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1. Introduction. Although hardly the authors’ intention, these papers by
Diaconis and Freedman (D & F) will probably be read by many as criticism
against and pessimism about Bayesian analysis in situations with high-dimen-
sional parameter spaces. It is perhaps also easy for the statistician scanning the
papers to get an impression of “just counterexamples,” which would be unfair;
these and earlier papers by D&F (or F & D) contain many new important
statistical ideas and also useful mathematical techniques.

I will try to be (more) positive and hope to show that thinking Bayes in semi-
and nonparametric models may be a worthwhile enterprise, sometimes giving
additional insight into old problems, and sometimes (dare I say often?) leading to
sensible Bayes procedures that also behave agreeably in the frequentist asymp-
totic sense. The bulk of my comments concerns a problem that is almost as old as
statistics itself, that of fitting a parametric model to a data set, and that can be
attacked again with ideas underlying some of the constructions of D & F. Let
X,,..., X, be a sample from some unknown distribution F with density f. Some
(possibly crude) parametric family {Fy, f,: 0 € ©} is then forced on the data.
Textbooks teach us how to proceed, for example, advocating finding the maxi-
mum likelihood estimator 9ML, on the grounds of good asymptotic behavior, in
particular, consistency. What very few textbooks tell us, however, is what 9ML
does when the model is wrong, i.e., there is no 4, with f = f, . It is however not
difficult to see that 8y still is a meamngful estimator in that it takes aim at the
parameter value 6 = 6, that minimises Kullback-Leibler “information distance”

(1) I(f: fo) = [ log( f/fy) dx;

the log likelihood divided by n is a consistent estimate of [f log fdx — I(f: f,).
Under appropriate conditions 0ML is consistent for this “least false” parameter
value. Hjort (1985a, Chapter 3) has further comments about the behavior of
maximum likelihood machinery when the model is wrong.

One of the major uses of a fitted model is prediction, or probability assess-
ments, for certain sets. Thus we could be interested in stating that approximately
90% of future Xs from a fitted normal will fall in (% — 1.6456, i + 1.6456), or
that approximately 50% of future data points from a fitted Weibull fall below
0(1og2)!/% etc. If such statements are an important part of the statistical
analysis, then there are disadvantages to using fiyy, 8y, 1€SP. Oy, Gy, in the
case of an incorrectly specified model, and one could do better with other
estimates that aimed at other versions of least false population parameters. It is
the aim of the present notes to show that such least false parameters can be
defined and that a suitably engineered semiparametric Bayesian setup can result
in estimates that actually manage to estimate these.
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If we acknowledge uncertainty about the chosen parametric model we should
perhaps build that into a larger statistical model. A natural Bayesian approach is
to give a prior density »(8)d@ for 8 in ® and some prior on the space of
distributions on the sample space, centered at {f,: § € O} in some sense. Such
ideas are really behind much of the work presented in D & F. One way of doing
this is the following: Assume for the moment that the X;’s are univariate and
write
(2) X, =FYU), Jj=1,...,n,

J

where U, has distribution G = FF; '. That the parametric model is correct
amounts to having G = G, = U(0, 1) for some 4. Uncertainty about the paramet-
ric model can therefore be modelled by a prior distribution for G (in the space of
distributions on [0,1]), centered at G,. An “uncertain Gaussian model,” for
example, is

(3) X;=p+ oY, j=1,...,n,

where Y; = <I>_‘(Uj) has a random distribution centered at the standard normal.
To help identifiability one could restrict the space of allowable distributions for
Y; to those having zero mean and unit variance, or to those being symmetric with
interquartile range 2 X (0.674), etc. The latter approach would be along the lines
of D&F.

