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ADAPTIVE ESTIMATION IN NONCAUSAL STATIONARY
AR PROCESSES

By E. GASSIAT

Université Paris-Sud

We consider the estimation problem of the parameter b of a stationary
AR(p) process without any of the usual causality assumptions. The aim of
the paper is to derive asymptotic minimax bounds for estimators of b&.
When the distribution of the noise is known, we show LAN properties of
the model and derive locally asymptotically minimax (LAM) estimators.
The most important results are about the case of unknown distribution:
The main result shows that, if one uses the usual parametrization, these
bounds depend heavily on the causality or the noncausality of the process,
so that adaptive efficient estimation is impossible in the noncausal situa-
tion: The scaling factor is shown to give the hardest one-dimensional
subproblem, and an unusual scaling is exhibited that could lead to adaptive
efficient estimation of the rescaled parameter even in the noncausal case.

1. Introduction. In this paper we study optimal estimation for possibly
noncausal autoregressive stationary processes. Here, X = (X, ¢t € @) satisfies
the following autoregressive equation:

p
(1) X, + E kat—k = U,
k=1

for all integers ¢. .

We shall assume that p is the true order of the model, that is, b, # 0. The
U, t € Z, form a sequence of independent random variables with common
distribution F' having finite variance. We define the polynomial B on the
complex domain by

p
B(z) =1+ Y b,z
k=1

and we make the following assumptions:

(Al) The polynomial B has no root with magnitude equal to 1 in the complex
domain.
(A2) The distribution F is not Gaussian and U is centered.

(A1) is the assumption that ensures that stationary solutions of (1) exist and
are uniquely defined.
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Under assumption (A2), given the processes X and U = (U,), b = (b,),
k=1,...,p, is uniquely defined by (1). The process X is then an autoregres-
sive process of order p, for which the process U is not necessarily the
innovation process. In other words, X, and the U,,,, & > 0, may be depen-
dent. The process X is said to be causal (or minimum phase) if B has no roots
inside the unit circle, since in this case X, depends only on the present and the
past of the noise process, U,,U,_,,... . X is said to be noncausal if it is not
causal. More specifically, X is said to be purely noncausal if B has all its roots
inside the unit circle; in this case, X, depends only on the future of the noise
process, U, {,U,,o,... . Finally, if B has roots both inside and outside the
unit circle, X is said to be mixed, and depends both on the past and the future
of the noise process.

The problem we are interested in is the efficient estimation of the parameter
b given observations X;,..., X,. We will study this problem when the distri-
bution F of the driving noise U is known (in that case the problem is purely
parametric) and also in the semiparametric case where F' is unknown. On the
subject of estimation of the parameter of an AR causal process, that is, for
which U is the innovation process, there exists a vast literature. The non-
causal case has rarely been studied, though applications exist in several
domains such as telecommunications and geophysics; see Benveniste, Goursat
and Ruget (1980) and Robinson (1984). Notice here that the nonstationary
process defined by (1) and starting from x, is asymptotically the same as the
stationary one if and only if b is causal. In the noncausal case, the nonstation-
ary process is exploding, and b may be estimated using least-squares estima-
tors; see, for example, Touati (1989). Notice also that any estimation method
based on the second-order properties of the system will be unable to distin-
guish among causal and noncausal models, since the autocovariance function
remains unchanged when the poles of 1/B are moved outside the unit circle.

In a previous paper we proposed a family of estimators and studied their
asymptotic performances; see Gassiat (1990) and the references therein. These
estimators were specifically based on higher moment structures of the system,
for example, on the fourth cumulant. In the same manner, estimators based
on the use of higher-order cumulant spectra were developed by Lii and
Rosenblatt (1982). More recently, Breidt, Davis, Lii and Rosenblatt (1991)
have studied the maximum likelihood estimator of b and the variance of U, for
possibly noncausal processes.

We are here interested in optimality criterion in the general noncausal
autoregressive situation. In the causal case, Kreiss (1987a, b) showed the
existence of adaptive estimators that achieve efficiency and gave the construc-
tion of such sequences. For this purpose, he used the concept of local asymp-
totic normality (LAN) of Le Cam (1960) and the local asymptotic minimax
(LAM) theory developed for such models, introduced by Hajek (1972) and
exploited by Fabian and Hannan (1982).

The motivation of this work is essentially to understand the effects of
causality or noncausality in the estimation of & and how they affect the
possibility of efficient estimation. This is why we choose to work with rather
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smooth models (with differentiability conditions on the distribution of the
noise) in order to underline the role of causality in the results and the proofs.
As a consequence of this work, the choice of a scaling factor will appear to be
related to the causality of the model.

