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OPTIMAL SEQUENTIAL SEARCH: A BAYESIAN APPROACH

BY DAVID ASSAF AND SHMUEL ZAMIR

Hebrew University of Jerusalem

To the classical model of searching for one object out of n, we add
uncertainty about the parameters » of the distribution of the n objects among
the m boxes. Adopting a Bayesian approach, we study the optimal sequential
search strategy. For the case n = 1, we obtain a generalization of the
fundamental result of Blackwell: the strategy which searches at each stage in
the “most inviting” box is optimal. This strategy is also optimal for m = 2
and arbitrary n. However, for n > 1 the optimal strategy may be very different
from that of the classical model, even when the uncertainty about « is very
small.

1. Introduction. Suppose n objects are hidden in m boxes. Both n and m
are assumed to be fixed and known. Denote by M = {1, - - -, m} the set of boxes.
Each of the objects is hidden in box i with probability m;, (x; = 0,1 < i < m,
Y21 m = 1) and independent of the other objects. The probability vector = =
(w1, +++, m») is unknown but has a known prior distribution. Let X; denote
the number of objects in box i. Then, given the value of «, the vector X =
(X1, -+, X,») has a multinomial distribution with parameters n and .

Associated with each box i are two quantities, both assumed fixed and known:
¢; the cost of searching for objects in box i and «; the (conditional) probability of
finding an object which is in box ¢ when box i is searched. It is assumed that
searches for different objects hidden in the same box are independent in the
sense that if there are k objects in box i then the probability of finding at least
one of them when searching that box equals 1 — (1 — &;)*. To avoid trivialities
assume 0 < o; < 1, P(m; = 0) <1 and ¢; >0 for all 1 =i < m. The goal is to
search the boxes in succession until at least one object is found, and to do so
with a minimal expected total cost.

A search strategy is a sequence S = (s, S, +-) where 1 < s; < m for all
d = 1. Applying the strategy S, we search in box s, at stage d if no object was
found in the first d — 1 searches. At each stage of the search denote by h; the
“current” probability of finding an object in box i if we look there, i.e., the
conditional probability of finding at least one object there, given the history of
unsuccessful searches up to that stage. A box i is said to be most inviting (at a
certain stage of the search) if h;/c; = h;/c; for all j € M. A strategy which searches
at each stage in a most-inviting box will be called a most-inviting strategy. Due
to possibilities of equalities h;/c; = hj/c; there may be many most-inviting
strategies; but for the sake of simplicity we shall refer to each of them as the
most-inviting strategy.

Using general results of negative dynamic programming with finite action
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space, it may be shown that there exists an optimal (stationary nonrandomized)
strategy. For a formal derivation see, Smith and Kimeldorf (S-K hereforth) [8]
and the results of Strauch [11].

The problem presented above, in different variations, has been studied in
several papers. A basic assumption in all previous papers has been that the prior
distribution of  is degenerate at some known value. Blackwell [2], Chew [3],
Kadane [5], Kelly [6], [7], Sweat [12] and many others have studied the problem
for n = 1 and showed the optimality of the most-inviting strategy for that case.
Smith and Kimeldorf [8] derived results when n is an integer-valued random
variable (and in this respect their model is more general than ours, but they
assumed that « is known). For other recent results for n > 1, see [1], [4], [9] and
[13].

The Bayesian (random ) model studied in this paper is appropriate for what
seems to be a most common situation; namely, some information regarding = is
known, but its exact value is not. This may be the case, for example, if = is
basically known but some disturbances of random nature are present or when =
is estimated from some previous observations. It turns out that random fluctua-
tions, or statistical inaccuracies, even small ones, may give rise to results totally
different from the results obtained when = is perfectly known. These differences
become extreme when n is large and the prior distribution of « has supports in
the vicinity of the sets =; = 0. In Section 3 we provide an example (Example 2)
with m = 2 in which the optimal strategy for degenerate = is to search box 1 in
succession 12 times, while the optimal strategy when a small uncertainty about
« is assumed is to search box 1 first and then if no object was found, to search
box 2 next.

