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BAYESIAN NONPARAMETRIC BANDITS

BY MURRAY K. CLAYTON! AND DONALD A. BERRY?

University of Wisconsin and University of Minnesota

Sequential selections are to be made from two stochastic processes, or
arms.” At each stage the arm selected for observation depends on past
observations. The objective is to maximize the expected sum of the first n
observations. For arm 1 the observations are identically distributed with
probability measure P, and for arm 2 the observations have probability
measure @; P is a Dirichlet process and @ is known. An equivalent problem
is deciding sequentially when to stop sampling from an unknown population.
Optimal strategies are shown to continue sampling if the current observation
is sufficiently large. A simple form of such a rule is expressed in terms of a
degenerate Dirichlet process which is related to P.

“«

1. Introduction. A bandit problem involves sequential selections from a
number of ‘stochastic processes (or “arms”, machines, treatments, etc.). The
available processes have unknown characteristics, so learning can take place as
the processes are observed. As in Bradt, Johnson, and Karlin (1956), we restrict
consideration to the discrete-time setting in which the objective is to maximize
the expected sum of the first n observations, where n is known. This is a special
case of the more general setting—not considered here—of Berry and Fristedt
(1979) in which infinitely many observations may be taken and future observa-
tions are discounted.

The arm selected for observation at any time depends on the previous
selections and results. A decision procedure or strategy specifies which arm to
select at any stage for every history of previous selections and observations. The
worth of a strategy is defined in the usual way as the average of the sums of the
first n observations for all possible histories resulting from that strategy. A
strategy is optimal if it yields the maximal expected sum. An arm is said to be
optimal if it is the first selection of some optimal strategy.

We assume that there are two arms. Let X; and Y, denote the results from
arms 1 and 2, respectively, at stage i; for { < n exactly one of the pair (X,, Y)) is
actually observed. We assume that the vector (X,..., X,) is independent of
(Y,,...,Y,). In addition, we assume that given the unknown probability measure
(p.m.) P, the random variables X,,..., X, are independent and identically
distributed with p.m. P, while the random variables Y}, ..., Y, are independent
and identically distributed with known p.m. @. Since the objective is to maxi-
mize the expected sum of the observations and since no data can change the
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information concerning @, it is sufficient to assume that all the Y;s are equal to
the mean of @, call it A.

The p.m. P is unknown and so, following a Bayesian approach, we take P to
be random and assume that prior information regarding P is given by its
probability distribution. Much of the bandit literature assumes the arms to be
Bernoulli (Bradt et al., 1956 and Berry, 1972 are examples) in which case the
support of P is contained in the set of those p.m.s which concentrate their mass
on {1,0}. We want a distribution for P which has large support and which yields
analytically manageable posterior distributions for P conditional on observations
from P. Following Ferguson (1973), we assume that P is a Dirichlet process with
parameter a, where a is a bounded nonnull measure on the reals R with finite
first moment. Let M = a(R) and F(x) = a(— o0, x]/M. With these definitions, F
is the prior mean (in distribution function form) for P in the sense that it is the
expectation of P(X < x), and the total measure M may be interpreted as the
weight of the prior in terms of sample number (Ferguson 1973, page 223). We
shall frequently use MF in place of a. The prior mean u for an observation from
arm 1 is the mean of F.

The important special case M = 0 gives rise to an improper Dirichlet process.
By a Dirichlet process with parameter 0 - F, we mean a process which generates
observations X, X,,..., X,, such that X, = X, = --- = X, almost surely and
X, has distribution function F. In such a situation, one selection of arm 1 yields
complete information about P. In a sense described in detail by Sethuraman and
Tiwari (1982), as M tends to zero the Dirichlet process with parameter MF tends
to the process with parameter 0 - F defined here. For another application of
improper Dirichlet processes see Clayton (1983).