The organization of the paper is as follows: In subsection 2.1 we state the
assumptions and derive the likelihood of the observations, which will be used
throughout the paper. In subsection 2.2 we study the parametric situation,
that is, the case where the distribution F of the noise sequence is known. For
this purpose, we first show the LAN property for the model, which holds even
when the process is noncausal. We then show how locally asymptotically
minimax (LAM) estimates can be found when F is known. These results
strengthen those of Breidt, Davis, Lii and Rosenblatt (1991), since the idea is
that maximum likelihood achieves efficiency, but the LAM property is stronger.
These parametric results are rather classical. The most interesting (and new)
results are stated in subsections 2.3 and 2.4. Our main theorem in a negative
result, conjectured in Gassiat (1990): When the distribution F' is unknown,
and with the special (usual) parameterization defined by (1), adaptive efficient
estimates do not exist in the noncausal situation. In fact, they do exist if and
only if the process is causal. We then show an asymptotic minimax theorem for
the estimation of the parameter b, which quantifies what is lost because of the
noncausality. The variance is shown to be the hardest ‘“density parameter” to
estimate. We then discuss these results in terms of the parameterization of the
autoregressive process, and an issue is a new scaling of the parameter for
which adaptive efficient estimation might be possible. Indeed, scaling and
causality together lead to the impossibility of efficient adaptive estimation, and
only one special scaling is necessary to avoid the problem of causality. All
proofs are given in Section 3.

2. Main results.

2.1. Notation, preliminaries. For any filter a = (a,), .z, we note by (A)
the associated series: A(z) = L;%_.a,2* If X =(X,), t € Z, and the a, are

real and summable, the filtered process Y = R, X is defined by [see Azencott
and Dacunha-Castelle (1984) for general definitions and properties]

+ o0

Yt = E akXt—k7

k= —o

for all ¢ in Z.
Now, with B defined in Section 1, we have

14
B(z) = i=1_[1(1 —rz) = C(2) D(2),
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with
b,
C(z) = 1 (1-rz)= Z Ckzk,
irlrl<1 k=0
b2
D(z) = [l (1-rz)= Y d,2%,
itlrl>1 k=0

where p,, p, are integers such that p; + p, = p, c¢;,d, are all real, and all
these numbers depend on b.
The parameter space is

® = {b e RP:B(z) # 0if |z| = 1}

and O is open. Notice that ¢ = (¢;,), d = (d,) are continuous functions of b,
and differentiable functions of b in ®. Now, 1/C and 1/D have the following
development:

1 o
@ 5@ - Lt
1 o
(3) B(Z) = k;pzékz_k.

If the processes Z = (Z,) and W = (W,) are defined by
Z=RpX, W=R.X,
we have, using (1)-(3) and usual calculus in linear filtering,
Z=R,,.U, W=R,,,U,

so that
+ o
(4) Z, = Z YeUi—p>
k=0
+ oo
(5) W, = ) 5k+pzl]t+k+p2'
k=0
Notice that for (s,) defined by
1 te
(6) @)= T s
kh=—o
we have
+ oo
(7 X, = X s,U,.
k= —o

In the following, though C, D, y, 6 and s depend on b, this dependence will be
omitted in the notation in order to make the paper readable. We will need the
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following additional assumptions:

(A3) F possesses a Lebesgue density f.

(A4) For all b in O, (RcX),,...,(R;X),,) possesses a Lebesgue density
h(d, ), and for all b in ®, (RpX),,...,(RpX),) possesses a Lebesgue
density g(b, - ).

(A5) g and h are continuous in probability.

(A6) f is twice differentiable,

E(f?/f)(U) <, E(U? <wx,
E(U*(f?/f?)(U)) <= and x*f' >0 for x— .

(A7) Define ¢(x) = (f"/f — f'*/f?Xx). For any b in ©,, on a small neighbor-
hood W around b, there exists a function w continuous at 0 [«(0) = 0]
and a function ® such that for ¢ in W:

lo((c* X)) = &((b* X))l < w(c = b) O(X,, ..., X, )
and
E[U?®(X,,..., X, ,)] < +e.

These assumptions are quite natural when dealing with local asymptotic
normality properties of the model. Notice that in case f is a sub- or super-
Gaussian density, that is, if f(x) = n(p)exp(—plx|™), where n(p) =
[/ exp(—plx|™) dx]?, all these assumptions hold.

