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SEMIPARAMETRIC ESTIMATION OF ASSOCIATION
IN A BIVARIATE SURVIVAL FUNCTION

By GANGAJI MAGULURI

Rutgers University

Clayton’s model for association in bivariate survival data is both of
intrinsic importance and an interesting example of a semiparametric esti-
mation problem, that is, a problem where inference about a parameter is
required in the presence of nuisance functions. The joint distribution of the
two survival times in this model is absolutely continuous and a single
parameter governs the association between the two survival times. In this
paper we describe an algorithm to derive the asymptotic lower bound for
the information of the parameter governing the association. We discuss the
construction of one-step estimators and compare their performance to that
of other estimators in a Monte Carlo study.

1. Introduction. Many models are possible for association between two
nonnegative random variables S and T with an arbitrary continuous joint
distribution. One such model is the Clayton’s (1978) model. While studying
familial tendency in disease incidence, Clayton (1978) proposed a bivariate
survival function as a way of representing association between two survival
times. Let (S, T') be a pair of survival times with joint survival function

-1/(6-1)

1 6-1 1 6—-1
(11) F(S,t;0)= {—G_(—Sj} +{H—(t—)‘} -1 R 0>1,

where G(s) = Pr(S >s) and H(¢) = Pr(T > t) are the marginal survivor
functions of S and T. Also the joint distribution is (right) continuous in 6 at
0 = 1, which corresponds to independence of the two survival times.

The preceding model has gained wide acceptance in analyzing bivariate
survival data, partly due to a random effect interpretation. The association
between S and T is explained by their common dependence on an unobserv-
able gamma random variable (frailty) through a proportional hazard structure.
For details, see Clayton (1978) or Oakes (1982).

Estimation of 6 in this semiparametric model is an interesting problem and
has been considered by several authors. Given a fully parametric specification
of the marginals, inference about 6 is in principle straightforward. Oakes
(1982) discussed such parametric inference for the case when both G and H
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are exponential and derived explicitly the Fisher information matrix in the
absence of censoring.

An alternate approach, which has been termed semiparametric [Oakes
(1982) and Begun, Hall, Huang and Wellner (1983)], is to make inferences
about 8 in a way that does not depend on the form of the marginal distribu-
tions, that is, to treat G and H as nuisance functions.

Clayton (1978) proposed a method for estimating 6 in the absence of
knowledge of the marginal distributions. However, his pseudo-likelihood is not
completely clear and its asymptotic properties were later questioned by Oakes
(1982). As an alternative, Oakes (1982) proposed a simpler estimator called the
concordance estimator, which is based on Kendall’s coefficient of concordance,
and evaluated its asymptotic variance. Clayton and Cuzick (1985) have also
suggested various approximations to the likelihood of the ranks. These involve
replacing the observations by expected values of order statistics and maximiz-
ing a parametric likelihood. They also gave a representation of Clayton’s
(1978) estimator as a weighted form of Oakes’ concordance estimator, whose
limiting variance was derived explicitly by Oakes (1986a), in the absence of
censoring. All these estimators are consistent and can be used as preliminary
estimates in finding an efficient estimator.

The main goal of the present paper is to calculate the information bounds
for estimation of @ in the presence of the unknown nuisance parameters G
and H. If G and H are known, then any regular estimator of 6 would have a
limiting distribution at least as dispersed as N(0,1/1,), where I, is the usual
parametric Fisher information for 6. On the other hand, if G and H are
unknown the information for 6 will, in general, be smaller and it will be
harder to estimate 0. The natural questions that arise in such a case are, how
much smaller the information is likely to be and how much larger the
asymptotic variance of a ‘“best” estimate would be.