The parameter a summarizes the prior information about P. Conditional on
observations X,,..., X, the measure P is a Dirichlet process with parameter
a + Xk§ x,» Where &, gives mass 1 to x (Ferguson, 1973, Theorem 1). Let X be a
generic observation from arm 1. The conditional expectation of a function g(X)
given X,,..., X, can be computed for each a + L*§ x, using Theorem 3 of
Ferguson (1973). We shall denote this expectation by E[g(X)|a + X*8 x,), and
shall delete the measure from the notation when there can be no confusion. Note
in particular that E(X|a) = E(X|F) = p.

Besides the Bernoulli, the only other bandit that is discussed in detail in the
literature is the normal. Notable examples are Fahrenholtz (1982) and Chernoff
(1968); the latter considers a continuous-time version using Wiener processes.

The Dirichlet process is more flexible in many ways than either the Bernoulli
or the normal. Actually, the Dirichlet model encompasses the Bernoulli with
a beta prior: If a=ad, + b8, then X,,..., X, are distributed as if they
were, given p, independent Bernoulli observations with parameter p, where p
has a beta distribution with parameters a and b. The improper Dirichlet prior
0 - (ad, + bd,) corresponds to a two-point prior for p on {1,0}.

An advantage of the Dirichlet process model is that, with respect to the
topology of convergence in distribution, the support of P is the set of all
distributions whose supports are contained in the support of a (Ferguson, 1973,
Proposition 3). This provides an essentially nonparametric approach allowing us
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to model those situations in which the responses can take on values in a specified
set. In particular, as opposed to the Bernoulli model, we can model responses
which are other than 0-1; in contrast with the normal model, we have more
liberty in modeling the marginal distributions for the observations and so, for
example, we can limit the possible outcomes to be other than the real line.

It is clear from (1.1) and (1.2), and true generally in bandit problems (Berry
and Fristedt, 1985), that strategies can be specified by initial selections. For
example, if arm 1 is selected at stage 1 then at stage 2 the strategy must specify
the first selection for a new bandit in which a is replaced with « + 8, and n is
decreased by 1.

Ideally, we would like to give an explicit specification of an optimal selection
for any a, A, and n. However, this is next to impossible unless n is very small or
n is moderate and the support of a contains a small number of points. Instead,
we give partial characterizations of optimal strategies. Section 3 deals with a
monotonicity property of optimal strategies: Roughly, the larger the observations
from arm 1, the greater the inclination to continue selecting that arm. A specific
version of this notion is a form of “stay-with-a-winner” rule: There exists a
quantity b,(«) such that, if arm 1 is optimal initially, and if X; = x is observed,
then arm 1 is optimal again provided x > b,(a). In Section 3 we also indicate
that a “stay-with-a-winner/switch-on-a-loser” strategy is optimal, and we give
an example showing that such a result may not apply in models with structure
different from the Dirichlet.

Since optimal strategies are difficult to determine, we may wish to find nearly
optimal strategies which are easy to describe. It seems desirable for such rules to
have the stay-with-a-winner property mentioned above. However, the exact
determination of b,(«a) requires actually finding an optimal strategy. Accordingly,
in Section 4 we present an easily determined upper bound for b,(a) which may be
used to approximate an optimal rule. (We shall evaluate such an approximate
rule in a future paper.) We compute this upper bound in two examples and give a
conjecture for a lower bound for &,(a).

Using notation similar to that of Berry (1972), let W, (a, A) be the expected
payoff of an optimal strategy, where a, A, and n are as described above. Let
W'(a, \) be the expected payoff attained by selecting arm i initially and then
proceeding optimally. We then have W, = W,! v W2 For n > 1 the following
relations are evident:

(1.1) WX, A) = p+ E[W,_ (a+ 8x,)la],
(1.2) W2(a,\) =A+ W,_,(a, ).

Note that (1.1) and (1.2) hold for « = 0 - F with the convention that the
parameter O - F' + §,_ equals §,.

Together with the evident initial conditions Wj(a, A) = 0 for i = 1,2, (1.1) and
(1.2) give a recursion for determining W (a, A). Some properties of W, follow
from the straightforward extension of results in Berry and Fristedt (1979). For
example, W:,( a, ) is nondecreasing in both n and A, and is continuous in A.
Further properties of W, are given in Section 2. Repeated application of (1.1) and
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(1.2) gives all optimal strategies by keeping track of whether the various W, _; are
equal to W,_;or W ..