When necessary, we shall introduce the parameterization p - f,, p € E,
and we shall make use of the following assumptions:

(A8) E(D!log f,(U)) = 0 and E[(1/£2X0f,/3,)2] < +eo.
(A9) Define

pf  (Df)

Ay(x) = (—f— - (—fz—)

(D} is the pth derivative operator with respect to the variable p). For
any (b, p) in ® X E, on a small neighborhood O around (4, p), there
exists a function 8 continuous at 0 [8(0) = 0] and a function A such that
for (¢, r) in O:

A-((ex X)e) = A ((bx X)) | < 6((e,r) = (b,p))A(X,,.... X, )

and

(%)

E[UN(X,,..., X, ,)] < +.

Notice again that in case f, = n(p)exp( —plx|®™), m > 1 (super-Gaussian
family), assumptions (A8) and (A9) hold.

2.2. LAN property for noncausal autoregressive models. The main result
of this subsection is the following theorem.
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TuroreM 1. Let (h,) C RP be a bounded sequence and b™ = b° + n~1/2p,
Under assumptions (A1)-(A7), we have

L(6") T 0 L rsipo
(8) log 7"y — W Au(B%) + GHTS(, £, — 0
in b%-probability, and
(9) An(bo) =50 '/I/(O, E(boy f))’

where = denotes weak convergence, and for

’ k=1:"'7p’

1 n ! 14
(An(b))k = ﬁ Z I:L(Xt + lgleXt—l)Xt—k + S_,

t=p+1 f

(30, F))hi= X ShaS_poy + (hzosh—ksh—l)E(Uz)E(_)

2
h#0 f

Our aim is not to find minimal assumptions on the smoothness of the
log-likelihood function, but to understand the role of causality in the estima-
tion of the transfer function. The assumptions could be refined a little.

Notice also that the LAN property still holds in the case where F is
Gaussian (see the proofs in subsections 3.1 and 3.2), but with the restriction
that 2(b, f) is positive definite only for & in

0,=0,U0,U 0,

where O, is the set of causal parameters, ®, the set of purely noncausal
parameters and ©; is the open set of parameters b for which the associated
polynomial B satisfies the following property: If z is a root of B, z~! is not a
root of B.

From Theorem 1 we can build sequences of estimates which are locally
asymptotically minimax (LAM) as is defined in Fabian and Hannan (1982).
This can be done in the following way: Let b, be a sequence of estimators for
which n'/%(b, — b) converges in distribution to some centered Gaussian distri-
bution. Such a sequence exists; see Gassiat (1990). Let b, be the nearest point
to b, in {(1/n'/?*)iy;...;i,),i,NZ, j=1,...,p}. This is a discrete sequence
of estimators. Define now

—_—

— 1 — —
b,=b,+—=3"Yb,, f)A,b,).
n n ‘/; 2 ( n f) n( n)
Recall that a sequence of estimators ?): is said to be regular if
Vi (B, = bo) = 2(bo, ) A,(bo) = 0p, (1).

We have the following theorem.
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THEOREM 2. Under the assumptions of Theorem 1, 3: is regular, and is
thus LAM.

Notice again that the theorem requires a preliminary sequence of estima-
tors, converging with speed n'/2 which exists in the Gaussian case only when
the variance is known. An alternative method is the maximum likelihood
estimator, which, as proved in Breidt, Davis, Lii and Rosenblatt (1991), is
asymptotically Gaussian with variance 3. The LAM property is somewhat
stronger.

The proofs of Theorems 1 and 2 are given in Section 3.

These estimators depend on the distribution F of the underlying white
noise. This is why, in the next section, we investigate the existence of LAM
estimators when this distribution is unknown.

2.3. Existence of adaptive LAM estimates in the noncausal case. Let &7 be
the family of subproblems for which the density of the distribution of U is fr
such that for any p, f, verifies assumptions (A1)-(A7) and where the
parametrization p — f, verlﬁes assumptions (A8) and (A9).

The main result concerning adaptive estimation in noncausal situations is a
negative one.

THEOREM 3. Under the assumptions described above, with the parameter
defined by (1): As soon as
E U(}}:2 o, )(U)l #0

and b is not causal, there exists no locally asymptotically minimax SAadaptive
estimator at b in the sense of Fabian and Hannan (1982).

For the super-Gaussian family, f, = n(p) exp(—plx|>™), m > 1,

f2

and the theorem holds.

Kreiss (1987a, b) gives a construction of adaptive LAM estimates when & is
causal, so that, according to the theorem, causality is a necessary and sufficient
condition for the existence of adaptive LAM estimates. Notice that, as will
become clearer later, Theorem 3 depends on the scaling chosen for the
parameter in (1) (see Theorem 5 and subsection 2.6 below).

