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ON ALMOST LINEARITY OF LOW DIMENSIONAL
PROJECTIONS FROM HIGH DIMENSIONAL DATA

By PETER HALL AND KER-CHAU Li?
Australian National University and CSIRO, and UCLA

This paper studies the shapes of low dimensional projections from high
dimensional data. After standardization, let x be a p-dimensional random
variable with mean zero and identity covariance. For a projection B'x,
I8l = 1, find another direction b so that the regression curve of b'x against
B'x is as nonlinear as possible. We show that when the dimension of x is
large, for most directions B even the most nonlinear regression is still
nearly linear.

Our method depends on the construction of a pair of p-dimensional
random variables, w;, wy, called the rotational twin, and its density func-
tion with respect to the standard normal density. With this, we are able to
obtain closed form expressions for measuring deviation from normality and
deviation from linearity in a suitable sense of average. As an interesting
by-product, from a given set of data we can find simple unbiased estimates
of E(fyt)/¢(t) — D? and ElIEIB, B'x =0l - t2)f3,(t)/$31)],
where ¢, is the standard normal density, fz, is the density for g'x and
the “E” is taken with respect to the uniformly distributed 8. This is
achieved without any smoothing and without resorting to any laborious
projection procedures such as grand tours. Our result is related to the work
of Diaconis and Freedman.

The impact of our result on several fronts of data analysis is discussed.
For example, it helps establish the validity of regression analysis when the
link function of the regression model may be grossly wrong. A further
generalization, which replaces p'x by B'x with B =(B,,...,8,). for k
randomly selected orthonormal vectors (B8;, i = 1,..., k), helps broaden the
scope of application of sliced inverse regression (SIR).

1. Introduction and summary of main results. Recent advances in
computer technology have greatly enhanced our ability to extract useful
information from high dimensional data. There are several procedures for
optimally seeking interesting features in the data [e.g., Friedman and
Stuetzle (1981), Huber (1985), Friedman (1987), Donoho and Johnstone (1989),
Haerdle and Stoker (1989), Hall (1989a, b) and Chen (1991)]. Equipped with
modern graphics facilities, statisticians can now easily interact with the high
dimensional data by 3-D rotation plots, scatterplot matrices, contour plots,
colors, brushing, slicing and many animation techniques [e.g., Wegman and
Depriest (1986), Cleveland (1988), Cleveland and MacGill (1988) and Tierney
(1990)]. Facing this new trend of statistical activities, theoretical investigation
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868 P. HALL AND K.-C. LI

of properties and structures of high dimensional data is certainly no less
demanding than its empirical counterpart.

In this paper, some properties about the distributions of low dimensional
projections from high dimensional data will be studied. Specifically, let x be a
p-dimensional random variable with mean zero and the identity covariance:

(1.1) Ex =0, covx=1.

For a direction B, ||8ll = 1, and consider the projected variable g’'x. Find
another direction b so that the regression curve of b'x against 8'x, E(b'x|8'x),
is as nonlinear as possible. When the dimensionality p of x is large, we show
that for most directions 8 even the most nonlinear regression is nearly linear.

To state our result more precisely, consider E(x|B, B'x = ¢). If the distribu-
tion of x satisfies the condition

(1.2) E(b'xIB, B'x =t) islinearin £, for any b,

then the scatterplot of 'x against B8’'x would show linear patterns. Equations
(1.1) and (1.2) imply

(1.3) E(xIB, B'x = t) = B,
or equivalently,
(1.4) IE(xIB, B'x = t)II> — t2 = 0.

Of course, we do not expect to have (1.4) all the time. The left-hand side, which
is always nonnegative, will be used as the measure of deviation from linearity.
Given any small number &£ > 0, we are interested in the size of the set {8:
IEIB, B'x = DI - 2> ¢, I8l = 1}. We shall show that the measure of this
set, relative to the entire sphere {B: [|8ll = 1}, converges to zero as the
dimension p tends to infinity. Equivalently, if B is treated as a random vector
from the uniform distribution on the unit sphere in R?, then in probability

(1.5) |E(xIB, B'x = t)II* — ¢2 - 0.