In the present paper, we study these questions. We show that the asymp-
totic lower bounds for estimation of 6, when G and H are unknown, are
determined by the geometry of the scores. In fact, the bivariate model which
we treat here is just one example of a large class of semiparametric models in
which the efficient score or the information involves a projection on a subspace
of a Hilbert space with a sum space structure. When the subspaces involved in
forming the sum spaces are orthogonal, explicit formulas are usually possible
since the projection on the sum space is then the sum of the individual
projections. However, when orthogonality fails (as it does in the present
model), explicit formulas are often not available, and we have to use the
alternating projections algorithm for calculating the projection on this sum
space. The alternating projections algorithm for calculating a projection on a
sum subspace of a Hilbert space is originally due to von Neumann (1949,
1950). Appendix A.4 of Bickel, Klaassen, Ritov and Wellner (1993) gives a
treatment suited to semiparametric models.

Alternating projection methods have received considerable interest and
attention in statistics within the past few years in connection with nonpara-
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metric (additive) regression and correlation; see, for example, Breiman and
Friedman (1985), Buja (1985) and Buja, Hastie and Tibshirani (1989).

In Section 2, we describe this algorithm in detail. In Section 3, we propose
an estimator which intuitively seems natural and which might be efficient.
Efficiency is not proved however. One possible explanation for the lack of a
satisfactory solution to this problem is that the influence function of any
efficient estimator cannot be calculated in closed form. We compare the
performance of this estimator with that of Oakes’ concordance estimator and
Clayton’s weighted concordance estimator in a Monte Carlo study.

2. Information calculations for 0. In this section we will give a de-
tailed description of the algorithm to compute the efficient score and efficient
information for the association parameter 6 in the model (1.1) in the absence
of censoring. To do this, we begin with the calculation of the scores for both
the parametric and the nonparametric components of the model.

Suppose (S, T') has joint density f given by

9 0g(s)h(2)

(2.1) f(s,t) = BsatF(s’t) = {G(s)H(t)}o{D(s,t)}2+1/(0_1),
where
1 o1t 1 ot
(22) .D(S,t)= {G(s)} + {m} —1].
Then
log f(s,¢) = log 6 — 6 log[G(s)H(t)] + log[g(s)h(2)]
2.3
(2:3) —(2+0;1)10gD(s,t).
A straightforward calculation yields the score for 6 to be
. d
lo(s,t) = 7 log f(s,t)
1 1
(24) = 3 - log[G(s)H(t)] + Wlog D(S,t)
1 1 log G(s) log H(?)
e 1)D(s’t>{G(s)"‘1 ' H(t)"‘l}'

Similarly, let {g,: 7 € RYand{h vy € R} be regular parametric families with
80=8, and hy="h  andlet f,  be the corresponding regular parametric
subfamily of the original model. Then we have

60— (20 — 1)

9 ~ 1
o7 108 fx(s:) = a(s) + Gs)
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where a = (9/dn) log &,- A similar relation holds for the y score. This leads us
to the so-called score operators

. 1 G(s) "]
lga(s,t) = a(s) + WS) 6 — (20 - I)T)W]]; adG,

(25) . 1 H(t) "]
lhb(s,t) = b(t) + Ft) 0 — (20 - l)m j; bdH,

where b = (3/dy)log h.,. Note from (2.5) that l'g defines a liner transformation
from functions of s to functions of (s,#) and [, from functions of ¢ to
functions of (s,?). Let Ly(G), Ly(H) and L,(F) be the usual L, spaces
of square integrable functions. Let LYG) = {a € L(G): fadG = 0} and
LY(H) ={b € Ly(H): [bdH = 0}. Define the linear operators R, Ly G) -
LYG) and R,: L(H) —» LY H) by

ooadG
R, a(s) =a(s) + sG(s) )
(2.6)

“bdH
R,b(t) = b(t) + tH(t)

Then l'g and [, can be expressed as

. G(s) "+
lya(s, ) = a(s) - [0 - (20 - 1)%27)](«1@) - R,a(s)),

(2.7)

[,b(s,t) =b(t) - HE)

0—(20—1)—1)@—

J(b(t) — R,b(2)).

Now it is easy to see that l'g and [, are linear transformations from LYG) to
Ly(F)and LY(H) to L,(F), respectively.

LEmma . [ ¢ and [,, are bounded operators.