E[U( Iy % )(U)] = 2mp Var(U?™) # 0

2.4. Adaptive asymptotic minimax bounds in the noncausal case. In this
section we derive an asymptotic minimax bound for the estimation of the
parameter b following semiparametric ideas developed in Begun, Hall, Huang
and Wellner (1983). For this purpose, we need additional notation. As in Kreiss
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(1987b) we define the following local parameter (%, 8) € H '
H,=RP x {B eLz(R):fBﬁ =0, fBZ < n}

1
b,=b+ —h, h € R?,
n ‘/’7 =

fn=[v1—%fﬁzdx\/}?+ %] .

When n increases, H, tends to H = R” X {8 € L,(R)/[B//f = 0}.

Let I: R? > R* be a loss function for the parameter b which is lower
semicontinuous and subconvex. Let % denote the family of compact subsets of
H. Let E, denote the expectation with respect to the distribution defined by

(b,, 1)
THEOREM 4.

sup lim inf sup E,l(Va (b, - b)) = Ei(Z,),
KeX¥n">%® g (h,B)EK

where Z . is a centered Gaussian random variable with variance M(b, f) given
by

M(b, f) = (T, + Var(U)I(f)T,) "},

where

I(f) =E(%(U)), (Tm)k,l = E Sh—kS—n-1> (Tc)k,l = Z Sh—kSh-1-

h+0 h+0

ReEMARKS. M(b, f) is well defined if and only if the true distribution F
is not Gaussian, otherwise T, + T, is not invertible [for a Gaussian cen-
tered distribution Var(U)I(f) = 1]. If the true b is causal, M(b, f) =
(1/Var(U)I(fNT, ', which is the minimax bound given by the LAN property
and attainable using adaptive estimators; see Kreiss (1987a, b). M(b, f)isa
lower asymptotic bound for the variance of adaptive estimators.

The proof of Theorem 4 is given in Section 3. It relies on the following local
asymptotic normality of the semiparametric model: If L, is the local log-likeli-
hood ratio:

L, = A (h,B) — 30%(h, B) + 0p(1),
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where

12 L (f
A(h,B)=—+= XL Z(?(l]t)xt—k +s_4

nop—1 ¢

1 _ 28
7;‘?'\/—7([%),

o?(h,B) = kTSh + [4B%dx + 2

p !
kghks_k)(/u%(u)zﬂ(u)du :

and where A,(h, B) converges in distribution to the centered Gaussian distri-
bution with variance o%(h,B). We may then deduce the convergence of
experiments to a Gaussian one, apply the Hajek-Le Cam minimax theorem
and calculate the lower bound in the same manner as Millar (1981) or Begun,
Hall, Huang and Wellner (1983), by orthogonal projection on the orthogonal of
the nuisance space.

To understand better how the density parameter occurs to enlarge the
asymptotic bound, we now make a calculation using one-dimensional
parametrization of the nonparametric component. Suppose & is a family of
subproblems as in subsection 2.3 which satisfies all assumptions of Theorem 3.
In the model parametrized by (b, p), the asymptotic minimax variance of a
sequence of estimators of b is the p X p matrix M, with

Mp = [2_1]11’

where [371];, designates the p X p matrix (379, ), k=1,...,p, L=
1,...,p.

THEOREM 5. The supremum of M, (in the usual sense of ordering positive
definite matrices) over all families &/ verifying the assumptions of Theorem 3
is M(b, f) given in Theorem 4. This supremum is attained by the subfamily
f(w) = pf(pu) for which p is the “scale” parameter.

The theorem says that the hardest one-dimensional subproblem is the one
that estimates simultaneously b and the variance of the noise sequence. In
other words, the estimation of the variance is the “density”’ estimation which
is the most correlated with the estimation of b, and which makes more
important the difficulty of estimating & when the distribution of U is un-
known. An issue is to choose a scaling that is as much as possible uncorrelated
with the variance and the parameter estimators; see subsection 2.6.

2.5. Construction of adaptive asymptotic minimax estimators. To see that
the bound given in the above subsection is sharp, we must be able to build an
adaptive sequence of estimators which achieves this bound. Following the
ideas of Park (1991) in the i.i.d. case, a good candidate could be
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with

a(t) = f7(Ut)Xt-+ s-|1- ljt;(l]t) +VF(U,)

and d@(t) is a(t) with f and f’ being replaced by a “‘good” estimator, and U,
by the convolution of X with b, at index ¢.

Additional assumptions and extra work to investigate carefully the asymp-
totics are necessary, in order to check if this estimator is asymptotically
minimax (i.e.,, which achieves the lower bound of Theorem 4). It will be the
object of further work.