The next section outlines another but related approach, still with the notori-
ous (“herostratic” would be too harsh, even with D & F’s examples) Dirichlet
process prior as a building tool, and is more akin to recent work of Hani Doss
(1985a, b). The method offers the possibility of building uncertainty about any
parametric model into a larger semiparametric model, and allows one to specify
control sets that may be important for later predictions based on the fitted
model. The asymptotic results of Section 3 are of the same character as those of
D&F and of Doss, and indeed, examples displaying “inconsistency” can be
constructed. They are interpreted in a more positive light here, however. It will
be seen that the resulting Bayes estimates really take aim at, and will be
frequentist consistent for, completely sensible least false parameter values. Also
included in Section 3 are indications of asymptotic normality results and calcula-
tions of influence functions. It emerges that the Bayes estimates, or for that
matter closely related frequentist estimates, constitute robust alternatives to
traditional estimates, with the advantageous capability of being flexibly tailored
to any specific prediction task, and without losing much efficiency in the idealised
(and unrealistic) case when the parametric model happens to be correct.

Section 4 briefly sketches some ideas for similar Bayesian semiparametric
analysis in parametric survival analysis models, where the class of beta processes
plays the natural role. Section 5 contains additional remarks.

2. Semiparametric Bayes estimation. Having (2) and (3) in mind, write
for a general i.i.d. sample X,,..., X, in some X space

(4) X;=ho(Y), Jj=1,...,n,
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where h, is one-to-one on some Y space. Y; has distribution G; if G is equal to
some idealised G, then X; has distribution Fy = G,h;' with density fy(x) =
8ol hg '(x))|0hg '(x)/ x|, say.

A first construction for a prior distribution for (8, G) could be to let § ~ »(8) d@
and G, independently, be a Dirichlet process centered at G,. Write G ~ Dir(kG,)
for such a process, with “strength of belief” parameter & and “prior guess” G,,. It
turns out that 6 has posterior density

5) W(B]x) = c(x) n " fo(x,)9(6),

the * signifying that only the distinct observations are to be included. The only
effect of the sophisticated extra randomness introduced by G ~ Dir(kG,) is that
the likelihood is only over the distinct data points. (¢(x) denotes generically a
function of the data x = (x,,..., x,,) that gives integrated posterior density 1.)

A more fruitful approach is the following, generalising Doss’ method
(19854, b). Define m control sets B,, ..., B,,, constituting a measurable partition
of Y space, with Gy(B;) = z;, i = 1,..., m. Now pin down a G ~ Dir(kG,) by
conditioning on G(B;) = z;,, i = 1,..., m. It can be seen that G splits into m
separate and independent Dirichlet processes:

G = z,G;, ontheset B;, where G, ~ Dir(kz;(G,/2;)) on B,.
Hjort (1985b) obtains

©) H812) = e(x)M(x,0) [T fl;)0(6)

for the posterior density of 8, where

) M(x, ) = f[l 250) /D(kz, + C(8))

and

(8) C(0) = él{xj = hy(Y;) € hyB,} = nF,(hyB,),

writing F, for the usual empirical distribution of the sample. M(x, ) is large for
values of # that make C/(0) close to nz;, i.e., F,(hyB;) closeto z;, i = 1,..., m.

ExaMPLE. Fit a normal (p, 6%) to data. Assume it is of interest to have
approximately 256% of future data points in each of the four categories (— oo, fi —
cé], (i —cé,i], (i, i + cd), and (i + cé, ), for ¢ = 0.674, which would be the
case for each perfectly normal underlying F, but not, for example, for even
slightly skewed F, if fi ., 6y, are used. The 25-25-25-25 goal could be important
for prediction purposes, or just considered a pleasant aspect of the theoretical
parametric model worth preserving to some extent for the fitted model. Define
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control sets B, = (— o0, —c], B, = (—¢,0], B; = (0, c], and B, = (¢, ). Then

Ml ) = ()| TT (/4 + c(mo))
where

C\(p,0) = nF(p — co), Cyp,0) =nF,(p - co, b,
Cy(p,0) =nF,(u, p + co], Cy(p,0) = nF,(p + co, ).

The posterior density (6) would in this case have two peaks, one corresponding to
M(x; p, 0), trying to achieve the 25-25-25-25 splitting, and one for the usual
factor [T}, f, ,(x;), which makes efforts to get the population mean and popula-
tion variance correctly estimated. Since these goals coincide only in the idealised
Gaussian case the Bayes estimators based on (6) try to push fi, 6y, S0 as to
better achieve the stated 25-25-25-25 goal.