In Section 2 we show that the most-inviting strategy is optimal in two cases:
the case n = 1 (Theorem 1) and the case m = 2 and any fixed n (Theorem 2).
Examples are discussed in Section 3. These are mainly designed to illustrate the
differences between the Bayesian and the non-Bayesian approaches. An example
considered in Section 3 shows that, even when all costs are equal, the Bayesian
model differs from the non-Bayesian one.

2. Results for the Bayesian model. We begin the section with several
useful formulas, all of which may be verified using elementary methods. Expec-
tation is denoted as usual by E and, unless specified otherwise, is the expectation
with respect to the original prior distribution of .

The probability of finding at least one object when searching box i is given by

(1) h,’ = 1 - E(l - a,—‘lr,-)".

The conditional distribution of X; given , following an unsuccessful search of
box k, is binomial with parameters n and r}h), given by

(2) r:k)= m/(1 — apmy), 1#Ek
3) T = (1 — ap)me/(1 — apmy).

The probability of finding at least one object in box i, after an unsuccessful
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search of box k&, is given by

E(1 — apm)" — E(1 — aym; — ayemy)”

) _ .
(4) h; EQ = am) , L#k
(5) h(h) _ E(l - ak7rk)" - E(l - 2ak1rh + a%ﬂrk)"

k - .

E(1 — apm)”

REMARK 1. An alternative representation may be obtained by considering
the joint posterior distribution of the vector #® = (#¥®, ..., #®). With this
representation it is easy to verify that, following an unsuccessful search of box
k, we have a new problem which differs from the original one only in the
distribution of x. Additional searches now give rise to other distributions of =
and one may consider the family of all distributions which may be obtained in
this manner. We will usually prefer the representations in terms of the original
prior of x but it is useful to keep this remark in mind for some applications (see
Lemmas 1 and 2 and Example 1). This also clarifies the relation of our problem
to dynamic programming.

REMARK 2. It is worth noting that all formulas remain valid for the more
general case in which n is also random. In that case E is to be interpreted as
expectation with respect to the prior joint distribution of (=, n).

For any search strategy S = (si, s2, * - ), denote by C(S) the expected total
cost until an object is found when using the strategy S. The following lemma
indicates one reason for the most-inviting strategy to be a natural candidate for
optimality.

LEMMA 1 (Compare to Lemma 1 in [8]). Box i is more inviting than box j if
and only if C(i, J, s3, 84, *+*) < C(J, i, 83, 84, * * ) for any (s3, s4, * ).

Proor.
C(i,j,33,34, °°°)=cl+cj(1_hl)+D(iyj)q(iyj)
C(j, iy 83, S4, ”') =cj+ci(1_ h]) +D(j1 i)‘](j, i)

where D (i, j) is the total expected cost of the search sequence (ss, s4, -+ +) when
the distribution of = is the posterior one after unsuccessful searches in box i and
then box j (see Remark 1), and q(i, j) is the probability of unsuccessful searches
in boxes i and j. Clearly D(i, j) = D(j, i) and q(i, j) = q(J, i) so that C(, j, ss,
84y ++*) = C(J, 1, 83, 84, +++) if and only if ¢; + ¢;(1 — h;) < ¢; + ¢;(1 — h;) which
is equivalent to box ¢ being more inviting than box j (i.e., hi/c; = hj/c;). O

Given a distribution F of x, denote by ®(F) the family of all distributions of
« which are obtainable from F through sequences of unsuccessful searches (see
Remark 1).

The following lemma provides a sufficient condition for the optimality of the
most-inviting strategy.



1216 D. ASSAF AND S. ZAMIR

LEMMA 2. If for each G € ®(F)

(6) hi/c; = hj/Cj forall j€ M,
implies
(7) h{Plei= hPJe; forall jEM, k+#i,

then the most-inviting strategy is optimal (for that F). Here h; and h,(k) are given
by (1), (4) and (5) with all expectations taken with respect to G.

REMARK 3. This condition is actually the key element in Blackwell’s original
proof which was based on the fact that this condition is satisfied (trivially) for
n = 1 and degenerate F (in which case ®(F) = {F}). Later this condition was
used again by S-K who verified it for degenerate F when n is distributed pp()\)
(see [8], Lemma 2).