2.6. Discussion. In case b is purely noncausal and with the normalization
condition b, = 1 (instead of b, = 1), it is easy to see that the necessary
condition of Fabian and Hannan for the existence of adaptive LAM estimates
holds. Indeed, the only change in the proof of Theorem 3 is that %, ,,, is now
proportional to s_; . ; (corresponding to the change of parameter). Now, as b is
purely noncausal, s_, =0 for £ =0,...,p — 1. In this situation, efficient
adaptive estimation should be possible. In fact, it is possible, since with the
normalization b, = 1, the model is the usual causal one with time reversed,
and the statistical properties are then the same.

More generally, suppose the parameterization is as follows: b = (b, ..., b,),
B is the associated polynomial, C and D are the polynomials such that
B = CD, C has roots only outside the unit circle D has roots only inside the
unit circle, ¢ = (cg,..., cpl) are the coefficients of 2% ...,2P* in C, d =
(dy,...,d, ) are the coefficients of 2°...,2"2 in D. Choose now the normal-
ization condition c, = 1, d,, = 1 (which induces a very special normalization
condition on b). Then, if the parameter is now (c, d), it appears that, following
the same lines as above, the necessary condition of Fabian and Hannan holds,
so that efficient adaptive estimation of (¢, d) should be possible. In some sense,
this normalization condition corresponds to the choice of parameterizing in the
orthogonal of the scaling nuisance as described in subsection 2.4. It would be
interesting to obtain adaptive efficient estimates of (¢, d) in this model. This
will be developed in further work. But it would, of course, lead to no improve-
ment in the original model by rescaling.

3. Proofs. We give a complete proof of the local asymptotic normality of
the model, and similar arguments can be used to prove the same property for
subfamilies, which will be used for Theorems 3 and 4, where the proof will be
omitted.

First of all, let us derive the exact form of the likelihood of the observations.
Let M, (b) be the following matrix:

M, (b)
M, 5(b) |,
Mn,3(b)
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where M, (b) is the p, X n matrix:

0 . . . . c . . ¢ 1 0 . 0

Py
o - - - - . -0 ¢, - o 1
M, ,(b) is the p, X n matrix:
d . . dl 1 0 . . . . . . 0
O . (ip2 . . dl 1 0 . . . . O

M, 4(b) is the n — p X n matrix:

b, b, b, 1 0
0 b, b, 1 0
0 b 1

Using equations (4) and (5), it is immediate that (R¢X),,1_p,,---,(RcX),,
(RpX),,,...,(RpX), are independent of the U, for ¢ varying from p + 1 to
n. From the change of variables through M,, the likelihood L, () of the
observation is easily obtained

n p
Ln(b) = ( n f(Xt + Z kat—k))h(b7(RCX)n+1—p27'“’(RCX)n)
t=p+1 k=1

(10)
X g(ba(RDX)pzv . a(RDX)p)IJn(b)l,

with J,(b) = det(M,(b)).
REMARKs. If b is causal, that is, if s, = 0 for negative &,

D C
and J,(b) = 1. If b is anticausal, that,is, if s, = 0 for positive k2, D = B, C =
and J,(b) = [b,|" .

3.1. Proof of the asymptotic normality of A,(b). We first calculate the
asymptotic variance of A (b).

LemMa 1. Var,(A, (b)) converges to 3(b, f) as stated in Theorem 1.
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Proor. Direct computations using the development (7) lead to

+Sk =0,

1 n ! T®
Eb(An(b))= ﬁ Z (Eb[f U) Z $1Ui i

t=p+1 i=—o

Eb(An(b)k An(b)t)

I AT
t,u=p+1
(n —p)?

T, SkS
[(n—p)(n—p—l)—(n—pf

= - S_pS_;
+n; Uzl;z (U))s 2S_;

12
+E(U2)E(f (U)) Y S _poiS_i-i
i#+0
1 n
+— Z St—u—rSu—t—1-
n t#u,t,u=p+1

Now
n 1 n—-p-—1
- Z St—u—-rSu—t-1= Z (n—p — |hl)sp_ps_p_,
n t#u,t,u=p+1 n h#0,h=p+1-n

and, using the exponentlal convergence to 0 of ks, when h goes to «, it is easy
to see that the series X/~ *Z|hls,_,s_,_, is finite, and it follows that

n

lim W P StoukSu—t-1= 2 Sh—rS—ph-1-
n— t#u,t,u=p+1 h+0

Letting n go to « in the expression of E,(A,(b), A,(b),) gives the lemma. O

LEmMA 2. 3(b, f) is positive definite if and only if F is not Gaussian or b is
in O,
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Proor. For any ¢ = (cy,...,c,),
12
T3, fe= ¥ (cxs)u(ers) nt X (cxs)EUEL
h+#0 h+#0 f
i
+(c*s)a E(UZF) -~ 1}
1 fr?
=5 L l(cxs)n+(cxs)u]*+ ¥ (cxs)i| EUE—; — 1‘
2 h+0 h+0 f