Note that W,,_(a + X{, , A) is measurable and integrablefor j = 1,...,n — 1,
and for x,,..., x; in the support of a. Measurability follows from (1.1) and (1.2)
and the fact that the integral of measurable functions is measurable (Billingsley,
1979, Theorem 18.3). Integrability follows from

J
Mp+28xl j
n—jAV—-=—<W,_|la+Y8 A
1 J
< E(X V Ala) + -V A).
< 37 PV N + = R v )

These inequalities correspond to the intuitive notion that the maximum expected
payoff is at least that of a strategy in which the same arm is selected at every
stage, and at most that for the case in which P is known at the outset.

The problem described here is a finite-horizon two-armed bandit with one arm
known. The special case of Theorem 2.1 of Berry and Fristedt (1979) in which the
discount sequence has a finite horizon applies in the current more general setting
to show that we have described an optimal stopping problem. So, we need not
consider strategies in which a selection of arm 2 is followed by a selection of arm
1. Consequently, to determine an optimal strategy, we need only determine the
stage at which arm 2 is first selected, if ever. Problems of this sort are referred to
as ‘“one-armed bandits” (Berry, 1985). If A = 0 this description is especially
fitting since a selection of arm 2 in that case has no effect on the sum. Hence,
when A = 0 the problem is to select at most n observations from a population,
such that the actual number of observations taken is decided upon sequentially
and the goal is to maximize the expected sum of the observations taken. (We
could always assume A = 0 simply by subtracting A from every observation made
from arms 1 and 2. However, in terms of describing strategies it is easier to let A
be arbitrary, and so we shall work in that more general setting.)

2. Properties of optimal strategies. In this section we describe some
properties of optimal strategies and their expected payoffs. A useful tool is the
“break-even value” for A of Bradt et al. (1956, Lemma 4.2) and Berry and
Fristedt (1979, Theorem 2.2). As indicated by Berry and Fristedt, their result
applies more generally than the Bernoulli and includes the current setting. We
state the appropriate version without proof.

THEOREM 2.1. For each a and n there exists a A ,(a) such that the only
optimal initial actions are, select arm 1 if A < A, (a) and select arm 2 if
A=A ().

At the second stage, we compare A to A,_,(a) or A,_,(a + §, ) according as
arm 2 was selected initially or arm 1 was selected and X, = x; observed; and so
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on for subsequent stages. In general, we can specify an optimal strategy by
evaluating A (a + Z{"’Sxi) for each value of m and for each possible set of
outcomes x,,..., X,.

Since the problem is an optimal stopping problem it follows that A > A («)
implies A > A, _,(a). That is, A,(a) is nondecreasing in n. Another consequence
of the optimal stopping nature of this problem is that A > A, (a) implies
W, (a, A) = nA, while A < A (a) implies W, (a, A) > nA. This gives a characteri-
zation of A ,(a) which lets us translate properties of W, into properties of A (a).
Namely:

LEMMA 2.1. For n>1 and for all a, A,(a) is the smallest N such that
Wy (a,\) —nA <0.

We mentioned in Section 1 that W, (a, A) is nondecreasing in A. One might

also expect the expected payoff to increase if we add a constant to each
observation from arm 1. This is a special case of a more general notion:

DEFINITION 2.1. The distribution function F* is to the right of F if F*(x) <
F(x), x € R.

The following lemma is Proposition 17.A.1 in Marshall and Olkin (1979):

LEMMA 2.2. If F* is to the right of F and if g is nondecreasing, then
E[g(X)|F] < E[g(X)|F*] whenever both expectations exist.

We now set out to prove that W,(MF, A) increases when F moves to the right.
First, it is necessary to prove a special case.

PROPOSITION 2.1. For all F and M = 0, and for k > 0, W, (MF + k§,, A) is
nondecreasing in z.

REMARK. If z <2z’ then the distribution function form of MF + k§,. is
(MF + k$,)/(M + k) and is to the right of the distribution function form of
MF + ké,.

