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NONPARAMETRIC ESTIMATION IN RENEWAL THEORY I:
THE EMPIRICAL RENEWAL FUNCTION

By RupoLr GRUBEL AND SusaN M. PiTTs

Delft University of Technology and University College London

We introduce a nonparametric estimator for the renewal function and
discuss its properties, including consistency, asymptotic normality and
asymptotic validity of bootstrap confidence regions. The underlying theme
is that stochastic models can be regarded as functionals or nonlinear
operators. This view leads to nonparametric estimators in a natural way
and statistical properties of the estimators can be related to the local
behaviour of the functionals.

1. Introduction. The standard—and christening—example of renewal
theory involves ‘““an electric bulb, fuse or other piece of equipment with a finite
life span. As soon as the piece fails, it is replaced by a new piece of the like
kind, which in due time is replaced by a third piece, and so on’’ [Feller (1968),
page 311]. Formally, we have a sequence (X,); .y of i.i.d. random variables
representing the successive lifetimes, with partial sums S, =0, S, = ©7_, X,,
and

N(t) =1+ sup{n eN,: S, <t}

is the number of renewals up to time ¢, including the initial installation at
t=0.

A structure of this type can often be found in more complex stochastic
models in the form of “renewal points” where, loosely speaking, the process
“forgets about its previous history.” Renewal theory provides some basic
techniques for the analysis of such models, the renewal function U(¢) = EN(2),
the expected number of renewals up to and including time ¢, playing a key role.
Typically, a decomposition with respect to the value of X, the random time of
the first renewal, yields an integral equation of a type known as renewal
equations whose solution can be given in terms of U. For a detailed discussion,
including a range of examples, see Feller (1971), Chapter XI. The renewal
function U itself is of interest in warranty analysis, for example; other
applications include sequential analysis where the X variates can take nega-
tive values [see Frees (1986a)].

In the present paper we deal with the problem of estimating U on the basis
of a sample X,,..., X, from a distribution function F, later referred to as the
lifetime distribution or step distribution. The former implies F(0) = 0 or at
least F(0 — ) = 0, we will call this the one-sided case; the latter refers to the
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interpretation of the partial sums S, as a random walk on the real line. We do
not assume a parametric model. This problem has been considered earlier by
Frees (1986a,b, 1988) and, in the one-sided case, by Schneider, Lin and
O’Cinneide (1990); a detailed discussion is given in subsection 4.2.

The basic idea of the present paper is to regard the stochastic model as a
nonlinear operator or functional ¥, the renewal functional, which maps a
lifetime or step distribution F on the associated renewal function U; techni-
cally, this functional is a convolution series with constant coefficients [see
Griibel (1989a) for a nonstatistical application]. Given a random sample of size
n from F and with F denoting the associated empirical distribution function
this leads us to estimate U by applying ¥ to F In short, we estimate the
renewal function U by the empirical renewal functwn U \I'(F ). Estima-
tors for the solutions of renewal type equations are obtalned by inserting the
empirical renewal function for the unknown U in the solution formula pro-
vided by renewal theory; these will be dealt with in Part II of the paper.

Statistical properties of these estimators can be related to local analytic
properties of the functional ¥. Consistency follows from continuity. Both
asymptotic normality and asymptotic validity of bootstrap confidence regions
are based on a local linearization of V¥, that is, a version of Hadamard or
compact differentiation [see Gill (1989), Griibel (1988) and the references given
there].

The paper is organized as follows. Section 2 gives the main results; the
proofs are given in Section 3. Though the underlying ideas are quite simple it
turns out that a number of technical details have to be observed in order to
arrive at a precise frame. Much of this has to do with the choice of suitable
spaces and topologies for the functionals. Consequently, Section 3 is divided
into several subsections; see the beginning of that section for an overview. A
final section compares our results to those of Frees (1986a,b) and Schneider,
Lin and O’Cinneide (1990), indicates possible extensions and collects some
concluding remarks.

The methods of the present paper can be applied to a variety of other
stochastic models. In forthcoming work by S. M. Pitts it will be shown that
nonparametric estimation methods in queueing theory can be based on and
analyzed with similar ideas and techniques.

2. Main results. Let X, X,,... be a sequence of independent and identi-
cally distributed random variables on some probability space (Q, &7, P) and let
F be the distribution function (d.f.) of X;. We consider the general, two-sided
case, that is, we do not assume that the X values are nonnegative. We do
assume that the random variables have finite second and positive first mo-
ment. Under these assumptions the associated renewal function U exists and
is given by U = I3_,F** where * denotes convolution. The value U(x) is the
expected number of visits to the interval (—o, x] of a random walk with steps
{X,} and start at 0.

Let F be the empirical distribution function associated with the first n of
the X values that is, with 1, denoting the indicator function of the set A,
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F(x)=n"1Z7_11 . (X,) for all xR We define the empirical renewal
function U, by U, = =_oF** if the sample mean X, =n"'L7_ X, is posi-

tive and U, = 0 otherwise. From the assumptions on F and the strong law of
large numbers it follows that, for P-almost all » € Q, U () is given by the
convolution series for n large enough.

