N1/2(1 - FIN)WIN(jl,(q)l) _jl,(FlN))j2(F2N) di’-

Let 7 € (0,1) and ¢ > 0 be fixed. There exists a constant M, = M,(7) such that
for N large enough sup|F,y — F}| < 7/3 and supy, | #y(F,y)| < M,. Further,
there exist constants M, = M2( 7, &, My = My(7, ¢) such that for N sufficiently
large the sets @, = {sup, |F; — Fiy| < 1/3}, @, = {sup, |#{(®,)| < M,}, Q5 =
{sup, N'/?|W,y| < M;}, and @, = {A, C A} have probability at least 1 — e.
Then however

~

4
ﬂ Q1¢)|Cwl| =< Mlesup|Nl/2QlN|

k=1 A,

and by (4.5) this bound converges in probability to 0. Also

3
I( kﬂ Q) |ICr2l < M1M3I(Ql)sup|']ll(q)l) _fll(Fm)'-

=1 1r
For d = 0,1 the function #/(u, d) is uniformly continuous on [0,1 — 7/3] so
that |®, — F,y| < |F, — F,y| and (4.4) imply that this bound tends in probability
to 0. A similar argument combined with (4.3) and (4.5) shows that Cj;, converges
in probability to 0 as N — . The asymptotic negligibility of B,; and Bs,
follows immediately from (4.4) and (4.5). O

LEMMA 5.2. For fixed 7 € (0,1), B;; = p0 and C;; = p0 as N — .

ProOF. The proof is similar to Ruymgaart et al. (1972). Assuming that
functions #, and ¢, satisfy assumption A.2.2 with b, < a, + 1, it is enough to
consider the term C,; only.

Let 7 € (0,1) and ¢ > 0 be fixed. For any positive integer m, define x;,(s) =
Yi.(k — 1)/m for y;,(k —1)/m <s <y, k/m, k=1,...,m, where A, = [0,v,],
i = 1,2. For arbitrary m we have |C;| < X3 _,C,,.,, Where

Ciim = _/AmA N1/2|W1N(3) - WlN(le(S))’|¢(S’ t,d, d2)|d(if + LN):

C112m = j‘;mA N1/2|W1N(X1m(s))’
X |¢(Sa t dl’ d2) - ¢(XIm(s)’ sz(t), dl’ d2)'d(i’ + LN)’
Ciigm = l/;nA Nl/leN(le(s))‘P(le(s)’ sz(t)’ dy, dz) d(i - LN) ’

and ¢(s, t,d,, d,) = (1 — Fi5(8))Z/(Fn(8), d)) £o( Fyn(8), dy).
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There exists a constant M; = M,(7) such that for N large enough sup|F,y —
F;| < 7/2 and sup, |¢| < M,. Further, there exists a constant M, = My(, ¢) such
that for N large enough the sets Q, = {sup, N'?|W,y| < M,} and Q,=
{A, c A} have probability at least 1 — &.

Let us consider the term C,,,,,- The process N/2W,, converges weakly in
9(A,,) to W,. Therefore, by employing a Skorohod construction,

supy N2 Wiy — Wiy © Xyl >p 0as N,m = 0

and there exists a sequence 7,5, M,y = 0 as N, m — oo, such that the set
Q,, = {supy Wiy — Win ° Ximl < NN} has probability at least 1 — ¢ for all m
and N sufficiently large. Combining, I(£, N €, N €,,)Ci11, < Mm,,x = O.

Further, for d = 0,1, the functions #/(u,d) and _Z,(u,d) are uniformly
continuous on [0,1 — 7/2] so that for N sufficiently large £,y =
sup, |9(s, ¢, dy, dy) = d(X1m(8)s Xom(?), dy, dg)| = 0 as m — co. Hence I(2, N
Q5)C1om < Myé,,xn > 0asm, N > oo.

Finally, for N sufficiently large and each w € Q, N Q,, the integrand of C,,3,
is a step function which assumes value a,,;, 4(w) for d = (d,, d,), d; = 0,1 and
(S, t) belonging to Rklm = (Yl-r(k - 1)/m7 Yl-rk/m] X (721(1 - 1)/m7 72,l/m],
k,l1=1,..., m. Therefore

m m 1 1
(20 2)Csn=|Y ¥ L ¥ unaf d(L-Ly)
k=11=1d,=0dy=0 Rpim
< 16m>M,(M, + £,y )sup|L — L|

and the bound converges in probability to 0 as N —» c0. O
LEmMA 5.3. B, and C,, converge in probability to 0 as + = 0 and N — oo.
ProOOF. Assuming that functions #, and ¢, satisfy A.2.2 with b, < a, + 1,
it is enough to consider the term C,, only. Let %, 0 < 49 < ; — a;, — a,, and
e > 0 be fixed. As shown in Ruymgaart et al. (1972), applying dominated

convergence theorem and Holder’s inequality (3.4) with p, and p, asin (3.5), we
can find 7 = 7(¢) such that for all 7 < 7

j r(H)“ Y2 2 (H,)* dH < .
AS '

For 7 and N sufficiently large the set Q, = {A, C A} has probability at least
1 — e Further, by A.2.2 (with b, < a, + 1) and (3.1), |C,,| < £2_,C,4,, Where

S\ A a, a,
Cia = f Nl/2(/ |H1_ - 1N|"(I'11N)2 dHlN)r(HlN(s)) r(H,n(t))™ dHy,
A‘UAS 0

Cip= fcuAch/z r(Hyn(s))“r(Hyn(t))™ dHy.