Proor. By induction, using (1.1) and (1.2). O

The next result indicates that, given the observation X, = z, one’s inclination
to select arm 1 should increase with z.

COROLLARY 2.1. For all M > 0, for all F, and for n =1, A (MF +8,) is
nondecreasing in z.

Proor. Let z < z’. By Proposition 2.1,
W, (MF +3,, A,(MF +4,)) < W,(MF + §,,, A (MF + 3§,.)),
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and so by Lemma 2.1,
W,(MF + 8,, A ,(MF +§,)) — nA,(MF +§,) < 0.
But Lemma 2.1 then implies A (MF + 6,) < A (MF +4,). O

We now generalize Proposition 2.1.

PRrOPOSITION 2.2. Fix M >0, n > 1 and A. If F* is to the right of F, then
W.(MF,\) < W,(MF*, X).

Proor. By induction. Assume the result holds for n = m — 1. By (1.1),
WL MF*, \) — WX(MF, \)
= E[X|F*] - E[X|F] + E[W,,_(MF* + 84, \)|F*]
—E[W,_(MF + 84, \)|F]
> E[W,,_(MF* + 84, \)|F] — E[W,,_,(MF + 84, \)|F] = 0.

The first inequality holds by Proposition 2.1 and Lemma 2.2; the second in-
equality holds by the induction hypothesis and the fact that (MF* + §8,)/(M + 1)
is to the right of (MF + 8,)/(M + 1). The remainder of the proof follows easily.

O

COROLLARY 2.2. Foralln >1and M > 0, A (MF) < A (MF*) when F* is
to the right of F.

Proor. Follows by Lemma 2.1 and Proposition 2.2. O

REMARK. Results similar to Proposition 2.2 and Corollary 2.2 were proved by
Berry and Fristedt (1979, Theorem 3.1) for the Bernoulli model.

3. Break-even observations. In this section we show that optimal strate-
gies continue with arm 1 whenever it yields a sufficiently large observation. This
can be viewed as a generalization of the stay-with-a-winner rule considered for
the finite-horizon Bernoulli one-armed bandit in Bradt et al. (1956) and for the
Bernoulli one-armed bandit with a regular discount sequence in Berry and
Fristedt (1979). [See Berry (1985) or Berry and Fristedt (1985) for other refer-
ences.] For the Bernoulli bandit, such a rule says that if it is optimal to select
arm 1 initially, and if a success is obtained, then it is optimal to select arm 1
again. The analogous result for the Dirichlet bandit is given in Theorem 3.1.

We first show that some observations increase and others decrease the desir-
ability of arm 1 as reflected by A. This gives a very weak stay-with-a-winner rule.

ProrosITION 3.1. Given a and n > 2, there exist x’ and x" such that
(31) ’ An—l(a + Bx’) < An(a) = An—l(a + 8x”)'
Moreover, if the support of a is bounded above by U, we can take x"” = U, if the
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support of a is bounded below by L, then we can take x’ = L.

Proor. That x” exists follows since
lim A (a+8,)= lim A(a+8,)= lim (Mp+x)/(M+1)=co.
X — o0 X — o0 X — 00

That x’ exists follows from lim, |, _ (A, (a + 8,) = — 0, a consequence of Lemma
2.1 and the fact that lim,_, _ W(a + 8,,A\) < nA.

Suppose now that the support of a is bounded above by U. To show that
(3.1) is satisfied with x” = U we adapt the proof of Theorem 4.1 in Berry and
Fristedt (1979). Namely, we suppose A < A (a) and show A < A, _(a + §).
There are two cases: (i) A < E(X|a + 6;) and (ii) A > E(X|a + 8;). In case
(i), A < E(X|a + 8y) = Ay(a + 8y) < A, _,(a + 8y) since A, is nondecreasing
in n. In case (ii), suppose, to the contrary, that A > A,_,(a« + §;). Then A >
A, _(a+8) for x < U by Corollary 2.1, and so, for any outcome on arm 1,
Theorem 2.1 applies to show that arm 2 is optimal for the remaining selections.
Consequently,

W (e, \)=p+(n-—DA<(Mp+U)/(M+1)+(n—-1)A
=E(X|a+ 8;)+(n—1)A <nh,
which is impossible since W, (a, A) = nA in view of (1.3).
Finally, if the support of « is bounded below by L, then we have
(32) Aporla+8,) < A y(a) < A(a).