We wish to consider renewal functions and their estimates as a single object
in contrast to a view which selects a fixed ¢ € R and then considers the real
value U(#) and the real valued random variables U, (¢). This raises the question
of the natural space for these functions. Distribution functions and their
empirical counterparts are usually considered as (random) elements of D,, the
set of functions f:[—o,»] — R which are right continuous and have left-hand
limits. This space is endowed with the supremum norm,

Iflle="sup |f(x)l

—0o<xX<®

and the o-algebra generated by the closed || - |l.-balls. Renewal functions are
not bounded (unless the associated lifetime distribution is defective, a case not
considered in this paper) and are therefore not elements of this space. Further,
by the elementary renewal theorem, U(x) ~ x/EX; as x — », and U'n(x) ~
x/X,. Hence, unless expectation and sample mean coincide, we cannot have
uniform convergence of U, — U on the whole half-line; this means that a
suitable weight function is needed. By the elementary renewal theorem again
we see that such a weight function must decrease at least as fast as 1/x as
x — o,
These considerations lead us to define D, _; as the space of all functions f:
R — R which can be written as f(x) = p(x)g(x), where g is an element of D,
and p(x) = 1 for x <0, p(x) =1 +x if x > 0. If f and g are related in this
way, we put || fllo, -1 = lIgll. and equip D, _; with the o-field generated by the
closed || - llo, —1-balls (the logic behind the choice of indices will become clear in
the next section where a more general class of spaces is needed for the proofs).
Our first result gives conditions for strong [l - llo, —1-consistency of the
empirical renewal function. For this we need measurability of sup, < xlU,(x) —
U(x)l/p(x). We argue as follows: For any fixed x € R, 2 €N,
n n
Fr(x)y=n"* L leao(&,+ 0 +X)

Tyyersip

is measurable, hence U'n(x) is a random variable for all x € R. This implies
that U,: Q — D, _, is measurable, that is, a D, _,-valued random quantity.
Further, by construction, the norm Il - llo, -1 is measurable, which gives the
réquired measurability of the composition. Alternatively, we can argue that all
functions involved are right continuous so that it is enough to take the
supremum over a suitable countable set of x values. (In the sequel, checking
measurability will be left to the reader.)
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THEOREM 2.1. Let F, U, Un be as above; assume that
/IxIBF(dx) < forsome B > 2, fo(dx) > 0.

Then
lim lIU’n = Ullo,-1 = 0 almost surely.

n—oo

As to be expected, the asymptotic normality result will give conditions on F
which ensure that vn (U, — U) converges in distribution to a Gaussian process
with mean function zero and covariance function depending on F. We say that
a sequence V,V,,... of D, _,-valued random quantities converges in distribu-
tion to V, another D, _l-valued random quantity, or V, = 4. Vin D, _; for
short, if Ef(V,) tends to Ef(V) for all bounded, continuous and measurable
functions f: D, _; - R.

THEOREM 2.2. Let F, U, U'n be as above; assume that
fIxIBF(dx) < o forsome B > 4, fo(dx) > 0.

Then, in D, _,,
nl/Z(U - U) = distr ZU’

where ZU = (ZYV),.n is a Gaussian process with mean EZY = 0 and, with
V= UrU,

cov(2Y,27) = [ [F((s —x) A (¢ = ¥))V(dx)V(dy) — FaV(s) FxV(t).

Suppose now that we wish to construct confidence regions for the unknown
renewal function U. Let

R,(2) =P(YnllU, = Ullo,-1 < 2),  R(z) =P(IZ"ll, -1 < 2).

It follows from Theorem 2.2 that lim,_, R,(z) = R(z) for all continuity
points z of R so that an asymptotic level « conﬁdence region would be given
by the set of all renewal functions U with the property that 1T, = Ullo, -1
does not exceed ¢,/ Vn, where R is continuous at g, and R(q,) > . How-
ever, the distribution function R is not known. It depends on F in a
complicated way; not even the shape of the distribution is known so that there
is no hope for a ‘“studentization procedure” to apply.
The bootstrap method provides us with an estimator for R,. To motivate
this estimator we first note that R, is a quantity which depends on F only. In
fact, we can write down a formula expressing this dependency if we use the
following definition,

n
F,:R*—>D,, F(x)=n"" '21 Ly w
im
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for all x = (x4,...,x,) € R*. We also write F®" for the nth (measure theo-
retic) power of F, a distribution function on R”. The dependency of R, on F
is then given by .

Ro(2) = [ Loo(V2 [¥(F.(x) = ¥(F) o, 1) FO"(do),

where, again, ¥ is the functional which maps a distribution function on the
associated renewal function. The bootstrap estimator for R, is now obtained
by replacmg the unknown F by F,. As F, assigns mass 1 /n to each of the
values X,,..., X, we obtain

én(z) =n"" EZI 1[0,21(‘/;”\P([Fn(xi1""’Xin)) - q’(ﬁn)”o,-l)’

where i = (i,...,i,), I, = {1,...,n}"; note that ¥, = F(X,,..., X,) in this
notation. Replacmg q, in the above discussion by qn(a) the o quantlle of R
we obtain the level a bootstrap confidence region. The following theorem
shows that, under essentially the same conditions as used for asymptotic
normality, this results in an asymptotically correct procedure.

THEOREM 2.3. Suppose 0 < a < 1. Let F, U, U, and §,(a) be as above.
Assume that F satisfies 0 < F(x) < 1 for some x € R and that

fIxIBF(dx) < o forsome B > 4, fo(dx) > 0.

Then
lim IP’(\/?THU',, = Ullo, -1 < dn(a)) =

n—o

3. Proofs. We begin by introducing a class of function spaces in the first
subsection. Subsection 3.2 deals with convolution and provides some useful
inequalities, relating this operation to the function norms introduced earlier.
The third subsection deals with renewal functions and collects some more
inequalities; these are later used in conjunction with the convolution inequali-
ties. Subsection 3.4 is on stochastic monotonicity a ‘‘sandwiching’ technique
is introduced. Empirical distribution functions and their weighted convergence
are considered in subsection 3.5. In subsection 3.6 we investigate the local
behaviour of the renewal functional, the nonlinear operator which maps a
lifetime distribution function F on the associated renewal function U. Based
on these preparations the proofs for Theorems 2.1, 2.2 and 2.3 are then given
in subsection 3.7.