+(c*s)g

/2
(o] - 1}.
@) If F is not Gaussian, EU2E(f?/f?) > 1 and E(U%f"?/f2) > 1, so that
cT3(b, f)c = 0 if and only if ¢ *s = 0, and 3(b, f) is positive definite.
(i) If F is Gaussian, EU2E(f'?/f?) =1 and E(U2f'?/f?) = 3, so that
c2(b, f)c = 0 if and only if (c*s), + (c*s)_, =0 for all A. If b is causal
(resp. anticausal), (¢ * s), = 0 for negative h (resp. for positive 4), so that the

condition becomes ¢ * s = 0, which implies ¢ = 0. If not, the condition may be
written with the associated polynomials

€ . C(z™")
B(z) B(zY) 7

for all z in the complex plane, which is equivalent to
C(z)B(z ") + C(2 1) B(2) = 0.

If b is in O,, the last equation implies that all roots of B are roots of C, which
implies C = B since they have the same degree. But this is impossible since 0
is a root of C and not of B. If B has at least two roots which are inverse ones
of each other, b = b, * b, where b, is in ©, and b, is such that the associated
polynomial has all roots two by two inverse related. The same reasoning as
before shows that if w is a root of B for which w ™! is not a root of B, w is a
root of C. So that, dividing by z — w and 27! — w and using inductive
reasoning, we have

Cy(2)By(27") +.Cy(27 1) By(2) = 0,
where C, = C/B,,. If the degree of B, is 2¢, this equation is equivalent to
Cy(2) +2%Cy (27 1) = 0.
As soon as ¢ > 2, this equation possesses nonzero solutions. O

To prove the asymptotic normality of A,(b), we shall use a theorem of
McLeish (1975) which says: Let %, be a nondecreasing sequence of sigma-
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algebras, V, a process and S, = X7_,V,. Assume:

(1) There exists a positive sequence g, converging to 0 such that, for ¢ > 0
and & > 0,

IE**Vill2 < g,
IV; = B *Villz < 844,

where E' denotes the conditional expectation with respect to %, and || - ||z
denotes the square root of the variance.
(ii) There exists a positive nondecreasing sequence R, such that

Y1/(nR,) < R,-R —OR" = !
/(nR,) <, n— R, 1= (—n—), g,=0 ik

(iii) The V, are uniformly lntegrable
Gv) Var(sn / Vn) converges to o2

) E*™[(s,,, — $,)%/nl converges to o2

when m, k and n go to «.

Then S, /n!/? converges in distribution to the Gaussian distribution .#10, o?).
Choose for &, the sigma-algebra generated by {U,, ¢t <n}, and for any
a = (ay),y,. ., define

,,,,,

P f
Vo= L a (U)X & TS|
k=1

Let g, = (EUDE(f?/fHOYVAZE _ il N2 _lIs,l) and R, = n. The series
(X;"_,ls;) decreases exponentially fast to 0, so that (ii) holds.
For positive k,

p
Ei_kVi = Z ApS_p,
h=1
. P f’ —h—k-1
V,-E"V, = ¥ ah[ (U) X sUsprtsyls
h=1

l=—o

so that (i) follows by direct computations. Using similar calculations as for
Lemma 1, (iv) follows with o2 = a7 3(b, f)a, (v) is a consequence of the law of
large numbers, and (iii) obviously holds. We may conclude that a” A (b)
converges in distribution to the centered Gaussian distribution with variance
aT3(b, f)a and the convergence of A (b) follows. O

3.2. Proof of (8). To prove the LAN property of the model, let us intro-
duce additional notation. q,(b, b°) will be the approximation of the log-likeli-
hood ratio

2 f(X: + ZE_ 10, X, )

2(0,0°) = log
w(6:8%) = L e X, )

+ log|J,(b) | — log|,(8%)].
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We then have

log Ln(5) =q,(b,0°%) + V,(b,0°%
L% "7 mee

with
R(B, (ReX)ns1-py -+ (ReX),)
h(6% (RcoX)ps1-pys---r(RcoX),)

g(b,(RpX),,,---,(RpX),)
g(ba (RDOX)pg" () (RDOX)P) '

V.(b,b°) = log

+ log

LemMma 3. For all bin O, we have the following derivatives, fork =1,...,p
andl=1,...,p,

d
51081 .(8)] = (n = p)sy,
a +o
5b_ls—k = _hzz_wsh—ks—h—l'

Proor. Suppose for a moment that the expectations of the gradients of the
three log-likelihoods %, g and L, are 0 (which is a weak realizable assumption
on a neighborhood of any point b in ©). Using the expression of L, given by
(10), we obtain

p: n f’ p
E a—b—loglJn(b)| + ) 7 X, + X let—l)Xt—kl =0,
k t=p+1 =1

which gives, using the development (7) and usual computations,
d
b,

Now, |J,(b)| is deterministic and independent of the f, g and 4, so that the
result holds also with no assumptions on f, g and A.