The theory allows multidimensional data, and extends to non-i.i.d. situations,
for example regression models. Further examples are in Hjort (1985b).

3. Asymptotic behaviour of the estimates. Assume that the X’s come
from a continuous F with density f. Until D& F came along one would have
expected the parts of the posterior density (6) that stem from the fixed, chosen
prior distribution to be washed out by the data as n tends to infinity. »(6) indeed
ceases to be important even for moderate n, inviting subject-independent
Jeffreys—Box-Tiao-style choices for this parametric part, but the nonparametric
part M(x, ) turns out to match the Fisherian part [17_, f¢(x;) in importance.

A Stirling approximation shows that

m m
[Ter/T(ke, + mpy) = Be "= [T pi2 4,
1= i=

where B, = (27) ™/%xp{n — (n + k — ;m)log n} is independent of the prob-
ability vectors p = (p,,..., p,) and 2z =(zy,...,2,). Here I(p:2z) =
™ plog(p;/z;) is the Kullback-Leibler distance from p to z, cf. (1), and is
convex in p with a unique minimum at p = z. From (6) and (7) we get the
approximation

9) v(0)x) = c(x)e "¥FDy(9)

for the posterior density, ignoring some lower-order terms, where
m 1 n

(10) Q( F,,0)= Z Fn(hoBi)log(Fn( hoBi)/zi) - ; Z log fo(xj)‘
i=1 j=1

The posterior density is concentrated where Q(F,, 0) is smallest, and the Bayes
estimator § should asymptotically behave as

(11) 6 = $(F,) = the 6 minimising Q(F,, 0).

Under regularity conditions, therefore, both 6 and @ are frequentist consistent
estimators for

(12) 6, = ¢(F) = the 6 minimising Q(F, 9),
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where

Q(F,0) = L F(h,B)log(F(h,B,)/2) ~ [log fy(x) dF (x)

(13)

I((FhoB))T. 2 (2)y) + I(f: fy) = [f log fdx.

8, enjoys interpretation as a least false parameter, and lies intuitively somewhere
between the 8, that 8, aims at, discussed around (1), and a third variant 6,
that minimises the first term in Q(F, 6), aiming at getting (Fh,B;)™, as close to
(2;)~, as possible.

When f really belongs to the parametric family, say f = fs,» then 8,, 6,, and 6,
all coincide with the (then true) value 6,,.

When F is discrete, only o(n) of X , X, are distinct, a.s., and the first
term in Q(F,, 8) dominates. Hence 0 is cons1stent for @, in this case'

Hjort (1985b) gives conditions under which n'/%(§ — §) - 0 in probability.
Limiting properties of n!/ 2(0 6,) can therefore be investigated by studying the
functional ¢ above. Its influence function can be calculated. Preliminary work
indicates that these are of the robust type (more cautious than for 9ML in typical
models) and that a reasonable efficiency is retained in the idealised case f = fo,r
To cite but one example, fi, 6 constructed as in the example of Section 2 have

V2 — 1) (1.0716)? 0
(n1/2(6—0)) DN((O) ( 0 (0.8660)2))

in the idealised Gaussian case. This compares well with the optimal covariance
matrix diag(o?, 6%/2).

4. Semiparametric Bayesian analysis of survival analysis models. We
still need more experience in and knowledge of the consequences of Bayesian
analysis of semi- and nonparametric models. Frequentist asymptotic analysis
seems to have been restricted to cases where the Dirichlet process, in various
disguises, has been the prior. Another testing ground could be models in survival
analysis with censored data, where manageable prior processes other than the
Dirichlet are available (cf. Ferguson and Phadia (1979) and Hjort (1984a)). (The
classical results about maximum likelihood and Bayes analysis for i.i.d. frame-
works with finitely many parameters carry over to say counting process models
with censoring; see Hjort (1984b).)