3.1. Function spaces. The basic objects of this paper are functions, defined
on R or the compactified real line [ —, «]. Our function spaces are built on the
familiar space D, of bounded cadlag functions; to avoid trivialities we will
assume that elements of D, are left continuous at «. Endowed with the
supremum norm || - ||, D,, is a Banach space.
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We will consider renewal functions and their estimators as elements of a
specific space of unbounded functions. In the various steps of our proofs we
will also need subspaces of D, which are characterized by certain rates of
decrease at +». We define all these spaces simultaneously. To do so, we first
introduce operators T,; which associate with a given function f: R — R a new
function T,, f: R — R as follows:

1+0°F(1), t20,

(1-8%f(t), t<0

and then define our function spaces and associated norms by
Dy={fRo>R:T,feD}, |fllap=1T,5.

Here the requirement Tf € D, means that Tf can suitably be extended to
[ -, ]: This means, for example, that for f € D, _;, the limit of f(x)/x as
x — o exists (in R). Evidently, these spaces are again Banach spaces and
isomorphic to D, via the associated T operator. Note the visual pun: D, = D,.
This clarifies the linear and the topological structure of the D spaces. For
the measurability structure we take the o-fields generated by the open (or
closed) balls in the respective norm. Note that the T-operators and their
inverses are measurable. A sequence {X,} of random elements is said to
converge in distribution to X if Ef(X,) — Ef(X) as n — « for all real-valued,
bounded, measurable and continuous functions f on the respective D-space.
Finally, let C,;(F) denote the subspace of D,; which consists of all
functions that are continuous at each continuity point of the distribution
function F. These spaces are separable since the set of all discontinuity points
of F is countable; in particular, their o-fields coincide with the respective
Borel system. For more information on weak convergence on nonseparable
spaces we refer the reader to Pollard (1984) and the references given there.

Taﬂ f(t) =

3.2. Convolution. The convolution product F*G of two distribution func-
tions F,G is given by FxG(x) = (F(x — y)G(dy) for all x € R. We need an
extension of this notion where the integrator is allowed to be unbounded and
where the integrand is allowed to be of unbounded variation. In the extended
notion the ordering of the factors will be important.

Let & be the set of all nondecreasing and right continuous functions H:
R - R with the property that lim, _ _, H(x) = 0. Integrals of the form
[ -+ H(dx) for some H € &# are to be understood as Lebesgue integrals with
respect to the (possibly infinite) measure which assigns mass H(b) — H(a) to
the interval (a,b], —~*<a<b<x Let He # and let g: R—> R be a
measurable function. If the functions y — g(x — y) are H-integrable for all
x € R, then we say that the convolution product g«H of g and H exists and
we define its value at x by

g*H(x) = [g(x —y) H(dy).
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It is easily seen that for g, H € 2% this yields an element of -# again,
provided that the integrals exist. In short, if defined, gxH qualifies as a
possible right-hand factor so that convolution powers H** can be defined
inductively; we also put H*® = 1, ..

Properties of convolution will be used below without further comment.
Some of these are obvious from the definition, others might require a little
argument, based on monotone convergence or on Fubini’s theorem as in the
following lemma. In either case, we leave the details to the reader. It should be
kept in mind, however, that only elements of &# are allowed to appear on the
right-hand side of the convolution symbol: gxH, — gxH, may in general not
be written as g*(H, — H,) as 5% is not a linear space.

Lemma 3.1.  Let g, H,, H, be such that the convolution products gxH, and
&*H, exist. Then, if one of the products (gxH )*xH,, (gxH,)*xH, exists, then
the other one also exists and they are equal to each other.

In the one-sided case, that is, if H(x) =0 and g(x) =0 for all x <0, a
sufficient condition for the convolution product to exist is that g be bounded
on compact intervals. In the general case the respective rates of increase or
decrease of g and H at + have to cancel each other. The following lemma
collects some elementary inequalities which also give information on the
asymptotic behaviour of convolution products. Implicitly, these inequalities
also provide criteria for the existence of the respective convolution products.
The following notation will be useful: For a function f: R > R and 2 > 0 let
A, f be the function given by

Apf(x) =f(x+h) —f(x).

We abbreviate A; by A. Using an obvious rescaling argument it is often enough
to consider only the case ~ = 1 in statements referring to A .

LemMma 3.2. For each & > 0 there exist constants c,(¢) and c,(e) such that
(1) I *Hli1e,0 < ci(e)ll fllzse,1+elAHl1 10,
(ii) I f*Hllo, -1 < co(e)ll flli+e,0(IAH|lw + [[Hlo, -1).

Proor. We assume in the proof that the values appearing on the right-hand
side of the inequality under consideration are finite.

(i) Let x > 0. We have

|/+H(x)| < ¥ [ | f(x ~y)|H(dy).

rez”’ (x+k,x+k+1]
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The summands can be estimated by

/ | F(x = y)|H(dy)
(x+k,x+k+1]

sup | f(y)|AH(x + k), k>0,
y<-—-k

sup |f(y)|AH(x + k), k<0,
y=—k-1

so that, for all x > 0,
| FAH(x)| <N fllse,olAHI X (1 + &)+ I fllo,11ellAHL Y E-175
k=0 k=1
For x < 0 we write
|f*H(z)|< ¥ [ | f(x —y)|H(dy).
kez” (x/24+k,x/2+k+1]
We have
/ | f(x = y)|H(dy) < sup |F(y)|AH(x/2 + k)
(x/2+k,x/2+k+1] x/2—k—1<y<x/2-Fk

so that, considering £ > 0 and %k < 0 separately,
sup (1 + |xl)""| f*H(x)]

x<0

< sup((l + 1z sup AH(y)) Y sup | f(»)]

x<0 y<x/2 keZ k—1<y<k+1

+ ||f||2+8,0||AH||wsup((1 +lx)' Y (1 + a2+ k) TP,
x<0 k=0
The term X, ., sup,_; <, 41/ f(y)l is easily seen to be bounded by a multiple
of [[flli+e,1+c. Some obvious inequalities between the various norms now
complete the proof of (i).
(ii) For x < 0 we write

|PHE) <[ |f(x-y)H(dy) + ¥ [ | F(x ~y)|H(dy).
(—,01] k=17 (k—1,k]
The first term is bounded by || f|l..H(0). On the second we use
Joooo o [fG=9H(dy) < AH(E=1) sup | f(y)],

y<-—k+1

%hich gives

> | £(x = 9)|H(dy) < IAHILI flliseo X k¢
r=1"(k-1,k] k=1
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For x > 0 we use the same arguments,