PRrOOF. It is easily seen that an optimal strategy S* satisfies C(S*) < o and
hence must search infinitely often in each box. Let S* = (s¥, s¥, ---, s¥,,
sf, +++), (t 2 1) be an optimal strategy in which s}, -+, s¥; are most inviting
in their respective stages. We will show that there exists an optimal S’ =
(st, s¥, -+, s&1, s/, -+ +), in which s/ is the most inviting at stage ¢, which
clearly proves the lemma.

To show this, let = = {S = (s1, s3, ***, s;, *+*)|S is optimal and s, = s* for
1 =/ =<t — 1}. Let i be a most-inviting box following unsuccessful searches in
st,s¥, -+, s&1. For each S € =, let m = m(S) be the smallest integer such that
S:+m = 1 (such an m exists since an optimal strategy searches infinitely often in
box i). Let m = min{m(S)|S € Z}. We need to show that M = 0.

Suppose M =1 and let S = (s¥, s¥, - -+, %1, 8, * * *, Stanm-1, I, * - ») be optimal.
Sinces,#ifor/=t, -+, t+ M — 1, it follows from the conjecture of the lemma
(applied M — 1 times) that i remains most inviting at stage t + M — 1 (since it
is most inviting at stage t). Denote sy, =j # i. From Lemma 1 it follows that
the strategy S = (st s¥ «--, SE 1, S, co b, 0t ) which is obtained from S by
interchanging i and j has c) =< C(S), and hence S € =. But m(S) = M — 1,a
contradiction. Thus M = 0 and the proof is complete. 0

The following theorems prove the optimality of the most-inviting strategy in
two cases. The first theorem extends well-known results for the case n = 1 to the

Bayesian model.

THEOREM 1. For n = 1 and any prior distribution F of =, the most-inviting
strategy is optimal.

Proor. Applying (1), (4) and (5) for the case n = 1, we have, for k #1,J

ﬁ _ a,-E‘lri ajE7rj _ OliEﬂ',‘ _ _}h
hj(.k) 1-— OlkE7l'k 1 - ahErk ajEﬂ'J: B hj
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in which case (6) and (7) are equivalent. For k =j (and i # j), we have

ik) _ o, En; - oaEm; E
h}k) aj(l - 0[_,')E7I’j - ajE1rj hj

so that (6) implies (7). In any case, the conditions of Lemma 2 are satisfied and
the most-inviting strategy is optimal. O

THEOREM 2. For m = 2 and for any prior distribution F, the most-inviting
strategy is optimal.

PrROOF. From Lemma 2 and obvious symmetry considerations, it is sufficient
to show that

h /bt = ho/hy,
that is, using (1), (4) and (5)

E(1ld—am)"—EQ — aym — agm)® - 1—-—EQ1 — agm)”
EQl-om)"—EQ - 20m + aim)” 1 —EQ — aym)*’

()]

Now

E(l - oy — a21r2)" = E(]. — X1TT] — NgTg + a1a27r17r2)"
9 = E[(1 — aym)(1 — opms)]”
<E(1 - aym)"E(1l — agm)".

To see the second inequality, let U=1—amand V=1 —ame =1 — a3 +
amy. (mg =1 — m; when m = 2.) U and V are negatively associated (recall that
every random variable is associated with itself) so that cov(U", V") is nonpositive.
From (9) we now have

(10) E(l - Cl]ﬂ'])n - E(l — T — a21r2)" = E(l - a11r1)"[1 - E(l - a21r2)"]
On the other hand, since #? < =, and EZ? = (EZ)? it follows that
EQ1 - 2aym + a¥m)* = EQ — 2a;m + a?7?)"

(11)
= E[(1 — aym)’I" 2 [E(1 — aym)"T?,
so that
E(l - al‘ll'])n - E(l - 2(111!'1 + a%wl)"
(12)

<=EQ-am)"[1—-E01 - oym)"].
Inequality (8) now follows directly from (10) and (12). O
REMARK 4. Reflection upon the proof of Theorem 2 shows that the proof

remains valid for any m, provided 1 — a;m; and 1 — a;m; (i # j) are negatively
associated. What is really needed is a condition which ensures the inequality

E[(l - anri)(l - a_,'7l'_,')]n <EQ1 - anri)"E(l - aj1rj)".
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This does not seem to be the case even in some special convenient examples, as
will be demonstrated in the next section.