The conditions on x (see Theorem 3.2 in subsection 3.2) are discussed in
Section 4. We argue that it is unusual to violate any of these conditions
without violating the normalization condition (1.1), which can be achieved by
an affine transformation. ,

A generalization of this result, which replaces f'x by B’x with B =
(By, - -, By) for k randomly selected orthonormal vectors, is also valid:

(1.6) |E(xIB, B'x = t)II” — [ItI* - 0,

where t is a k dimensional vector.

The results (1.5) and (1.6) are closely related to the work of Diaconis and
Freedman (1984) where they show that for most high dimensional data sets,
almost all low dimensional projections are nearly normal. In our context, this
suggests that with probability approaching 1, the conditional distribution of
B’x given B, is asymptotically normal as p tends to infinity. Normal densities
have linear conditional expectations. Taking & = 2, it is natural to conject that
if we choose a pair of orthonormal directions 8,5 at random, then with
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probability approaching 1,

(1.7) E('xIB,Bx=1t) > 0.

By comparison, result (1.5) is equivalent to

(1.8) sup |E(V'xIB,Bx=t¢) - 0.
bLp,llbll=1

Condition (1.8) is much stronger than (1.7). Instead of picking the second
direction & at random, what (1.8) considers is the most nonlinear direction.
Thus Diaconis and Freedman’s result does not provide clues to whether (1.8)
[equivalently (1.5)] might be true or false.

Our strategy of establishing (1.5) and (1.6) is rather different from the
characteristic function approach employed in Diaconis and Freedman (1984).
We seek direct ways of computing the expected value for the aforementioned
nonlinearity measure [the left-hand side of (1.4)]. A pair of random vectors,
called the rotational twin, is constructed in subsection 2.2. The marginal and
the joint density functions of the rotational twin help us to find closed form
expressions for the crucial terms (2.1), (2.2) and (2.3), which assess average
deviation from normality and from linearity for the projected variables in a
suitable sense. As a by-product, we can easily estimate these terms from an
i.i.d. sample by the method of moments. This is done without going through
laborious random projection procedures like grand tours, and without applying
any smoothing technique at all.

The impact of our results on several fronts of data analysis is discussed
next.

1.1. Impact on data analysis. The first impact is on regression analysis.
Suppose that in addition to x, we have a variable y and want to regress it
against X, using, say, multiple linear regression. Since there is no guarantee
that the linear model

y=a+px+e

is valid, the result might not always be useful. In fact, one often tries other
models, such as Box-Cox transformations, or generalized linear models, to
increase the goodness of fit. However, if (1.2) holds then it has been shown
that the slope estimate obtained from the multiple linear regression still
estimates B consistently up to a constant of proportionality, even if the true
model is nonlinear:
¥y =8(Bx,¢),

see, for example, Brillinger (1977, 1983), Li and Duan (1989) and the refer-
ences given there. The same result holds for estimates obtained by most
commonly used regression methods based on the minimization of some convex
criterion functions [Li and Duan (1989)]. The associated inference procedures
for confidence intervals and hypothesis testing also remain valid after some
simple modification to accommodate the possibility that the specified link
function may be grossly wrong.
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When x is spherically symmetric, (1.2) holds for any 8. But (1.2) is much
weaker than spherical symmetry because only one fixed B, although unknown
to the statistician, is required there. A practical question is how often we can
ensure (1.2) (at least approximately) for many data sets that may have
obviously violated the spherical symmetry condition. We can answer this
question now via a Bayesian argument.

Suppose that Nature is playing an average game, instead of a minimax
game, with the statistician. So the unknown B, normalized to have length 1,
may be viewed as being chosen at random from the unit sphere S?~! in RP.
Now, using the result of this paper, we can claim that as long as the dimension
of x is large, the chance is good that (1.2) may approximately hold. Therefore,
for many data sets, a blind application of standard regression procedure,
without checking (1.2), and without knowing exactly what the link function is,
may still yield an approximately correct answer for estimating 8 up to a
constant of proportionality.