/:r(HlN) d(Kl - K1N)
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By Lemma 4.2 in Ruymgaart et al. (1972), there exxsts M, = M,(¢) such that the
set Q, = {sup NV2|H — H,|r(H,5)"?> "r(1 - )1/2 "< M,} has prob-
ability at least 1 — ¢ uniformly in N. Therefore

1(Q))C < M, [r(Hy) " dHiy [ r(Hiy)™ " ¥ r(Hyy )™ dHy.
ACUAS

The first term of this bound does not depend on N and the underlying cdf’s. The
second term is smaller than & with probability at least 1 — ¢ for all 7 < ¥ and N
sufficiently large. This implies C,,;, »p0as 7 = 0 and N — co.

The proof of asymptotic negligibility of C,,, is similar. O

LEMMA 54. Foranyc, and cy, ¢, + ¢y < 3

(5.1) B = [ NVAR = Air(Hiy)“r(Hyy)® dA,

(5.2) E,y= N-lﬂ(fsr(ﬁl-)r(ﬁl- - N1 dKl)
ANAS 0
Xr(Hn(s))"r(Hyn(2)) dH

converge in probability to 0 as T = 0 and N — oo.

PrROOF. Let n, 0<4n <3 — ¢, — ¢y and e > 0 be fixed. Similarly as in
Lemma 5.3 we have

/ r(HlN)CI+1/2+2nr(H2N)CZ dfH -p 0
ANAS

as 7 — 0and N — oo.

Let A, = {s: 1 — H,y(s) > ¢/N}. By Theorem 1.4 in van Zuijlen (1978), the
set &, = {A, € A,} has probability at least 1 — &. Wehave I(Q )E,y < E,, + E,,,
where

E, = fA nAch/z( fo |y - Hyy[r(Ho)r(B7) dfel)
xr(Hy(s))“r(Hyn(t))™ dH,
Ey=[  NV|[r(Hy)d(R, - Kiy)

(the dependence of these terms on N is taken as understood).

By Theorem 1.1 and Corollary 1.1 in van Zuijlen (1978), there exist constants
M, = M\(¢) and M, = M,(¢) such that the sets @, = {supy,r(H; )r(H, ) ™' < M}
and Q, = {supN1/2|H‘ — H y|r(H x)7?7"'r(1 — H,x)/?"" < M,} have prob-
ability at least 1 — ¢ uniformly in N. Therefore

"(I'Iuv(")'))C"'(HzN(t))c2 dH

(90 Q) Eyy < MM, [r(Hyy)' "l [ r(Hiy) ™" 'r(Hyy)® d

and the bound converges in probability to 0 as 7 = 0 and N — oo. The proof of
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the asymptotic negligibility of E, is similar. Finally
(2, NQ)E,y < 1‘411\’_1/2_/;1 r(Hyy)”? ™™ dl‘i'/;‘c"(HlN)cl+1/2+2n"(1'121\1)c2 dH

< NTVA(N/e)' "7 [r(Hyy)' 7" dAY,

x [ r(Hyy) 5 (Hyy )™ dfY

and the bound converges in probability to 0 as + - 0 and N - 0. O

LEMMA 5.5. Bj, and C,, converge in probability to 0 as 7 —» 0 and N — .

PrOOF. Let ¢ > 0 be fixed and let 2,, ©2,, and ©, be defined as in Lemma 5.4.
Given & > 0 there exists a constant M; = My(e) such that the set Q=
{supA2r(ﬁ{ yr(Hyn) ™' < M;) has probability at least 1 — ¢ uniformly in N.
Therefore

I(2; N Q,)|Byy| < (1‘43'/"(1'12N)1_C2 df, + 1 E\N.

Here E,, is given by (5.1) with ¢, = 0 and ¢, < j chosen arbitrarily. By Lemma
5.4 the bound converges in probability to 0 as 7 = 0 and N — oo.
The term Cs, can be written as

Co= [ NVHE - Fiy) £{(2,) Sy Foy) dL.
Applying inequalities |x; — x,| < |Inx, —lnx,| for 0 <x,x,<1 and 0 <
—In1-Q+x)"H)—QQ+x)"!<(x(1+x))"!for x > 0, it can be easily seen
that for w € @, and s € A,

|ﬁ',(s) - FIN(S)|S|A1(S) - A1N(3)|+ 2N~1_/:"(PII_)"(I:I; - N_l)dkl'

By (4.5), there exists a constant M, = M,(¢) such that the set Q, =
{supAl|f,’((I)1)|r(H1N)‘b' < M,} has probability at least 1 — ¢ uniformly in N.
Therefore I(N}_,2;, N Q,)|Cyy| < M;M(E,y + 2E,5) where E,y and E,, are
given by (5.1) and (5.2) with ¢, = b, and ¢, = a, as in assumption A.2.2. By
Lemma 5.4, the bound converges in probability to 0 as 1 = 0 and N — oo which
implies the asymptotic negligibility of C,,. O

Proor oF THEOREM 2.2. The remainder term Dy, in (3.5) is a sum of

D= /AnA (j12(ﬁl) - ~12(F1N))j2(ﬁ5)d2'11,
D,y = -/AnAv(jlz(pl) —{512(F11\/))j2(ﬁ12)di411,
D,y = /AnA (ﬁzz(pz) _j22(F2N))j1(FlN) df)n,

D,y = / (j22(ﬁ'2) _j22(F§N))j1(F1N) dtfu-
ANAS
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Applying mean value theorem and a similar argument as in the proof of Theorem
2.1 it can be shown that D,y — 0 and D,y — 0 for any fixed € (0,1) and
N - o0, and D,y »p0and D, »p0as 7> 0and N - . O
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