REMARK 5. Theorem 2 above holds for any prior F, in particular for degen-
erate ones. Thus, the most-inviting strategy is optimal in the S-K model when
m = 2 and n is fixed. In [1] we show that this is not true for m = 2 when n is
random (S-K leave this as an open problem in [8]).

3. Examples. The first two examples compare the Bayesian and the deter-
ministic model under similar basic problem structure. Both examples have
m = 2 and fixed n so that by Theorem 2 the most-inviting strategy is optimal.
The first is a simple discrete case.

EXAMPLE 1. Let m = 2, a; = 0.9 (a2, ¢; and ¢, unspecified). Suppose = = m;
takes the values 0.5 with probability 0.98, and the values 0 and 1 with probability
0.01 each. Naturally =, = 1 — . After an unsuccessful search of box 1, the
number of objects in box 1 has a new binomial distribution with a probability of
“success” 7" given by (2) and (3). The probability function of =@ is tabulated
for some values of n as follows (the support of = is {0, %1, 1} independently
of n).

n
x® 5 10 20
0 0.17 0.80 0.9994
Y1 0.83 0.20 0.0006
1 17 x107° 1071 1072

This should be compared with a value of (1 — 0.9) X 0.5/(1 — 0.9 X 0.5) = ¥
(with probability 1) if 7 is assumed to equal 0.5 in the deterministic model. We
see that the Bayesian approach in fact does what is was expected to do: the
beliefs on the value of 7 are revised after the unsuccessful search of box 1, and
when n is large this revision becomes extreme.

EXAMPLE 2. Let m = 2 and let 7 = 7, have a uniform distribution on (0, 1).
Let X = X, denote the number of objects in box 1. Initially EX = n/2. Following
an unsuccessful search of box 1, the expected number of objects in box 1, EV X,
is given by ‘

(1—-ay)m

) -l - ) Exr(1 — qqyw)™?

WYX = pnE®
E nk ( E(Q — aim)”

1 -7
For m uniform on (0, 1) this quantity is easily computed in closed form as
—a n+ 1A — o)™

241 1-(1 - 011)"H

Thus for large values of n, EPX =~ (1 — a;)/a, i.e., a finite constant (E®X ~ 1
for a; = 0.5). This quantity may be compared with the value of E®’ X when = is

Ewx =1
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degenerate at 0.5. In this latter case we have
EVX = n(l —a)/(2— o)

which tends to infinity linearly with n (for n = 300 and &; = 0.5, EP’X ~ 1 in
the Bayesian model while EV X = 100 in the deterministic model).

A second comparison between the Bayesian and the deterministic models is
the following. Applying (5) for 7 uniform on (0, 1) we have

h(ll) = (1 —a—(1- 011)"“)/(2 - 0!1)-

As n approaches infinity, this quantity is strictly less than 1 (" — Y4as n — ®
for o = 0.5).

Based on this last observation it is not difficult to construct striking examples,
which are very similar in their basic formulation but differ entirely in their
optimal search strategies. As a specific example, consider the case where = is a
mixture of a uniform distribution on (0, 1) with probability ¢ and a degenerate
distribution at 0.5 with probability 1 — e. For small ¢ this may be interpreted as
basically degenerate at 0.5, but allowing a small chance for unknown disturbances.

Let oy =a;=0.5,¢,=1,¢; =2, ¢ =0.1 and n = 10,000. Since h, and h, are
both almost equal to 1, it follows that box 1 is more inviting than box 2. After
an unsuccessful search of box 1, however, it is readily verified that A =~ 15 while
h$’ ~ 1. Box 2 is now more inviting so that by Theorem 2 it follows that the
optimal strategy is to search box 1 first and then box 2.