We should not take this favorable result as a certificate for developing a
cavalier attitude toward model checking. To the contrary, it has been well
recognized that possible violation of the link function can often be detected by
residual plots, the plots of the residuals against the predicted values, #'x. But
if B deviates substantially from the direction of the true B, then the residual
plot may not be informative enough in suggesting the correct form of the link
function. By showing that B is often proportional to B, we have in part
explained why data analysts can often recover the right structure of the data
by a careful study of residual plots.

The role of graphics is certainly not restricted to the final or the intermedi-
ate stage of data analysis. It may be even more important at the beginning
stage. Quite often, data browsing can help us to rectify the focus of our study
and to avoid attacking wrong problems. For example, if the scatterplot of y
against x shows a significant heteroscedastic pattern but no significant trend,
then fitting a mean curve to the data might not be as essential as studying the
pattern and the size of the conditional variance, var(y|x).

An important issue of data visualization quickly emerges when the dimen-
sion of x is large. There are so many plots to inspect that without proper
statistical guidance about which ones to concentrate on first, one will soon lose
patience and may fail to synthesize what has been found.

To address this issue, Li (1991) formulates it as a dimension reduction
problem:

y = 8(BiX, ..., BpX, ).

Here g is an unknown function and ¢ is an unknown random error indepen-
dent of x. The goal is to estimate the effective dimension reduction (e.d.r.)
space, the space spanned by the B8’s. When £ is small, we can effectively reduce
the data by projecting x along the e.d.r. directions for further studying their
relationship with y. A method, sliced inverse regression (SIR), is proposed for
this estimation. While there are several possible variations for implementation,
the basic principle is to reverse the roles of y and x. Instead of regressing the
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univariate y against the multivariate x, the multivariate x is regressed against
the univariate y. Estimates based on the first moment E(x|y) have been
studied more extensively [e.g., Carroll and Li (1992), Duan and Li (1991),
Hsing and Carroll (1992) and Li (1990, 1991, 1992b)] and estimates based on
the second moments were also suggested [Cook and Weisberg (1991) and Li
(1990, 1991, 1992a)]. One crucial condition for the success of SIR is the %
components version of (1.2):

(1.9) E(b'x|B\x, ..., B,X) is linear for any b.

Using the Bayesian argument again as in the beginning of this section, we can
infer that (1.9) is expected to hold approximately for many high dimensional
data sets. Thus, without checking (1.9), a blind application of SIR can still be
helpful in finding the most informative directions for viewing the data. This is
a desirable situation because in many cases where the distribution of x is not
elliptically symmetric, it does not seem possible for us to verify a complicated
condition like (1.9) which even involves the unknown directions of main
interest. However, a diagnostic check is recommended after using SIR.

Following the spirit of Diaconis and Freedman (1984), we consider severe
violation of (1.9) as an important feature of the data, due to its unusualness.
We should never ignore this possibility. In the rejoinder of Li (1991), discus-
sion of how to detect this using SIR methodology, and how to resolve the
confounding issue in modelling, is commenced.

2. General strategy. Let f,(-) be the density function of x, and ¢,(-) be
the p-dimensional standard normal density function. For any 8 with (|8l = 1,
let f x(t) be the density of g'x at ¢. In this sectlon we shall find closed form
expressions for the following quantities:

(2 ?
(2.1) A% =E(f(’;1((t)) - 1) ,
= ' — 2 _ 42 fﬁz'x(t)
(2.2) Ax(t) = (B, px = 0lF - 1) 2],
Ay()
(2.8) A1) = T 0 /670

where the expectation in each quantlty is taken with respect to the uniform
distribution of B.

Formula (2.1) quantifies the average departure from normality for the
distribution of a random one-dimensional projection of x. The result of
Diaconis and Freedom (1984) suggests, but does not imply, that A,(¢) is close
to zero for large p under suitable conditions. The closed form expression we
shall obtain later makes this suggestion more transparent. It also allows us to
construct a simple estimate from a given data set for A,(¢). We can assess
whether the asymptotics have become effective or not.
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For describing the departure from linearity for the regression curve
E(x|B, B’'x), a natural quantity would be the simple average

E(IExIB, B'x = t)I* — £2).