Write now that s is the inverse of b (taking b,=1): V h €N,
X8 _0b85_r = Lo(h), where 1,() is the indicator function of the set {0}.
Then

log|J,(b)| = (n = p)s_.

no  0b;
Define ¢, = ds,/db;, v, = —s,,_,;. The previous equation may be written as
bxc=wv,

which may be inverted in
cC=U*s
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or, equivalently,

Cp = ths—k—h,
h

which is the second result of the lemma.
Using assumption (A5), we get

L")
L,(5%

Now, using Lemma 3, we get
Vq,(b,5°%) = Vn A,(b),

so that the expression for the Taylor expansion to the second order of g,
becomes

log

= ,(b",0°) + 0p(1).

1 1
g,(6", %) = T A (b°) + Ehﬁ[/lzqun(bo +u(b" — b)) du |k
0

Using the expression of A, we get

no(fp ;
(D29,(0))p, = X . 7 f2 E b X,y | X X, + (n —P)Ez‘s—k
t=p+

Now, using assumption (A7) it is easy to see that
1 1
1_ 0 n _ 10 _ 0
[[0 —Dyq,(b° + u(b" — b ))du] —D,q,,(b°)

converges to 0 in b°probability. To prove (8), it then remains to show that
(1/n)D,q,(b°) converges to —2(b°, f) when n goes to ». Using Lemma 3,

1 1 n f” f/2 n-p
;(qun(bo))k,z = ;t=§+1 (7 - F)(l]t)xt—kxt—l - T%sh—ks—h—l‘

Using the law of large numbers and expansion (7), the result follows. O

3.3. Proof of Theorem 2. Using the terminology of Fabian and Hannan, it

is enough to prove that b is regular [Theorem 3, page 467 of Fabian and
Hannan (1982)], that is,

Vi (B, = bo) = 2(bg, )" A,(bo) = 0p,(1).
Now '
Vi (B, = bo) = 3(bo, ) ' Au(bo) = A, + B,,

where
A, =Vn (b, = b) + (b, ) (A,(5,) — An(by)),
B, = [3(. f) " =36, /)7 8.5).
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Keep in mind that %(c, f) is a continuous function of the roots of C as soon as
c is in O, so that %(b,, f) is a consistent estimator of (b, f). Now using the
Taylor expansion

8,06 = 8.00) = (B = o) [ = Do (b + (B b)) d

and the results of subsection 3.2,

— — T
An(Bn) = An(bg) = Vn (b, = o) [~2(bo, f) + 0p,(1)],
it follows that A, and B, are o(1) in P, probability. O

3.4. Proof of Theorem 3. Using the submodel where the parameter is
(b, p) and with a proof following the one developed for Theorem 1 (this is why
it will be omitted), we see that the submodel is LAN with A given by

8, = (8s:[A,],.4):
) 1~ 10f,
[8,],.1 = N %1173;

and asymptotic variance 3 given by

ii,j':E(b, fp)i,j’ lﬁlﬁp,lﬁjgp,
f, of,
(f2 )(U)]’

(U)}

~,

2p+1,k s_,E

E p+1l,p+ 1 f2
Now, applying condition 8, page 474 of Fabian and Hannan (1982), a necessary
condition for the existence of locally asymptotically minimax #adaptive esti-
mators is

~.

2"p+1,k:0’ k=1»-'-,P,
which reduces to
.S‘_k=0, k:].,...,p

as soon as E[U(f,/f2Xf,/dpXU)] # 0.
Now, as s is the inverse of b, for any positive /:

14
S_l+ Zbks_l_k=0.
k=1

Therefore, by induction, the necessary condition is equivalent to s_, = 0 for
all positive &, and b is causal. O
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3.5. Proof of Theorem 4. We follow the proof of Theorem 3.2 of Begun,
Hall, Huang and Wellner (1983), and our notation is similar to theirs.