Beta processes are introduced in Hjort (1984a, 1985c) as natural priors for
cumulative hazard rates in nonparametric models with censoring. Suppose for
example that a crude model specifies a constant rate 6 for transitions from state
s to state s’ in a (possibly time-inhomogeneous) Markov chain. A semiparametric
supermodel could structure the underlying unknown cumulative hazard A(t) via
1 — dA(s) = (1 — dB(s))’, where B(-) is a beta process centered at By(-), By(t)
= t; there is also a strength of belief parameter function k(-) to be specified. If 6
is also given a prior the posterior density of 6 can be worked out. Preliminary
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investigation indicates that the Bayes estimate § converges to a value that
depends on the chosen function &(-); this in contrast to results for the method
outlined in Sections 2 and 3.

As another example, consider Cox’s regression model. Imagine individual i
having its own cumulative hazard A,-), and assume proportional hazards
1 — dA,(s) = (1 — dA(s))?*PB2) where z; is the covariate vector, and A(-) is
close to having unit rate Ay(t) = ¢. As above, a prior on (8, 8) can be given, and
A can be taken as a beta process centered at A, with strength of belief parameter
k(). The posterior density of 8 can be handled. The Bayes estimate B is close to
the usual Cox estimate for k(-) close to zero, and is close to the maximum
likelihood estimate based on the (8, 8) model with A = A, when k(-) is large.
The asymptotic fate of B is unclear for intermediate choices of k(). I hope to
pursue these matters later.

5. Additional remarks.

(a) D & F state that the Bayes estimates do worse than available frequentist
procedures, e.g., the empirical median M, (D & F (1986), Section 1, Remark 4).
Bayes procedures that match M, in performance can be constructed however, if
the problem is just this, i.e., estimating the true median. Let 0 be the Bayes
estimate (posterior expectation) based on any Dirichlet process prior Dir(&F).
Then 0 is close to the interesting estimator 8 = ¥, (’:: 1‘)( )i 1x(l), assuming

< s <Xy 0,— 6% >,0if k/n - 0, and n'/%(8, - 6¥) - 0if k/n"/? -
0 Also n/%(6* — M ) = 0. "These statements are valid with some restrictions
on the tails of the underlying continuous F.

(b) The work of D&F, and the present contribution, can be seen as an
attempt to construct Bayesian robust procedures qualitatively similar to those
recently worked out by Beran (1981), Millar (1981), and others: full efficiency at
the parametric model and Le Cam-type robust optimality in a (shrinking)
neighbourhood. The construction of Sections 2 and 3 above seems to manage this
only in the not very satisfactory asymptotic framework where k/n — o, k being
the prior sample size parameter, cf. (6), where M(x, 6) is dominated by I'17_, fo(x)
under this assumption.

(c) The semiparametric Bayes estimates constructed in Sections 2 and 3 have
frequentist relatives that behave equally well (?) asymptotically. The parameter
k must be specified by the user in (6) in order to compute the Bayes estimate;
however (i) the asymptotics are independent of %, and (ii) it would also be
possible to estimate k from the data. k& large means a good fit to the parametric
model.

(d) 1 welcome papers such as these (D & F) and Rubin (1984), d1scuss1ng points
of overlap and of mutual interest for Bayesianism and frequentism. I agree with
Diaconis (1985) when he observes that the controversy seems to have lost its
power to polarise. I also agree with a slight variation of another statement in
Diaconis (1985): We should focus on the coming controversy—with those who
think the computer has taken over.
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This is one in a series of fascinating papers. They are easily read as painting a
picture of modern Bayesianism in bad trouble but frequentism in fine shape. A
larger historical perspective gives a different view, however. It should therefore
be sketched, even if only impressionistically.

Time began in darkness and “inverse” probability. Then the Rev. Thomas
Bayes let in some posthumous light. The postulate he identified and used was
duly found arbitrary or ambiguous, and unfounded. Likewise Fisher’s reference
sets. Then Neyman and Pearson developed “objective” (frequentist) concepts
even as Ramsey and de Finetti were proving that “subjective” Bayesianism was
the only coherent theory possible. Soon (well before Pratt’s 1961 and 1965
surveys) objective methods too were found arbitrary and theoretically and
practically deficient even in the simplest situations (where uniformly most
powerful tests are randomized).