We are unable to obtain a simple expression for this quantity. As a substitute,
weighted versions given by (2.2) or (2.3) are suggested. Even though A,(¢)
appears to be rather complicated, a closed form expression can be obtained. As
explained in Section 1, (2.2) is always nonnegative. We can derive (1.5) by
establishing that A,(¢) converges to zero.

2.1. Normal density as a base. It is more convenient to work with a
normal density. The following lemma serves as a bridge for relating the
conditional expectation taken with respect to x and that with respect to a
normal random vector z. First define the density ratio

fo(%)

(2.4) hy(®) =

LEmma 2.1. With definition (2.4), we have
(25) fB'x(t) = ¢1(t)E(hp(z)|B, B’Z = t),
E(zh,(z)B,B'z = t)
E(h,(2)B,Bz=1t)’

where z follows the p-dimensional standard normal distribution and is
independent of B.

(2.6) ExIB,Bx=1t) =

Proor. To get (2.5), observe that
fox®) = [ _fo®dx=[  h(2),(2)dz

= ¢(t)E(h,(2)B, Bz =1t),

where the last identity is due to the rotational invariance of the normal
density. Relation (2.6) can be obtained similarly. This completes the proof. O

Now we can rewrite (2.1)~(2.3) as
A\(t) =E[E(h,(2)IB,B'z = z:)]42 - 2E[E(h,(2)IB, Bz =t)] + 1,
Ay(t) = EIE(zh,(2)IB, Bz = t)I* - ’E[E(h (2)IB, Bz = t)|’,

ElE(zh,(2)8, Bz = t)I*

E[E(h,(z)l, p'z = 1))’

2.

Ay(t) =
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To proceed, we need to assess the three terms involving the conditional
expectations. One approach we have attempted is to compute them directly by
making an Edgeworth type of expansion for the density ratio % ,(z). In fact,
this is our original motivation for changing x to z. However, the formulae
obtained appear rather complicated. Eventually we take an alternative ap-
proach which attempts to convert the conditional expectations to the uncondi-
tional ones. This motivates our construction of the rotational twin as to be
discussed next. One of the referees asks if this idea has been applied in other
contexts. To the best of our knowledge, we are not aware of any precedent.

2.2. The rotational twin. Let ¢ be a fixed real number and B8 be uniformly
distributed on S?~!. Given B, let v, and v, be independent standard normal
random vectors on the orthogonal complement of g:

vy, UslB ~ N(0,I—BB) X N(0,I—Bp').
The rotational twin is defined as
w; =tB + vy,
Wy, =t + v,
The distribution of w,, w, is given below.
LEmMMA 2.2. The law of w, is spherically symmetric, with ||W1||2 dis-

tributed as t* + x2_,, where x2_, denotes a chi-squared distribution with
p — 1 degrees of freedom.

Proor. The spherical symmetry of w, is obvious because of the rotational
invariance of B8 and v;. The orthogonality between B and v, implies ”W1||2 =
t2 + IIv1II2. The proof is completed upon observing that Iiv1||2 follows a chi-
squared distribution with p — 1 degrees of freedom. O

LEmMa 2.3. Conditional on wy, the distribution of w, can be described as
follows:

(i) Decompose w,, into two parts:

where wyw, = 0.

(ii) The distribution of k is normal with mean t2/|lw,ll and variance
(w2 = £2)/liw 1%

(iii) Conditional on k, wy is spherically symmetric on the orthogonal com-
plement of w,, with I|w3||2 being distributed as

2wyl — &)

2
llw I — ¢

2
Xp—2
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Proor. First decompose ¢8 into two orthogonal parts:

¢? ¢?
——w, +th1 - — e,
llw,II?

llw 12
where e is a unit vector orthogonal to w;. By an invariance argument we see
that conditional on w, e is uniformly distributed. Then decompose v, into two
orthogonal parts:

(2.7) 1B =

Uy =Ug + 22—
) 1||

where z, the projection on v, follows the standard normal distribution, and v,
is normal on the orthogonal complement of the space spanned by v, and ¢8.
Now we can write w2 as

=tB+z— + U4
II 1II
w; — I8
=B + z;z—— + vy
llwll* — ¢
t? ) t? w,; . t2 t
=|l—+z1-—5 |— + |tj/1 — -z e+ v,.
[l wyll? | llwll w2 " llwyll 3
It follows that
t? t?
2.8 k=——+21/1 - ——.
(28) il il

This verifies (ii).