PH@| < [ fE =l + T ]

p=1" (x+k—-1,x+

, ]| f(x —y)|H(dy).
The first term is bounded by | f|l.H(x). Further, '

k}lf(x—y)lH(dy)SAH(x+k—1) sup | f(y)l

f(x+k—1,x+ y<—k+1

<k ' fllise, ollAHIl
so that these terms sum to a finite value. O

3.3. Renewal functions. If F satisfies
(3.1) po = [x?F(dx) <o, = JxF(dx) >0,

then the values F**(x), £ = 0,1,... sum to a finite limit [see, e.g., Gut (1988),
page 89] so that we can define the renewal function U associated with F by

U(x) = Y F**(x) forall x €R.
k=0

We need some bounds on U and its increments AU in order to be able to apply
the inequalities from the preceding section. Suitable bounds for our purposes
have been obtained by Daley (1980). We collect these in the following lemma,
the first part being immediate from Theorem 1 in Daley (1980), the second
following from Daley’s equation (3.6) on noting that, for any random vari-
able M,

—E((M +y) A0) = f:yIP(M <z)dz forally > 0.

LemMA 3.3 [Daley (1980)]. Let U be the renewal function associated with a
distribution function F for which (3.1) holds, and let M be the global mini-
mum of a random walk with step distribution F. Then the following inequali-
ties hold for all x € R:

0<U(x)<(xV1)/ug+ pa/m3,
AU(x) < (1/pq + po/wl)P(M <x + 1).

These inequalities will be used in the form |Ullo, -1 < ®, [AU [l» < ® below.
We will also need the following variant: If [|x|“F(dx) < «, then E|M *7! < o
[see Gut (1988), Theorem 4.9] which implies |[AUll,—1,0 < % by the second
inequality in the preceding lemma.

8.4. Monotonicity. An important tool in our proofs will be a “sandwiching
technique” which makes use of stochastic ordering and the corresponding
monotonicity of the renewal functional. Recall that a distribution function F
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is stochastically smaller than or equal to a distribution function G, notation
F<G@G,if1 - F(x) <1 - G(x) for all x € R. The first lemma relates || - |l-balls
and < -intervals, the second gives monotonicity of the renewal functional. The
third lemma bounds the variability of g#¥(F) as F ranges over a stochastic
interval of distribution functions.

LemMmA 3.4. Let a, B be such that a > B > 1 and assume that the distribu-
tion function F satisfies

[lxlF(dx) < e, [*F(dx) > 0.
Then, for every € > 0, there exist distribution functions G,,G, such that
G, — Fllgp < ¢, fIxIBGi(dx) < oo, foi(dx) >0 fori=1,2,

and the property that, for some & > 0, the implication
||H_F”a¢x<8=G1<H<G2
holds for all distribution functions H.
Proor. From the symmetry of the notions involved it is clear that it is

enough to construct a suitable stochastic lower bound. For this, we first note
that there exists a constant ¢ < « such that

|10,-(x) = F(x)| <c(1 +Ix])™* forall x € R.

For a given 6 >0 with 0<8<cA (1 —F(0) let x,:=1-(2¢c/8)"°.

Then G,
1A(F(x) +9), x> x,,
Giay = |11 F @) +9) ;
2c(1 + |x]) 7, x < xg,

is a distribution function. By construction, [|x|’G(dx) < «, and any distribu-
tion function H with ||H — F|,, < 6 satisfies H(x) < G(x) for all x € R.
Further,

IG = Fligg < sup (1 + [x)?G(x) + sup (1 +|z)?(G(x) — F(x))

x<Xq Xg<X< —Xg
+ sup (1+x)?(1 - F(x))
x> —xg

< 2¢(1 + lxol)P 77 + 28(1 + Ixol)® + (1 + lxol)P 77

From the definition of x, we see that |G — Fllgg — 0 as § | 0; in particular,
IG — Fligg < ¢ if & is chosen small enough. Since B > 1, || - ||gg-convergence
implies convergence of the first moments, that is, [xG(dx) > 0 will also hold
provided that 6 is chosen small enough. Hence, for a suitable 6 > 0, G, = G
satisfies all the requirements of the lemma O
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LEmMA 3.5. Let F,, i = 1,2 be distribution functions satisfying (3.1). For
i = 1,2 let U, be the renewal function associated with F,. Then F, < F, implies
Ulx) = Uy(x) forall x € R.

Proor. Let {¢,} be a sequence of independent and uniformly on (0, 1)
distributed random variables and put

X, =F'(&), Y, =F;'(§,) where F'(x) = inf{y: Fi(y) > x}.
Then X, <Y, for all n, hence

#{n: Y X, sx} > #{n: Y Yin},
i=1

i=1

from which the statement follows on taking expectations. O

Let .# be the space of linear combinations of indicator functions of inter-
vals of the form [a,b), —» < a < b < . Remember that V(F) denotes the
renewal function associated with the distribution function F.