Proor. The boundedness of l'g follows from the boundedness of R g [for a
proof see Bickel, Klaassen, Ritov and Wellner (1993)], and the inequality
G(s)~°*' < D(s, t). The same argument holds for /,. O

Let us define

#={l,a+b:aeLyG),be LY(H)},
K, = range(l'g) and ¥, = range(l,).

To compute the efficient score function and information for 6, we need to
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compute the projection of l' onto the orthocomplement of &# or onto #
itself. But &% is the subspace of the Hilbert space L,(F) with a sum space
structure and the subspaces 2#, and #, involved in forming this sum space
structure are not orthogonal. As a result, the projection of l onto & cannot
be computed in closed form and we have to use the alternatlng projections
algorithm. To do this, we have to first calculate the projections of l onto
and .

We ﬁrst show that #] is closed. This implies that the projection on H;
exists and can be computed in terms of the projection operator

l-g(l.Tl- ) l.T
where l'g is the adJoint of [ ¢+ Since l is a bounded linear operator from LY(G)
to L 2(F ) and LY(G) is complete, it follows from the following proposition that

H#, is closed [cf Corollary A.1.2 of Bickel, Klaassen, Ritov and Wellner
(1993)]. (Similar results hold for #, -and the projection operator on Hy.)

ProposITION 2.1. I exists on #, and is bounded.
PROOF. An easy calculation shows that for Q(s,¢) = l'ga(s, t),
17'Q(s) = E[Q(S,T)IS = 5]

i} G(s) o1 ot
=a(s) — [a(s) - Rga(.s)]fO 60— (20 -1) lgz?e,t) f;:s))

dt

= a(s),
since the integral on the right-hand side of the above expression is zero. It now
follows that l ! exists and is bounded.

We next show that the sum space #, + éfz is closed. We will need this to
compute the projection of l onto #= K, + H#, Ho= H, + H#, We define two
functions « and y as follows

1
a(s)=E——G2(S){0— 2 _—D(S,T)

! H(T) """\
v(t) =E H(T) {9 — (20 - I)W

(2.8)
T=t|

An easy calculation shows that

a(s) = cG(s)_z,
(2.9) Y
v(t) = cH(t) 7,

where ¢ = 0(8 — 1)2/(30 — 2).
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ProrosiTION 2.2.

. . . 4c V2
p(H, H,) = sup{(lg,lh>: I all = 112, bl = 1} < (1 . 40) <1,

and hence H#, + H#, is closed.
Proor. Note that, by definition of l.éa,
(Iya,i,b) = E[i,al,b]
= E[a(S)ihb(S,T)]

( )—o+1
505 {0—(20—1)——1)(8 T

G(s )—o+1
G(s { —(20—1) D(sD) }[adGz b(S,T)|,

(AL)

}/ adGI,b(S,T)

since

E[a(8)l,b(S,T)] = E[a(S)E[i,b(8,T)|S

s|| = Ela(5)0] = 0.
1Z,8ll,

From (A1) it follows that, for a, b with ||/ gaII =1

\iya, i,b)] = B — 20— 1)) "~ 2
<ga,h>S GS)2 0_(0_)D(S,T)
(A2) 2
x([wadG) = VM2,
S
where
. . 2 ®©
(A3) 1=l al® = E[i,a] =/0a2 dG + M?,
since

E[l'ga]2 = Var[l'ga]
= Var| E(l,alS)| + E[Var(l,alS)]
(A4) = Var[a(9)]

1 ( )—0+1
+E{E G(S){e—(ze—n D(ST)} / adG

b-
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in view of
E[l'ga(S, T)lS] =a(S) (seeProposition 2.1).
Thus

. g2 © 1 ® 2 9
E[l,a] =f0a dG+E{(G(S)fSadG) G(S) a(S)}

(A5)
<(1+ 4c)[0°°a2 dG

by (2.9) and from Hardy’s inequality. From (A3) and (A5) it follows that

A6 “a2da !
> )
(46) fo R TS
Thus from (A3), we obtain
o 4c
2 _ 1 _ 2 _ -
(AT) M2=1 foadGsl T T T L

and the inequality of the proposition follows from (A2) and (A7). Closedness of
H| + H#, is implied by Aronszajn [(1950), pages 375-380]; compare Theorem
A.4.2 of Bickel, Klaassen, Ritov and Wellner (1993). O

Now we turn to the study of the projection operator
RN
Py =TI(-l%) = I, (i%1,) iZ.
From (2.7) we have (dropping the subscript gof R,)

. G —0+1
lga(s,t) =a(s) — [0 - (20 - 1)%]@;(3) — Ra(s)).