Conditioning on % does not affect the distribution of e, which is still
uniform on a p — 1 dimensional sphere, perpendicular to w,. Neither does it
affect the distribution of v, which is still normal on the orthogonal comple-
ment of e and w,. Furthermore, using (2.8) we can derive

liwyll — %
Wy = [t ————— e+ v,
liwyll* —¢

Following the same argument as in the proof of Lemma 2.2 we can obtain (iii).
This completes the proof of Lemma 2.3. O

After a straightforward manipulatioh as outlined in Appendix A, we can
obtain the density function of w,, w,,.

CorOLLARY 2.1. Let g,(w,|t) be the density of w, and g,(w,, W,|t) be the
joint density of w,, Wy Then, the ratios of these density functions to the



LOW DIMENSIONAL PROJECTIONS 875
corresponding normal density functions,
Qp(wllt) = gp(wllt)/d)p(wl) ’

Qp(wpwzlt) = gp(wl’w2|t)/¢p(wl)¢p(w2)’

are given by

(2.9) Q,(W,lt) v21(p/2) : A M 122
. w = . - et /=,
Pt T((p—-1)/2) lwl w12
(p—4)/2
b - 2 t2”W1 - W2”2 2
2.10 W, Wolt) = - - e,
(2.10) - @p(w1, wilt) llw Il llw,l |sin 6] ( llw 1%l w,||? sin® 6

where

6 = angle between w, and w,,

for the region satisfying the constraints
lwll?, Iwyll? > ¢2,
t2lw, — wyll® < lIwlI®llw,l” sin? 6;
elsewhere, the ratios are zero.

Now we have the key theorem for our approach.

THEOREM 2.1. Let x,,X, be independent random variables with the same
density function, f,(x), as x. Then we have the following identities:

(2.11) A(t) = BQ,(x, X,lt) — 2EQ,(x,It) + 1,
(2.12) A,(t) = Ex|X,Q, (X, X,lt) — t?EQ, (%, X,t),

Exix,Q,(x;, X,lt) i
EQp(xl,let)

(2.13) Ayt) =

Proor. From the expressions given in the end of subsection 2.1, we need
to show that
(2.14) E[E(h,(2)IB,B'z = t)| = EQ,(xlt),
2
(2.15) E[E(h,(2)IB,B'z = t)|” = EQ,(x,X,t),

(2.16) EIE(zh,(2)IB, Bz = t)I° = Ex|x,Q,(x, X,lt).
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To obtain (2.14), write the left-hand side as

(;p((:vvll)) g,(wylt) dw,

B &p(xlt)
= [f,(x) 4

To obtain (2.15), write the left-hand side as
E[E(h,(tB + v,)IB) - E(h,(tB + v,)I8)]
= E[E(h,(w)IB)E(h,(w,)B)]
= E[E(h,(w;)h,(w,)IB)]

fp(wl) fp(w2)
¢p(W1) ¢,(Wy)

E(E(h,(¢8 + v,)IB)) = Eh (w,) = f

dx = EQ,(xt).

= Bh,(wi)h,y(wy) = [

= EQ,(x,X,).
To derive (2.16), we write the left-side in terms of the trace operator:
E|lE(zh,(2)IB, Bz = t)I?
- trace(E[E(zhp(z)IB, Bz = t)E(zh (2)IB, Bz = t)’])

and then carry out the same argument as before to complete the proof. O

8,(W1lt)g,(Wslt) dw, dw,

We can easily estimate the quantities (2.14)-(2.16) from the data. Specifi-
cally, suppose that x;,...,x, is an i.i.d sample of size n from the unknown
density function f,(x). Then we can construct estimates by

£Q,(xit) =n~! T @,(x,l),
i=1

EQp(xl’x2|t) = (n® - n)_l )y Qp(xi’let)a

i+j
A’ -1 ’
Ex x,Q,(x1,X,lt) = (n® —n) ~ Y x/x,Q,(x,,x,lt).
i%j
This leads to useful estimates of A(¢), A,(¢), A(¢), and does not involve going

through laborious projections using tools like grand tours. Neither does it
require smoothing.