LeEMMA 3.6. For every g € # there exists a constant ¢ < © such that the
following inequality holds for all distribution functions Fi, Fy, G, G, with
G, < F,, F, < G, satisfying (3.1),

| g*¥(Fy) — g*q’(Fl)llo,—l <c||¥(Gy) - q’(Gl)llo,—l‘

Proor. It is enough to consider indicator functions, so let g = 1;, ;. Then,
using Lemma 3.5,

|g* ¥ (F,)(x) - g+¥(Fy) ()]
= |W(Fy)(x — a) = ¥(Fy)(x - b) — V(F))(x — a) + ¥(F)(x - b)|
< (W(Gy) — ¥(Gy))(x — a) + (¥(Gy) — ¥(Gy))(x — b

where the last term vanishes if b is infinite. This suffices to establish the
desired inequality as x - (1 + x + y)/(1 + x) is bounded on x >0 by a
constant depending only on y. O

3.5. Empirical distribution functions. Let X, X;, X,,... be a sequence of
independent random variables on a probability space Q, .QZ P) with distribu-
tion function F and let F be the empirical distribution function associated
with X,,..., X,. All hmlt statements in the remaining subsections refer to
n— o unless stated otherwise.

In order to be able to apply the results of the previous subsections we need a
result which amplifies the Glivenko—Cantelli theorem to uniform convergence
with a weight factor. Such a result can be obtained from the corresponding
spec1a.l result for the uniform distribution on the interval (0, 1) by applying the
familiar time change using F [see e.g., Pollard (1984), page 97]. In the special
case of uniformly distributed random variables a necessary and sufficient
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condition for the weight function is known [apparently due to Lai; see Shorack
and Wellner (1986), Section 10.2]. For general F we obtain the following.

ProrosiTiON 8.7. Let a > 0. Then E|X|* < » implies
I1F, — Flle = 0 almost surely.

We need an analogue of Proposition 3.7 for weak convergence to a Brownian
bridge. Again, necessary and sufficient conditions on the weight function are
known if F is uniform on (0, 1) [O’Reilly (1974); see also Shorack and Wellner
(1986), Section 3.7]. To translate these to the case of general F we use an
almost sure representation of the weak convergence result for uniform distri-
butions and Chebyshev’s inequality.

ProrosiTioN 3.8. If E|X|* < » for some a > 0, then with B a standard
Brownian bridge and any B < a /2,

‘/E-(FAn_F)_)distrB(F) inDBB

Since the Brownian bridge has continuous paths the distribution of B(F) in
the preceding proposition is concentrated on Cpp(F).

3.6. Local properties of the renewal functional. Throughout this section
Fy, F, F, ... are distribution functions satisfying (3.1) and U,,U,, U, ... are
the assomated renewal functions. The respective first and second moments are

Rin = [*'F,(dx) forn=0,1,...,i=1,2

We study the local behaviour of the renewal functional ¥ which carries F to
U, regarded as a mapping from (a subset of) a suitable D-space to Dy, ;. It
might be interesting to note that this subsection follows its own “bootstrap
principle”: First, we prove local boundedness of the functional. This is used to
obtain continuity which, in turn, is used to prove a differentiability property.

Local boundedness is obtained in Lemma 3.9. Lemma 3.10 contains a
renewal type equation, Proposition 3.11 gives continuity.

LEMMA 3.9. Let a > 2 and assume that

[le"‘ W(dx) <o forn=0,1,2,... and lim|F, — Fyllee =0
n—ooo
Then
supllAU,, |l < e, sup||lU,llo, -1 < .
n>0 n>0

" PROOE. Partial integration shows that ||F, — F,ll,, — 0 implies Hin - Wios
i=1,2. As F, and F, satisfy (3.1) we obtain sup,(1/u, , + B, n/M5 ) <
and the statement of the lemma follows on using Lemma 3.3. O
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LemMa 3.10. If [|x|*Fy(dx) < © and [|x|°F,(dx) < « for some a > 2, then
UO - Un = (FO - Fn)*UO*Un'

PrOOF. Our assumptions imply that, for i = 0, n, |F, — 1[0,00)”“ < o and,
by the remarks following Lemma 3.3, [|U,llo, -1 < © and [|[AU|l4-1,0 < ®, so
that, by Lemma 3.2, the convolution products on the right-hand side of the
asserted formula exist. Further, using monotone convergence, 1o,y + FixU; =
U,, and we obtain, using Lemma 3.1,

(Fy ~ B)*UU, = ((Fy ~ FOWwUU, — (B, — L), )0,
-U,-U,. O

ProposiTioN 3.11. Assume the conditions of Lemma 3.9. Then
lim ”Un - UOHO, -1 = 0.
n—o
ProOOF. Again, u; , = u; o, ¢ = 1,2. From Lemma 3.10, U, — U, = (F, —
F)*U,*U,. As explained at the end of subsection 3.3 we have [|[AUll,-1,0 < ,
so that, by Lemma 3.2(), (F, — F))*U, - 0 in D,_, ;. Now apply Lemma
3.2(ii) and Lemma 3.9. O

For the proof of a differentiability property of the functional we need an
auxiliary result which in turn requires the following lemma. Remember that .#
is the space of linear combinations of indicator functions of intervals of the
form [a, b), —» < a < b < . As the following lemma shows this set is dense
in D, with respect to a weaker norm. That such a weakening is necessary is
shown by the function g(x) = (1 + |x))™* which cannot be approximated in
Il - lloo-norm by functions from .#.

LEmMA 3.12. Let a, B be such that 0 < B <a <~ and let g € D,,. Then,
for each & > 0, there exists a g, € & such that |lg — g_llgo < .

Proor. In Dy, g(1-1,_, ) tends to 0 as ¢ - ». On a fixed interval
[—e¢,»), any D, -function can be uniformly approximated by functions from .#
since g(x) tends to a finite limit as x — ». O

ProrosiTiON 3.13. Assume the conditions of Lemma 3.9. Let further
g € Dy, for some B> a — 1. Then lim , _, llgxU, — g*Ugllo, -1 = 0.