A straightforward calculation shows that

. dac [ ade
(2.10) [ORaF = - SG(s) = a(s) — Ra(s),

so that we can write
. " G(s) "' s dG
(2.11) l,a(s,t) = Ra(s) — [(6 - 1) — (20 — I)T,t) [oRa =

This equation shows that l.g is the composition of two bounded linear opera-
tors L and R, where L: range(R) — L,(F) is given by

G(s)**'| s dG
(2.12) La(s,t) =a(s) — |(6— 1) — (20 — I)T,t) fan,
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for any function @ in the range space of R. Therefore, we have
e -1, _
P, =1i,(iZi,) iT = LR(RTL"LR) 'RTL".
One may verify R” = R™'; compare Proposition A.1.8 of Bickel, Klaassen,
Ritov and Wellner (1993). Thus P, reduces to L(LTL)"'LT. So in order to
determine P;, we need to find the forms of LT, LL and (LTL)~' if it exists.

ProposiTION 2.3. The adjoint L™: L,(F) - range(R) of L and LTL are
given by

T _ @ f(S,t)
o) a(s) [Oa(s,t) 28) dt
+ G(s)fwf:a‘(u,t)k(u,t)f(u,t) dtdu,
where
G(s)~**1

k(s,t) = (6 —1) — (260 — I)W,
and
(2.14) LTLa(s) = a(s) — c[sa% - CG(l )/ adG,

0

with

Proor. Follows from straightforward calculations. O
We next show that (L”L)~! exists and compute the form of (L7L)~1.
ProposITION 2.4. (LTL)™?! exists and is bounded.

Proor. From (2.14) we have

dG
(2.15)  Ja(s) = L"La(s) = a(s) — cf a— —c

0] f;adG.

Also from the extended version of (2.10) and the fact that R” = R~1, it follows
that ,

(2.16) RTa(s) = a(s) + fosa dg,
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so that
Ja(s) = a(s) — cR"a(s) — cRa(s) + 2ca(s)
= (1 + 2¢)a(s) — c(R"a(s) + Ra(s))
= (1 + 2¢)[I-d(RT + R)]a(s),
where
c
T 1+v2c

Since [|[RT|| = IRl = 1, IRT + Rl < 2 and hence d||R” + R|| < 2¢/(1 + 2¢) <
1. Therefore, it follows that J~! exists and we can write

i d/(RT + R)’a(s),

J la(s) =
1 +‘2c =0
which shows that
1 had .
JY < 2d)’ =1,
77 = 155 T (2d)

and hence J ! is bounded. O

THEOREM 2.1. The inverse operator (LTL)™" is given by

(L7L) *B(s) = B(s) + AG(s) /™ ["G(u) > B(u)g(u) du

(2.17) +A6(5) T [[6 ()T B(u) g () d
0
Q2O G Gy ) g ) da
26 0 ’
where
o 1/4-8% ¢
T T2 T2

Proor. To compute (LTL)~! we proceed as follows: Let x = G(s), 4(x) =
a(G~H(x)), &(x) = g(G™Yx)) and B(x) = LTLa(x). With this transformation,
we obtain from (2.14)

1d(w) 1 .«
1 =d + ——dw+c—| a dw.
(2.18) B(x) =a(x) c[x ” w cxfoa(w) w
Writing A(u) = [{adx, B(u) = (B dx, this becomes by differentiation [by
writing [§fa(u)du = — [la(u) du]

(2.19) A'(x) — ex ?A(x) = B"(x).