Consider now the case ¢ = 0 (i.e., = is degenerate at 0.5). After k unsuccessful
searches of box 1, the probability of finding an object in it is given by

AP =1-((1-1-@Q=-a)"*)m)/(1 -1~ 0= a))m))”

which tends (very) slowly to 0. For a; = ay = 0.5, # = 0.5 and n = 10,000, it
equals about 0.99 when k = 10 and about 0.5 when k = 13 (the corresponding
probability for box 2 is approximately 1 for all k). Since the most-inviting strategy
is optimal (by Theorem 2) it follows that box 1 should be searched about 12 times
in succession before searching box 2. It seems disturbing that one would keep
searching in a box after not finding a single object in it (and which should contain
5,000 of them on the average) without suspecting that something is wrong.

EXAMPLE 3. Assume ¢; = ¢ for all i (without loss of generality take ¢ = 1).
For any search sequence S = (sy, sz, * - +), let T'= T'(S) be the first stage in which
an object was found. The total expected cost associated with the sequence S in
this case equals

ET = ¥g., P(T = d).

One way of minimizing ET is by minimizing P(T = d) foreveryd=1,2, ---. A
sequence for which this is accomplished may be referred to as a uniformly optimal
strategy (see [3]). It is easy to verify that a necessary condition for a strategy to
be uniformly optimal is for it to be most inviting. The most-inviting strategy on
the other hand may or may not be uniformly optimal.

The case of equal ¢, is very simple in most models studied thus far, and it is
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relatively easy to show that the most-inviting strategy is uniformly optimal for
degenerate x as well as for many other models ([2], [3], [8] and [10]).

Surprisingly, as the following counterexample shows, it does not hold
for the Bayesian case, even for the most appealing prior for ¥—the Dirichlet
distribution.

Consider the case with m = 3, n = 2. The detection parameters for the three
boxes are: a; = 0.9958, oy = 0.4877, az = 0.2959. The prior on = is the three-
dimensional Dirichlet distribution (i.e., density proportional to w4y 75!
over the region m; = 0; m; + m + w3 = 1), with parameters », = 2.273, v, = 4.545,
vz = 7.410. Straightforward (though somewhat tedious) calculations reveal the
following:

* At the first stage box 1 is most inviting.

* After an unsuccessful search in box 1, box 2 becomes most inviting.

* The sequence 12 is not optimal for a two-stage search since the probability
for finding at least one object in two searches is higher for the sequence 23.

(The figures were found by checking the consistency of several nonlinear in-
equalities using a Monte Carlo method and approximately a million randomized
trials were needed.)

It should be noted that the example merely shows that the most-inviting
strategy is not necessarily uniformly optimal. The question regarding optimality
of the most-inviting strategy remains open.

4. Concluding remarks. One possible extension of our results may be
obtained by taking n to be an integer-valued random variable. This was done in
[8] but only for degenerate x. A basic result in [8] is that if n has a pp(\)
distribution (a Poisson distribution conditioned on n = 1), then the most-inviting
strategy is optimal and conversely, if m = 3 and n is not pp()\), then there exist
values of a, ¢ and = for which the most-inviting strategy is not optimal.

Taking both n and = as random, a generalized question arises as follows: What
are the joint distributions of (n, ) for which the most-inviting strategy is
optimal? S-K roughly state that if = is degenerate then n must be pp(\).
Theorems 1 and 2 of this paper may be viewed as partial answers to the more
general problem.

If the family of distributions of = considered includes the degenerate ones,
then the conditional distribution of n given x must be pp()\) for an affirmative
answer (m = 3). Fortunately in this case the distribution of n given = remains
pp(X) following each unsuccessful search (parameter depends both on # and on
the box searched). If the family of distributions of w does not include the
degenerate ones, then n (or n given v) need not be pp()\) (at least not by any
known results). Care should be taken, however, since many families of distribu-
tions contain the degenerate ones in their closure. This is the case, for example,
for the family of Dirichlet distributions.

In spite of this last fact and the counterexample for equal c; in the previous
section, we tend to believe that the Dirichlet distributions are “natural” candi-
dates for this problem. We were not able, however, neither to prove nor to find



OPTIMAL SEQUENTIAL SEARCH 1221

a counterexample to the conjecture that if x is Dirichlet and n given = is pp()),
then the most-inviting strategy is optimal.
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