Proor. Let & > 0 be given. From Lemma 3.12 we obtain a g, € .# such
that, with ¢, as in Lemma 3.2 and K = sup,, . ollAU,, |l + sup, . ollU,llo, -1,
g — golla-1,0 < &/(3cy(a@ — 2)K);
K is finite by Lemma 3.9. Lemma 3.4, together with the continuity of ¥

established in Proposition 3.11, gives us distribution functions G,, G, such
that

|¥(Gy) - \I'(G1)”0, _1=<¢/(3¢c),
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where c is the constant from Lemma 3.6, depending on g, only; moreover,
from some n, onwards, all F, will satisfy G, < F, < G,. This means, using
Lemma 3.6, that ‘

lgo*U, — go*Upllo, -1 < £/3
for n > n, so that, on using Lemma 3.2,
lg*xU, — &*Ullo, -1 5”(3 — 80)*U, ”0,—1
+1lgo*U, — go*Usllo, -1 + (g — 80)*U, llo, -1
<e

for all n large enough. O

The following result gives a more quantitative approximation and will later
be referred to as a differentiability property of the renewal functional.

ProposITION 3.14. Assume, in addition to the conditions of Lemma 3.9,
that

Vn(F, —F,) > h inD,, forsomea>2,heD,..
Then
Vn (U, = Up) —» hxUp*U, inD, _,.

Proor. Lemma 3.10 gives, with g := hxU,,
Vn (U, = Uy) = haUyxU,
= (Vn.(F, = Fy) = h)sUysU, + g2, - g+,
For the first term we obtain || - ||y _;-convergence in exactly the same manner

as in the proof of Proposition 3.11, with F,, — F, replaced by V7 ( F,-F,) —h.
For the second term we use Proposition 3.13. O

The proposition shows that the functional ¥ is differentiable along certain
curves in its range of definition, and that its derivative at F, is the linear
operator T: D,, = D, _; which maps h onto T(h) = hxV,, where Vy =
V(Fo)*W(F,) = Uy*U,. This operator is bounded: It follows from Lemma 3.2
and the remarks following Lemma 3.3 that

ITI < co(a — 2)cy(a — DNAU o -1,0(IAT 1o + 1T, llo, _1) < oo,

3.7. Proofs of Theorems.

Proor oF THEOREM 2.1. This is now immediate from Proposition 3.7 and
Proposition 3.11. O
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Proor oF THEOREM 2.2. Choose a such that 2 < @ < /2. From Proposi-
tion 3.8,

\/;(Iﬁn _F)  distr B(F) in Daa‘

We now apply a Skorohod-Dudley construction [see, e.g., Pollard (1984), page
71]: as the limit distribution is concentrated on the separable subspace C,,(F)
we can find a probability space (', &/',P’) and, on it, D, -valued random
quantities F., n € N, and a Brownian bridge B’ such that F, =, F, for all
n € N and

Vn(F, - F) »> B'(F) P-as.in D,,

(we write X =4, Y if the random quantities X and Y have the same
distribution). Let U, be the renewal function associated with F; clearly,
U, = 4str U, Proposition 3.14 implies

Vn (U, - U) -» B (F)xUxU P-as.in Dy _;.

The right-hand side is a linear transformation of a Gaussian process, hence
Gaussian again. The second order structure of this process is easily seen to be
of the form given in the theorem. O

ProoF oF THEOREM 2.3. We consider a slightly more general setup: Let p
be a continuous and measurable nonnegative real function on D, _; and put

R,(2) =P(p(Vn (U, - U)) <2), R(2) =P(p(2Y) <2),
B (z) =n" E} Lo, (V7 (YA Xy, X)) = ¥(E))))-

In the theorem we have p = | - llo, —1. The sequence R ,, of random distribution
functions can be regarded as a sequence of D, -valued random elements. We
first prove that this sequence converges in distribution to the constant R, the
distribution function of p(ZY). This will be done on using an almost sure
construction, that is, we construct D, -valued random quantities R, F 9 ... 0N
some probability space (', &',P’) with the properties R’, =4, R, for all
neN and R'(w) > R for P-almost all w € ('; this representation implies
the desired statement.

The construction is based on an idea of Shorack (1982). We essentially
follow Section 4 in Gill (1989) but give a more detailed description of the
construction; Gill also refers to Bickel and Freedman (1981). We need to base
our functionals on more general domains, namely the D,;-spaces introduced
in subsection 3.1. This gives rise to a small technical complication.

ProposiTIiON 3.15. Suppose that
fIxIBF(dx) < forsome B > 4, ij(dx) > 0.

Then R, — 4 R in D, asn — «.
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Proor. Choose « and & such that 2 <a <B/2, a/B <56 < 1/2 and let
the function g: (0,1) — (0, 1) be given by

q(t) =q(l—¢t)=1¢°, 0<t<1/2.

Remember that the F,’s are defined on (Q, o7, P). From subsection 3.5 we
know that

F,~F—-0 Pas.inD,, vn(F,- F) - 4 B(F) inD,,

where B is a Brownian bridge and B(F) is short for (¢, ) —» B(F(¢), »).
Consider the pair (F;, Vn (Fn — F)). Its limiting distribution is concentrated
on a separable space of pairs of functions, hence we can find a probability space
(&, &', ") and, on it, D, -valued random quantities F,,n €N, and a Brown-
ian bridge B’ such that F! = F, for all n € N and