SEMIPARAMETRIC ASSOCIATION 1657

We want to solve this equation subject to A(0) = A(1) = 0 [since A(u) =
Jo'd@(x) dx]. The general solution of the homogeneous part of (2.19) has the
form

A(x) =c;A((x) +cyA,(x),
where
Al(x) — x1/2+6’ Az(x) = x1/2—8
with
d=yi+c>3.
The Wronskian
Ay(x) Ay(x) — Aj(x) Ay(x) = — 26

is nontrivial and, consequently, we can form the Green’s function

1 . 1
_%t1/2+6x1/2—8 = —2—8‘A1(t)A2(x), 0<t<ux,

(2.20) G(x,t) = )
— %t1/2—sx1/2+6 - %A2(t)A1(x), x<t<l.

A particular solution of (2.19) is then given by

Ap(x) = [(G(x,1) B'() dt
0

(2.21) .
— . 12-5 (F1/248nm 1/2+6 [L1/2-5pn
28{x /Ot B'(t)dt + x /xt B(t)dt}.
Now
(2.22) A(x) =Ap(x) + c;Ay(x) + cyAy(x)

is a general solution of (2.19); we want to choose the constants c;, ¢, such that
A(0) = A(1) = 0.

Note from (2.21) and (2.20) that Ap(0) = 0. Consequently, A(0) = ¢,A,(0)
implies ¢, = 0 and A(1) = Ap(1) + ¢;A,(1) = 0 gives

1 4
— 1/2+é6nn
¢y 28[0t B’ (t) dt.

Hence
(1/2 +9)
26
(1/2 - 9)
* 26
(1/2 + 5)
2
satisfies the differential equation (2.19) subject to the boundary conditions

A(x) = xl/2-8 fxt_1/2+'SB’(t) dt
0

(2.23) %1242 =120 (1)
. X

x1/2+6 flt—1/2+8B/(t) dt
0
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A(0) = A(1) = 0. Thus, we have

(LTL)"lﬁ(x) =B(x) + A{x—1/2‘5.fxt‘1/2+5[3(t) dt
0
(2.24) a2 [(pm12map(h) dt}

(1/2 + 8)*
T2 ”

Now transforming back to the original variable s, we get the required form
(2.17). O

1
—1/2+5f t_1/2+5B(t) dt.
0

Thus once we have the forms for LT and (LTL)™!, we can compute the
projection of [, onto #, by using the formula P; = L(L"L)"'L".

Since we now know how to compute the projections of fo onto +#; and
#,, we can obtain the projection of [, onto the space H'= H|, + Hp= H) +
#, by the method of alternating projections which we next describe.

Let a; = P(I,) = TI([,|#)), i = 1,2, where II is the projection operator. Set

aP =Py, =a,
and proceed inductively: for m > 1, set
a{™ = P1(jo —a§¥) = a; — Piag,
a§rtV = Py(l, — af™) = ap — Pya(™.

This is known as “back-fitting”’ in regression. When the projection operators
P, are conditional expectation operators, this is just the “inner loop”’ of the
“alternating conditional expectation” or ACE algorithm of Breiman and Fried-
man (1985). The fact that [la{™ + a§® — II([,|#)| - 0 as m — « is due to
von Neumann. Compare Theorem A.4.2 of Bickel, Klaassen, Ritov and Wellner
(1993).

The efficient score [* and the efficient information I for 6 are then
given by

(2.25) ¥ =1, - TI(L,|#%)
and ‘
(2.26) 1y = E[iz]".

We therefore have an algorithm to compute the efficient score and informa-
tion for 6 in the presence of nuisance functions G and H.

3. Construction of efficient estimates. In this section, we will discuss
the construction of one-step estimates for 6 and present some numerical
results. The investigation in this section is a preliminary attempt at the
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problem of constructing optimal estimates; asymptotic normality of these
estimators still remains to be proved.