3. Conditions on the density of x. In this section we shall find condi-
tions on f,(x), the density function of x, so that
(3.1) EA(t) » 0,
(3.2) EA,(t) = 0.
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By Markov’s theorem, (3.1) and (3.2) imply (1.5). According to Theorem 2.1, it
suffices to show that

(3.3) EQ,(xIt) — 1,
(3.4) EQ,(x,,X,lt) — 1,
(3.5) Ex x,Q,(x,;,X,t) - t2.

Before going into the detailed discussion (see subsection 3.2), we take a
quick look at the rotational-twin functions, @,(-[t) and @,(-, - [¢). First, by

Stirling’s formula, I'(p /2)/T((p — 1)/2) is yp/2 + o(1). Thus if

(3.6) !I_xple — 1 in probability,
then

(3.7) Q,(x|t) > 1 in probability.
In addition to (3.6), if

(3.8) cos § — 0 in probability,
then

(3.9) Q,(x;,X,lt) = 1 in probability.

With additional regularity conditions, convergence in probability can imply
convergence in expectation. This resolves (3.3) and (3.4). In subsection 3.1, we
shall further argue that in general (3.8) is a natural consequence of"(3.6).

Formula (3.5) is harder to derive. We need to find the dominating term for

x’lszP(xl,let).
By Taylor expansion as outlined in Appendix B, we can derive the following.
LemMmA 3.1. Under (3.6) and (3.8),
_P__ L)
Ix, 1%l

1
(3.10) x}x,Q(x;,X,|t) = p cos 0(1 + t2(00s0 + 5(2 -

X(1+0,(1)) +0,(lcos 8]) | + O,(p71).

In subsection 3.1 below we shall examine the angle # more closely. As it
turns out, in general the leading term in (3.10) has its expected value converg-
ing to ¢2.

All conditions on f,(x) needed for establishing (3.1) and (3.2) will be put
together in subsection 3.2.
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3.1. The angle 6. In this section, (3.10) will be further analyzed in order to
find the expectation of the leading term.
The following lemma is instructive for this purpose.

LEmMA 3.2. Under (1.1) and the condition that

(3.11) Il = p,
we have

(3.12a) , Ecos6 =0,
(3.12b) Ecos?6=p~ L

Proor. Observe that cos 8 = xx,/(|Ix,| Ix,|) = x}x,/p. Then (3.12a) fol-
lows from Ex = 0. Furthermore,

2pg_ 2 ’ ’
E cos® 0 = pT*EX|X,X,X,

=p 2Ex|Ix,

=p?-p=p71

where we have used covx = I to obtain the second identity. This completes the
proof. O

This lemma shows that as p tends to infinity, cos 8 converges to zero at the
rate of root p. Hence if two independent replicates are from a density
satisfying (1.1) and (8.11), they should be almost perpendicular to each other.
By this lemma, we can see that the leading term in (3.10) has expectation
equal to #%, as desired. But (3.11) is of course much stronger than (3.6).

To loosen condition (3.11), we may consider the Taylor expansion:

cos 8 =p‘1x'1x2(1 - ([:/%—” -1)(1+ op(l)))
(3.13)
x(l - (”E” -1 +op(1))).

In order to ignore the o0,(1) terms, we further assume that

(3.14) Ll

=1+o,(p~"*).

Continuing the expansion in (3.10), we get
X1 X,Q (X, X,l¢)

(8.15) xix,  1[lx]l  lIxll

=x'1x2(1+t2( FRE] i —2)+op(P_1/2)).

The leading term is seen to have mean 2, as desired.
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LEmMA 3.3. Under (1.1) and (3.14), the leading term in X X,Q(X;,X,lt)
[namely the right-hand side in (3.15) without o,(p~"/ 2)] has expected value
equal to t2.

Another way to analyze (3.10) will be given below, based on a more detailed
study of cos 6. This will lead to a better result in the next section. All proofs
will be given in Appendix B.