First of all, their assumption . holds since {8 € Ly(R): [By/f =0} is a
subspace of Ly(R). On H = R? X {8 € L,(R): [By/f = 0}, define the following
scalar product:

<(h1’ B1); (hg, 32)>H=h7112h2+'4<ﬂ1a B2 L2 myt 2Chy, 3—>RP<Bza %(u)>

L%R)

uf’
+ 2<h2, 8_>RP<B1, W(u)>

It induces the following norm on H:

2 = hT 2 3 s uL u u) du
(R, B)Ix = R"2h + /4[3 dx+2(k2=31hk —k)(_[ ‘/]7( )2B(u) d )

LAR)

As for Theorem 1, we can prove that, if L, is the local log-likelihood ratio,
= A, (R, B) = 5k, B) I + 0p(1),

where

hy +

1 _ 28
A (h,B) = U)X, +s —(U,
(h8) = 7= £ 2| LW X v b+ D22 W)
and where A (h, B) converges 1n distribution to the centered Gaussian distri-
bution with variance [(%, B)|%. We may then deduce the convergence of
experiments to a Gaussian one. Suppose for the moment that p = 1. By
classical prOJectlon theorem, there exists a B* in {B € L,(R): fﬁ\/_ 0}
mlmmlzlng (1, B)lI%. This B* satisfies ((1, 8*),(0, 8))y = 0 for all B in {B €
Ly(R): [By/f = 0}. Calculation gives

B*(u) = _S—l(u%(u) + \/I_‘(u))-

f/2
( 7 (U)
Define also the mapping 7: H —» R by
T(h, B) =<(h>B‘);(17B*)/M1,1>H'
Obviously, 7(h, 8) = h and the adjoint 7* of 7 is given by
h
™*(h) = —(1, B*).
() = 37~ (18"

We now follow exactly Begun, Hall, Huang and Wellner (1983). The restric-
tion of 7 to the one-dimensional subspace H* = {h(1, 8*), h € R} is linear,
bounded, has dense range inR and is one to one. Moreover, ||7*(h)||% =

Define now

_ 2
M 1—21,1—3—1
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h?/M, ,, so the image law P, of the unit normal on H* is simply N(0, 1 /M, ).
The inequality of Theorem 4 for the case p = 1 follows then from Proposition
3.1 of Millar (1979).

The case p > 1 requires slight modifications. The argument proceeds as
before by defining (h, B,...,B,) in R? X {B € L,(R): [By/f = 0}*, and pro-
Jecting in all directions. We then obtain similarly

Bi(u) = —s_j(u—j—%(u)+ﬁ(u)), J=1,...,k,
and
M, ;=%

i,j T 8-iS

f*
E(UZF(U)) - 1)
and Theorem 4 is proved. O

3.6. Proof of Theorem 5. Let 3(b, p) be the asymptotic variance defined in
subsection 3.4 for the LAN property of the model parameterized by (b, p). We
have

M, = 3(b, p)11 — 3(b, p)123(b, p)a2 (b, p)a1,
where (b, p);, is the p X p matrix on the left top of 3(b, p), (b, p)gy is the
1 X 1 matrix on the right bottom of 3(b, p), 3(b, p),, is the p X 1 matrix on
the left bottom of 3(b,p) and (b, p),, is the transpose of 3(b, p),,. For
k=1,...,pand l=1,...,p,

12
[Mp_llk,l = Z Sp_pS_p_ t+ ( Z sh—ksh—l)Ep(UZ)Ep %(U))
h+#0 h+#0 o

+s_ps_ | E,

12
Uz%(U)) -1

£l of, ?
EP(UWW’))

1 of? i
) }

For any ¢ € R?,

Myl = T (exs)uens)n+ T (cxs)i]B(UME, ﬁ(U))
h+#0 « Vh#0 14
o o [1rals )
+(c*s) E|U F(U) -1

3% o\ (2 (L2 o]
B|of (U’)) (E(f 0 ‘U))) ]
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Notice now that

H(p) = u2lz (U))
; 2 1 of2 -1
(E(UF—“”))( (%)
Cov, Uf’ U 12 U 2
( f,:) ( AT . ))
= Var | U— ’
P f 190
P Var( (U))

which is always nonnegative, so that
_ -1
M; 1> M(b, f,)

in the usual ordering of positive definite matrices.
Now, let f be any density satisfying assumptions (A1)-(A7). Define

f,(u) =pf(pu),

where p is a scale parameter. We have f, =f, so that, for p in a small
neighborhood around 1, f lies in the family ( f,), and also f, satisfies
assumptions (A1)-(A9) for p in a small nelghborhood around 1. Now direct

calculation gives
f;2
Ul—| -1},
a{vf

(U%—(U)

gL |- L
f2 ()“pz

2 2
U2’;2 U)| = El(sz—)

and it follows that
H(p) =0
and the theorem is proved. O
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