The first inequality in (3.2) follows from Corollary 2.2 since the normalized form
of « is to the right of the normalized form of a + §,. The second inequality in
(3.2) follows since A is nondecreasing in n. O

The next two lemmas will be used in the proof of Theorem 3.1.

LEMMA 3.1. Foralln =1, fork=0,1,2,... and for x,, x,,..., X, given,
(i) Wy(a + Zfoi + 8,, A) is jointly continuous in z and \; and
(i) W/(a + 8,, A) is jointly continuous in z and A\ forj =1,2.

Proor. Part (i) follows by a straightforward induction from (1.1) and (1.2).
Part (ii) follows from part (i). O

LEMMA 3.2. For a and n given, A, (a + 8,) is continuous in x.

Proor. Fix x, and note that A, (a + 8,) is the unique root in A of
Wha+8,A)— W2a + 8,A)=0. In view of Lemma 3.1 (ii),

0= lm [WXa+8,A,(a+38,))— W2a+8,A,(a+8,))]

- Wnl(a +8,, lim A(a+ sx)) - W,f(a +8,, lim A (a+ 5.))-

x—xg

By uniqueness, A (a + 8, )= lim A(a+8,) O

X =X
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THEOREM 3.1. Given a and n > 2, there exists a unique b,(a) such that
A, (a+8)2A,(a) ifx2bya)
and
A,_(a+8)<A,(a) ifx<b,(a).

Proor. Fix a and n > 2. In view of Corollary 2.1, to show existence it
suffices to demonstrate that there exists a quantity b such that A, (a)=
A, _(a + §,). But this follows directly from Proposition 3.1, another application
of Corollary 2.1, and Lemma 3.2.

We show that b,(«) is unique by contradiction. Suppose b < b’ and that

A=A a)=A, (a+8,)=A, (a+3,).
Then since an initial selection of arm 2 is optimal,
W,_(a+8,AN)=(n=1)A=W,_(a+8,,\).
However, since arm 1 is also optimal, by (1.1) and (1.2) we have
Wn—l(o‘ +8y,A) - u/;z—l(a + 84, M) = (' —b)/(M+1)
+E[W,_o(a+ 8, + 8x,A)|a+ 8,)]
—E[W,_y(a + 8, + 85, \)|a + 8,)]
> 0. O

We call b,(a) a “break-even observation” for an obvious reason: It gives the
stay-with-a-winner property previously mentioned. A proof similar to that of
Theorem 3.1 yields another break-even observation, c,(a, A), which results in a
still stronger property of optimal strategies:

THEOREM 3.2. Given a, A, and n > 2, there exists a unique c, (o, \) such
that

A, (a+8)=>N ifx>c,(a,\) and A, (a+8,) <X ifx<c,a, ).

This result gives a “stay-with-a-winner/switch-on-a-loser” rule: If arm 1 is
selected, optimally or not, and X, = x is observed, then arm 1 is optimal if
x = ¢,(a, A); arm 2 is optimal if x < ¢,(«a, A); and both are optimalif x = ¢, (a, A).
Hence after an optimal initial selection, optimal strategies are completely de-
termined by c;(a + X7 8x,~’ M) for the various possible outcomes. In this sense ¢
plays a role similar to that of A.

It is easy to show from Theorems 2.1, 3.1, and 3.2 that if A < A,(a), then
c,(a,A) < ¢,(a, A,(a)) and, moreover, c,(a, A, (o)) = b,(a). However, if the sup-
port of a has upper bound U, then it need not be the case that ¢, (a, A\) < U.
Likewise, if the support of a has lower bound L, it need not hold that
c,(a,A) = L. (Easy counterexamples are given by taking a = §, and A > p in the
first case and A < p in the second.)