Let (S,,T,),(S5,Ty),...,(S,,T,) be iid with density function f(-,-;
0,G, H) given by (2.1). Let F, be the empirical measure of (S;, T;)’s. Let G,
and H, be some consistent estimators of G and H. Then defining 0, as a root
of the efficient score equation

S|

y l.g(si’ti;o’én’ﬁn) =0,

3.1 I*(s,t;0,G,, H,) dF,(s,t) =
(38.1) [ [lx(s.t ) dF(s,t) 1

1

we should have

(3.2) 6, =0+ [Ix]"

S|

~;llf(si,ti;é?,G, H) +o0,(n™"?).

We will now describe the steps involved in the construction of a one-step
approximation to the above estimator.

Step 1. Consider a preliminary consistent estimator 6, of 6, for example,
Oakes’ concordance estimator.

StEp 2. Compute the marginal empirical survivor functions G, and H,
from the sample. Clearly G, and H, are consistent estimators of G and H,
respectively.

Step 3. Using 6,, G, and H, obtain estimates P, and P, for the
projections of /, onto #, and .

SteP 4. Estimate the score [, for 6 using 6,, G, and H,.

Step 5. Using P, and P, in the iterative algorithm of the alternating
projections obtain an estimate of the projection of /, onto #.

Step 6. Compute the estimated efficient score function [* and estimated
information I} with the estimated score [, and the estimated projection of the
score onto

SteP 7. Replacing 6, [* and I by their estimated values, calculate the
one-step estimate of 0 as :

~

~ 11 2,
*(0 G H)] lz.zlz‘(si:ti;on’Gn’Hﬂ)'

n>~n? n

~>

6,=6,+|

Monte Carlo numerical results. To illustrate and compare our estimator
with others, we present a summary of the Monte Carlo results obtained by
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TaBLE 1
0 0, 6, A 04 0,
1.3 1.131(0.178) 1.312(0.162) 1.310 (0.161) 1.313 (0.162)
1.5 1.527 (0.223) 1.522 (0.202) 1.519 (0.202) 1.523 (0.202)
1.6 1.628 (0.236) 1.620 (0.218) 1.617 (0.218) 1.621 (0.218)
2.0 2.027 (0.291) 2.029 (0.276) 2.025 (0.273) 2.030 (0.276)
2.5 2.521 (0.379) 2.516 (0.360) 2.513 (0.360) 2.518 (0.359)
3.0 3.012 (0.443) 3.004 (0.399) 3.002 (0.399) 3.004 (0.396)
3.5 3.575 (0.526) 3.559 (0.484) 3.557 (0.484) 3.556 (0.479)
4.0 4.075 (0.603) 4.071 (0.586) 4.069 (0.587) 4.064 (0.579)
4.5 4.623 (0.695) 4.624 (0.661) 4.623 (0.662) 4.610 (0.649)
5.0 5.103 (0.766) 5.122 (0.704) 5.122 (0.705) 5.103 (0.690)

simulating bivariate data with unit exponential marginals. We briefly describe
the simulation procedure as follows:

For different values of 6 we simulated gamma random numbers W, from a
gamma distribution with parameters (1,/(6 — 1), 1). Next generating two inde-
pendent sets of uniform random numbers U; and U, and using the relations

1
S log[l W log Ul},

YT

1
T=——logl1 - —1
PICESY °g[1 W°gU2}’

we generated bivariate data (S;, T}).

At each value of 6 we generated 500 samples each of sample size n = 100.
Then following the steps described above we obtained one-step estimates for 6.
We also computed estimates using Clayton’s (weighted concordance) and
Oakes’ (concordance) methods. The means and standard deviations of the 500
estimates for each value of 6 are presented in Table 1. We used the following
notation for different estimators of 6:

A

6, = concordance estimator,
6, = Clayton’s (weighted concordance) estimator,
f; = one-step estimator,

- 6, = MLE.

The quantities in the parentheses are the standard deviations. Based on this
ssimulation study, it appears that both the weighted concordance (Clayton’s)
estimator and the one-step estimator have the same level of performance. They
both seem to be reasonable compared to the concordance estimator. Since the
asymptotic variance of the one-step estimator cannot be computed in closed
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form, it is hard to say about its asymptotic relative efficiency with respect to
the other estimators.
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