First, we provide a bound on cos 6.

LeEmMa 3.4. Under (1.1), the angle 0 between two i.i.d. random vectors
X,, X, generated from the distribution of X, satisfies the following inequalities:

1/2
x (12
(3.16) pEcos0=“E—— < |Var —‘/E ,
IIxl [Ix||
1 9 xx' |2 4
(3.17) 1—7 < E cos® 8 = trace (EH;IF) < ApEllxll ,

p
/ 4
A, = sup .;E(b,-X) ,

where the supremum is taken over all possible choices of the orthonormal basis
{bi’ l = 1,...,p}.

Typically the magnltude of E|lx||”* is p~2 and the magnitude of A, is in

the order p since Eb,x2? = 1. This helps explain why cos 6 tends to zero
Now define

{ lIxI1? }
(3.18) B,(c) = {x: T <l-c¢

and consider the following conditions:

(3.19) ” ” ~——1(By(c)) = o(1), forsome c,1 >¢c > 0,

(3.20) ” ”2 1(By(c)) = O(p~'/?), forsomec,1>c¢ >0,
x| 1

(3.21) P 7—1 >c =o;,foreachc,l>c>0,

where 1(-) is the indicator function.

LemMMA 3.5. Assume (1.1). Under (3.6) and (3.19), we have
(3.22) PE cos @ = o(1).
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Under (3.21), we have
(3.23) PE cos? 6 — 1.
Under (3.20), we have

p -1
(3.24) E(l— W)cos0=o(p ).

CoroLLARY 3.1. Assume (3.20) and (3.21). Then the expectation for the
leading term in xx,Q(x,,X,|t) converges to t%

cos 0 + —

1
oo 2o b
IIx, Il 1%l

Epcosé)(1+t2 5

3.2. Convergence in mean. In the discussion up to now we have proved the
convergence in probability, (3.7) and (3.9). We also have shown that the
leading term in x|x,Q(x,, X,|t) has an expected value converging to #2. Since
the convergence in mean is usually implied by the convergence in probability,
with some additional conditions so that we can interchange the limit with the
expectation, we are able to derive (3.3)-(3.5), which implies (1.5).

For any small positive ¢, define

(3.25) By(c) = {6: Isin 6] < c}.
THEOREM 3.1. Under (1.1), assume that
(3.26) E-X_ o),
x|
. —— =0(1
(3:27) — = 0(1),

and that for any c, the left-hand side of (3.21) is of order o(p~'/2). Then we
have

fﬁ'x(t)
b4(2)

- 1‘ — 0 in probability

and

2

(T

fM (]?;x((t)) - 1) dt = 0 in probability for any M > 0.
1

THEOREM 3.2. Under (1.1), assunie that for any c, (3.21) holds, and that
for some ¢ > 0,

(3.28) 1(By(c)) =o(p7Y),

II II2
1

3.2
(3.29) |s1 0l

———1(By(c)) =o(p7").
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Then (1.5) holds. Furthermore, for any positive M,
M 1
[ (IEGB, B'x = I = 2) " fy(£) dt ~ 0.

4. Discussion. In this section we shall argue that the conditions needed
in Theorems 3.1 and 3.2 are very mild. Cases that violate any one of these
conditions without violating condition (1.1) should be regarded as unusual.

4.1. Conditions (3.21) and (3.28). Note that (3.21) and (3.28) regulate the
tails (left or right) of the norm of the random vector x. The normalization
condition (1.1) implies E||x||® = p. Hence by various forms of the law of large
numbers and the central limit theorem, for independent as well as dependent
coordinate cases, (3.21) and (3.28) can be expected to hold in general. For data
analysis, if the true density violates one of these conditions, we may expect to
find either outliers or a cluster of points piling up around the mean. If the data
points have been standardized to have zero mean with identity covariance,
then plotting the histogram for the radius of the data points can help assess if
(8.21) and (3.28) might be violated.

ExampLE 4.1. Suppose that x = (x4,...,x,), where the coordinates x,’s
are independent with bounded eighth moment. Then by Chebyshev’s inequal-
ity and bounds of moments [e.g., Whittle (1960)], we see that (3.21) holds.