(3.2) F,>F P-as.inDy, Vn(F,-F)—>B(F) P-as.inD,,

[see Pollard (1984), page 71]. Let (Q°, &7°,P°) be a third probability space,
carrying an array {{,;: n €N, 1 <i < n} of row-wise independent random
variables, uniformly distributed on (0, 1), and a Brownian bridge B° such that,
with G; denoting the empirical distribution function associated with

gnly cec gnny

1
(3.3) sup ——|Vn (G(¢) —t) — B°(¢)| > 0 P°-as.;
0<t<19(2)
this is possible since ¢ satisfies the conditions of Theorem 2 in O’Reilly (1974)

and an almost sure representation can again be found. Now fix o € Q' and

® € (°. Let xy,...,x, be the jumps of F!, in increasing order. The function
t—> Gy (F(t, ), o)
is a discrete distribution function with jumps in x,, ..., x,, only. The height of

the jump in x, is easily seen to be equal to n~! times the number of values
£,i{(0°), 1 <i < n,intheinterval (k — 1)/n, k/n). As the joint distribution of
these frequencies is the same as the joint distribution of i,,...,i, if (iy,...,7,)
is selected uniformly at random from I, (both are multinomial with parame-
ters n and (1/n,...,1/n)) we see that, for fixed o', the distribution of the
above function, regarded as a mapping from Q° to D, is given by

(3.4) PG, @), ) = L 8(Fu(xiy e, %)),
; iel,
where 8(a) denotes unit mass in a. We now define R: ' - D by
(R (o'))(2) = |]3’°({w° e p(x/;(‘I'(G;(F,:( ,0'), %))

~W(F,(-, w))) = 2}).

Then R, depends on o' only through F.(«'), Ii’n depends on w only through
F (o). From (3.4) we see that these dependencies are the same. By construc-
tion, F, and F, are equal in distribution, hence it follows that R), and R,
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have the same distribution. It remains to show that R/, tends to R P’-almost
surely.

Fix o € (¥, 0° € (F° satisfying (3.2) and (3.3), and drop these temporarily
from the notation. We have

Vi (¥(G(F,)) - ¥(Fy))
= Vn (W(G(F,)) = W(F)) = Vn (¥(F;) - ¥(F)).
From (3.2) and Proposition 3.14 we have
(3.6) Vr (¥(F}) = ¥(F)) - T(B(F)) in D, _,,

where T'(g) = gxV(F)*¥(F) is the linear operator representing the derivative
of ¥ at F (see the end of subsection 3.6). In order to be able to apply the same
argument to the other term on the right-hand side of (3.5) we would need
D, -convergence of Vn (G2(F!) — F). We have

(3.7) Vn (G(F,) = F) = Vn (Gy(F;) = F;) + Vn (F; -
Assume now that the following statement holds,
(3.8) Vu (G5 (F,) - F,) > B*(F) inD,,

Using (3.2) we then obtain the limit B°(F) + B'(F) in (3.7) so that we can
apply differentiability of ¥ again to arrive at

Vn (¥(G:(F,)) — W(F)) > T(B°(F) + B(F)) inD, _,.

(3.5)

/

Linearity of T, together with (3.6), now gives
(3.9) Vn (¥(Gy(F,)) — ¥(F;)) > Z° inD, _,,

where Z° = T'(B°(F)). Note that Z° no longer depends on «'. As a D, _,-val-
ued random quantity Z° is equal in distribution to ZY, the Gaussian process
arising as the limit in distribution of vn (W(F ) — W(F)). Hence it follows
from (3.9), the definition of R/, and R and the assumptions on p that

R\(o)(2) > P*(p(2°) <2) = R(2)
as desired.

It remains to prove (3.8). Let g,(¢) = Vn (G2 (¢) — t), g(¢) = B°(¢). Discard-
ing another set of P°-measure zero if necessary we may assume that the
underlying element of Q° is such that, for some ¢ > 0,

(3.10) 0<s,t<1, Is—tl<e = |g(s)—g(®)|<q(s—2¢),

since ¢ dominates the modulus of continuity of Brownian motion near 0. We
have

(1 + 1) gn(Fr(2)) — g(F(£))| < (1 +1t)°| ga(Fr(2)) — g(F(2))]

(3.11) +(1+ 1) g (Fr () — g(F(2))].
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For the first term in the decomposition we obtain
Sug(l + 1) | gu(Fa(t)) — g(Fr(2))|
te

1
< sup(L +1th"q(F;(¢)) sup ——|g,(s) — g(s)|.
teR 0<s<19(8)
From the first part of (3.2) and the moment assumptions on F it follows that
the sequence {1, ., — F,} is bounded in Dg, so that, on using (8.3) and the
definition of @ and ¢, we see that this term tends to zero. For the second term
in (3.11) we obtain on using (3.10)

(1 + 1) g (Fi(2)) - &(F(1))| = (1 + 1) “O(a(| Fy(t) — F(2)])).
Taking the supremum over ¢ and using F! — F in Dy and the definition of ¢
and « settles this term too. O

Results of Tsirelson (1975) imply that R is continuous if p=I"llo -1,
except possibly in r := inf{x: R(x) > 0}. By assumption the step distribution is
not concentrated in one point which implies that the distribution of the
supremum cannot have an atom at zero. On the other hand, we cannot have
r> 0 since ZY is the continuous image of a process that is known to stay
inside [ —¢, €] with positive probability, for all ¢ > 0. Hence R is continuous.
Theorem 2.3 now follows from Proposition 8.15 and the following elementary
lemma whose proof we leave to the reader.

LeEmmMaA 3.16.  Let X, X;, X,, ... be real random variables with X, — distr X
and assume that the distribution function R of X is continuous. Let further R,
be a sequence of random distribution functions which converge to R in proba-
bility as elements of D,, and let §,(a) be the a-quantile of B 0 <a <1 fixed.
Then

lim P(X, < §,(a)) = a.

4. Comments. Here we collect some material dealing with various techni-
cal aspects and the literature. The final part attempts a summary.