If the p.m. P is not a Dirichlet process, then b,(a) and c,(a, A) need not exist,
as the next example shows.
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ExaMPLE 3.1. Let P =§, with probability ; and P = ()(§, + 8,,) with
probability 3. Let A = 6. For any n > 2 arm 1 is optimal initially, and also for
the second stage if X, = 7, but not if X; = 0 or 10. O

Our comments in Section 1 imply that the explicit determination of ¢, («a, A) is
nearly impossible unless n is small or n is moderate and « has only a few support
points. While the same is true for b,(«), the latter is a simpler quantity (for
example, it has only one argument) and we can find a useful upper bound for
b,(a). We now turn to this task.

4. A bound for the break-even observation b,(a). In this section we find
an upper bound for b,(a), thus suggesting easily determined strategies that may
perform well. Any quantity x” given in Proposition 3.1 is an upper bound for
b,(a). Unfortunately, beyond knowing that it exists, we have little guidance in
checking to see if a particular number (save an upper bound U of the support of
a) qualifies for x”.

We present a series of results which show that b,(a) < A,(0 - F). It is easy to
show that A, (0 - F) < U when U exists, so A (0 - F) is never worse than U in
bounding b,(«). Moreover, A (0 - F) is easy to compute. When M = 0, a single
observation from arm 1 yields complete information about P, and so

W, (0 F,\) =max{p+(n—1)E[(X V A)|a], nA}.
Thus, by Lemma 2.1, A (0 - F) is the smallest A that satisfies
max{p +(n — DE[(X-N)"] - A0} =0,
where a*= a Vv 0. It follows that A (0 - F) uniquely satisfies
(4.1) A0 -F)=p+(n—1)E(X-A,0-F))".
To show b,(a) < A,(0 - F'), we first prove a seemingly unrelated result. Let x
and vy be fixed values, x > y. While it is true that W, (a + §,, A) > W, (a + 8, A),
a bandit with Dirichlet process parameter a + 8, is not preferred to a bandit

with parameter a + §, when (x — v)/(M + 1) is added to each observation from
the latter bandit. More specifically,

LEMMA 4.1. Forall y,a,\, k> 0, and for n > 1, if x > y then

nk(x —v)

(4.2) M+ k

+ W(a+k8,\) - W(a+ kS, \)>0.

Proor. We proceed by induction. The case n = 1 is straightforward.

For the induction step, suppose the lemma is true when n = m — 1. Then we
have two cases. In case (i), A > A, (a + k8,) = A, (a + k3. Then the left side
of (4.2) is mk(x — v)/(M + k) + mA — mA, which is nonnegative.

In case (i), A, (a + k8,)>A. Now, W, (a + k8 ,A)= Wia+ k5, N). It
suffices to prove

© mk(x - y)

(4.3) M+E

+ Wa(a+ k8, ) — Wh(a+ k3, A) >0,
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since the left side of (4.3) is a lower bound for the left side of (4.2) when n = m.
But using (1.1), the left side of (4.3) can be shown to equal

mk(x—y)+k(y-x)+ M
M+ k M+ k M+ k

E[W,_,(a+ kS, +8x,\)la

+

W, (e +(k+1)8,A) - E[W,_(a+ kS, + 8y, \)|a]

M+ k M+ Fk
k
M+ k

Straightforward manipulation shows that this equals
M m-—1Dk(x—vy
B {[( )k( ) W

W, (a+(k+1)8,7).

M+k M+k+1 moala + 8y + k8, A)
W, (a+ 8y + kS, A)]}
44 :

(4.4) ) 5
Mtk

(m-Vk+Dx-v) o

Y oo(@ +(k+1)8,, )

-W,_(a+(k+1)8, A)].

But the quantities in square brackets in (4.4) are nonnegative by the induction
hypothesis. O

LeEMMA 4.2. Forn > 2, for all « = MF, and for all A,
(4.5) Wo(a,A) < [AV A, y(a+8)] + W, y(a+ 8, A)
where A% = A (0 - F).
ProOF. There are two cases. In case (i), A > A, (a). Then W, (a, A) = nA and

(4.5) is immediate. In case (ii), A < A (). Now, W (a, A\) = W)(a, A), and since
A, is nondecreasing in n, it will suffice to prove

(4.6) Wia, N) < Ay(a + 80 ) + W,_y(a + 8, A).
Now by (4.1),

Mp + A°,
M+1
Using this and (1.2), we see that (4.6) is equivalent to E[ f(X)] = 0, where
(n—1)(x - A%)"

fx) = M+1

However, when x < A%, f(x) > 0 by Proposition 2.1, while if x > A%, f(x) >0
by Lemma 4.1. O

Ay(a+8y) = =p+(n-DE[(X-A%)" ]| /(M +1).

+ W,_(a+ po,A) = W,_(a + 8, ).
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THEOREM 4.1. For all a and forn > 2, b(a) < A,(0- F).

PROOF. Let A) = A, (0 F) and take A = A,,_,(a + 8y ) in (4.5). Then
W(a, A, (a+80)) <A, (a+8)+ W, (a+8u, A, (a+38))
= nAn_l(a + 8/\(’)')

by Theorem 2.1. But by Lemma 2.1, A,(a) < A, _(a + 8 ). The desired result
now follows by the definition of b,(«) and Corollary 2.1. O

IA

Theorem 4.1 gives an easily described strategy that has the stay-with-a-winner
property: If arm 1 is optimal initially in a bandit with n observations and
parameter MF, and if X, > A (0 - F') is observed, then arm 1 is used again. This
second selection of arm 1 is optimal, but selecting arm 2 when X, < A (0 - F)
may not be optimal.

ExaMPLE 4.1. If a = M(ad, + b8,),0<a <1, a+ b=1,then A,[0-(af,
+ b8,)] = na/[(n — 1)a + 1]. Since A% € (0,1) in this case, Theorem 4.1 gives
the traditional stay-with-a-winner rule for the Bernoulli bandit. O

We conclude this section with tables of A, and b, for two examples. Let H
denote the distribution function of a continuous uniform random variable on
[0,1], and let ® denote the standard normal distribution function. In Table 4.1

TABLE 4.1
The quantities A, = A, (MF) and b, = b,(MF)

a. F=0®
M A, b, A, by A, b,
0 0.276 0.276 0.436 0.436 0.549 0.549
0.1 0.251 0.276 0.400 0.424 0.505 0.529
0.5 0.184 0.276 0.300 0.388 0.383 0.470
1 0.138 0.276 0.228 0.359 0.295 0.421
5 0.046 0.276 0.079 0.276 0.105 0.284
10 0.028 0.276 0.043 0.248 0.058 0.238
100 0.003 0.276 0.005 0.214 0.007 0.182
b. F=H
M A, b, Ag by A, b,
0 0.586 0.586 0.634 0.634 0.667 0.667
0.1 0.578 0.586 0.623 0.630 0.654 0.661
0.5 0.557 0.586 0.592 0.619 0.617 0.644
1 0.543 0.586 0.570 0.610 0.590 0.630
5 0.514 0.586 0.524 0.584 0.5632 0.589
10 0.508 0.586 0.513 0.576 0.518 0.574
100 0.501 0.586 0.501 0.565 0.502 0.554
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values of A (MF) and b (MF) are given for n = 2,3,4; F = H and ®; and
M =0,.1,.51,5,10,100.

It is not hard to show that by(MF) = A40 - F) for all M > 0 and F, and that
b,(0-F)=A,0-F)for n> 2 and all F. These facts are reflected in Table 4.1.
As well, it is straightforward to prove that, for all nondegenerate F, A (MF) is
strictly decreasing in M. Table 4.1 suggests, and we conjecture, that A (MF) is
strictly decreasing in M for all n > 2 when F is nondegenerate. This reflects the
intuitive notion that the less known about an arm, the more appealing it is since
there is more information to be gained when selecting it.

For moderate M, A (0 - F') seems to be a reasonable upper bound for b,(MF).
The effect of this in designing nearly optimal strategies remains to be seen. In
Table 4.1, A ,(a) < b,(a). We conjecture that this holds for all n and «.
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