4.1. Numerical aspects. The practical value of the procedures proposed
and analyzed in this paper greatly depends on a good (i.e., fast, with negligible
errors) algorithm that provides the renewal function for a given step distribu-
tion; note that this calculation has to be done several hundred times or more if
a Monte Carlo approximation for R . is used to obtain bootstrap confidence
regions. Transform techniques lead to such a method which is based on the
fast Fourier transform algorithm. A description is given in Griibel (1989b) for
the one-sided case; the extension to the general case is straightforward.

4.2. Other estimators. In this subsection we relate our results to the work
of Frees (1986a, b) and Schneider, Lin and O’Cinneide (1990). The situation in



EMPIRICAL RENEWAL FUNCTIONS 1449

these papers is the same as the one considered here: X;,..., X, is a sample
from a distribution with (unknown) distribution function F and the renewal
function U = X5 F** is to be estimated. (In some references, summation in the
definition of the renewal function starts with 2 = 1, requiring trivial modifi-
cations only.) Schneider, Lin and O’Cinneide (1990) consider only the one-sided
case.

Frees (1986a,b) obtains an estimator Un,m for U which differs from the
empirical renewal function: First, the infinite convolution series is truncated
at some m < n, then unbiased estimators are inserted for the remaining
convolution powers of F. Frees obtains uniform consistency on compact
intervals of the form [0, ¢], 0 < ¢ < «, and asymptotic normality of U, ,(¢) for
a single fixed value ¢, under moment conditions that are weaker than our
conditions for convergence of the whole process Un. -His proofs are based on
martingale arguments and other techniques from the theory of U-statistics
and are, therefore, entirely different from the methods of the present paper.

We think that, in a variety of cases, the empirical renewal function is
preferable to Frees’ proposal, mainly because of the following reasons which
have, at least partially, already been observed by Frees. First, U, ,, involves
the additional design parameter m which has to depend on 7 in order of the
asymptotic results to become valid. No such parameter appears in our pro-

~

posal. Second, computation of U, ,, is awkward. Third, although U'n) m 18
based on unbiased estimators for the convolution powers of F, it is itself not
an unbiased estimator for U. Indeed, following Frees’ proposal, we would
estimate a renewal function by something which is not a renewal function. As
t — o, U'n,m(t) — m, so, by design, the behaviour for large t-values will be
poor.

At the end of his paper Frees (1986b) briefly compares his proposal to what
we call the empirical renewal function. His main objection to the latter is its
potential misbehaviour for two-sided distributions: If all sample values happen
to be negative, then Un = o would arise. In our experience this is easily taken
care of (see our definition of U,); also, the problem will arise with nonnegligi-
ble probability only if the sample size is small. Finally, if all data values are
negative and no other information is available, the point could be made that
one should indeed estimate the expected number of partial sums to the left of ¢
to be infinite.

There is, however, one combination of circumstances where Frees’ estima-
tor might be the better choice: If the sample size is small, if interest is in small
t-values only, and if the data are positive (such as lifetimes), then bias might be
the overriding issue. This is amplified by the observation that, in the one-sided
case, only sample values less than or equal to ¢ contribute to the estimate of
U(¢), so that the ‘“‘effective sample size”’ might be even smaller than n. It
should be mentioned here that in one of Frees’ main applications, to warranty
anglysis, these three conditions are satisfied.

There is, of course, the obvious procedure for large #-values: Renewal theory
describes the behaviour of U(¢) as ¢ —  in terms of the first two moments of
F. Replacing these by the sample moments leads to estimates of U(%); see the
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introduction to Frees (1986b) for details. If ¢ is indeed large, then this
estimator should be used, maybe even just for its simplicity.

Schneider, Lin and O’Cinneide (1990) proffer a partial remedy for the
computational problems associated with Frees’ proposal and compare the
behaviour of U, ,, to that of U, by means of a simulation study. Their
findings seem to imply that even for small ¢-values the mean squared error of
U, will be only marginally bigger than that of Un,m. Schneider, Lin and
O’Cinneide (1990) also propose a method to obtain U'n numerically. This
method is applicable, however, in the one-sided case only.

4.3. One-sided distributions, finite intervals. The reader patient enough
to have followed us so far will have realized that the main part of the technical
effort in Section 3 went into controlling the behaviour of the renewal functions
and their estimates at plus and minus infinity. If we restrict ourselves to
one-sided distributions, that is, if we assume that the underlying lifetime
distribution function F satisfies F(0 — ) = 0 and if, moreover, we are inter-
ested in the behaviour of the empirical renewal function on some finite
interval [0, c] only, then a number of simplifications can be made. In particu-
lar, we do not need the D, ;-spaces and we can regard V¥, the renewal
functional, as a mapping from D[0, c] to D0, cl, the spaces of cadlag functions
on [0, c], since F(0 — ) = 0 implies that the values of F on (c, ») are irrelevant
to U on [0, c]. Again, a differentiability property such as Proposition 8.14 will
give asymptotic normality via a Skorohod-Dudley construction. No moment
conditions are required. Also, due to the monotonicity of the renewal func-
tional (see subsection 3.4), it is possible in this simpler setting to obtain
nontrivial confidence regions directly from the usual Kolmogorov—Smirnov
confidence bands for the empirical distribution function by applying the
renewal functional to the envelopes of these bands.

4.4. Summary. The overall strategy of this paper has been to consider the
stochastic model as a nonlinear operator ¥ that has a differentiability prop-
erty of the form

»\/E(Fn -F)—>f = Vn(¥(F,) —¥(F)) - Tf,

where T is a linear operator. The topologies to which these limit statements
refer depend on the model under consideration; conditions on F will imply
that the left-hand side holds with probability 1 if F, is the empirical distribu-
tion function associated with a sample of size n from F. This property also
serves as the basis for a proof that ““‘the bootstrap works,” thereby solving an
important practical problem which arises if functional central limit theorems
are to be used to obtain confidence regions.

This strategy can be applied to other stochastic models, its success depend-
ing on the analytic tractability of the operator ¥.
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