ExamPLE 4.2. Condition (3.28) holds for the normal density. In fact, from
the density of the chi-squared distribution we can derive the stronger result
that for any 1 > ¢ > 0, there exists a small ¢; > 0 such that

p p
(41) B(23) 1B = ocer).

Now suppose that the density function f,(x) of x has finite information (with
respect to the normal density),

fr(x )
= Eh%(z).
» =Ly X @
By Chebyshev’s inequality, we can deduce that if
(4.2) I,=0(cy) forsomec,>1,

then (3.28) is satisfied for some ¢ such that the corresponding ¢, in (4.1) is
smaller than 02‘ L,

B ”2 1(By(¢)) = EWhp(Z)l(B(C))

< (ER(z ))”2( (” ”2) 1(1521(c)))1/2

= (1,0(¢f))"” = (O(eye))

12
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REMARK 4.1. We can use the same argument as in Example 4.2 to show
that if I, is of polynomial order, then (3.21) holds. The difficulty in handling
the exponential information arises because we want (3.21) to hold for “each”
¢, instead of ‘“some” c.

4.2. Condition (3.29). This condition concerns the distribution of the di-
rectional part r = x/||x|| of x. Let y(-) be the density function of r with respect
to the uniform distribution on S?~!. As we have argued in subsection 3.1, the
event B,(c) would occur only with an asymptotically negligible probability.
Thus violating (3.29) would mean that the density of sin 6 in the neighborhood
of 8 = 0 decayed too slowly. In the following we shall argue that this would
not happen unless the density function y(r) is too spiky.

Let ¥.(r) be an upper envelope of y(r):

Y(r) = sup y(e),
lsin(r, e)l<c
where sin(r, e) denotes the sine of the angle between r and e. This quantity
gives the peak value of y(:) in a neighborhood of r. The average Ey(r)
measures how spiky the density function y(-) is on the average.

First we shall find an upper bound for the cumulative distribution, F,(c) =
P{|sin 6| < ¢}, in the neighborhood of zero.

Now let e,,e, be two independent random vectors generated from the
uniform distribution on S?~!. Define the indicator function §(e;,e;) =1 or
0, depending on whether the absolute value of the sine of the angle between e,
and e, is less than c or not. An upper bound for F,(c) is given by

F,(c) = Ey(e,)y(e3)d.(e;,€;)
= E[Y(e1)E(V(ez)5c(e1, e2)|e1)]
<E[y(e,) - 7.(e,) Es,(e;, e;)]
= Ey(r) - Ed.(ey,e,).
Furthermore, we can show (see Appendix D) that

(4.4) Ed (e, e,) < \/gp‘l/zc”‘l(l +0(1)).

From this we obtain an approximate upper bound for the left-hand side of
(3.29):

(4.3)

1 c
E—— — [+t
g Be(©) [Ot dF,(t)

= ¢ ', (c) + forsz(t) dt

< c 1, (c) + E7,(r) [0 t2E5,(e,, e,) dt

< E%(r)@ P22 (1 + o(1)).
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Putting these together, we have:

LemMma 4.1. If
Ej,(r) =o(p~'/%c7?)
for some small value ¢ < 1, then (3.29) holds.

Thus, unless the density for the directional part in x is too spiky, we
typically would expect (3.29) to hold.

REMARK 4.2. The normal density clearly satisfies (3.29). Furthermore, we
can show that

1
E——551UBy(¢)) = O(ch)

for some ¢y, 1 > ¢; > 0. Now we can use the same argument as in Example 4.2
to prove that if (4.2) holds then (3.29) also holds.

5. Extension. We can extend our results to the more general situation
(1.6).

First the result in subsection 2.1 needs only very minor changes. Lemma 2.1
is still valid if B is replaced by B and ¢(¢) by ¢,(t). Next, in subsection 2.2, we
can define the rotational twin by

w, = Bt + vy,
w, = Bt + v,,
where ,
vy, UglB ~N(0,I — BB') X N(0,I — BB').
Lemma 2.2 is still valid if we change x2_, to x2_,. Similarly, in Lemma 2.3,
we need to change ¢2 to [It]?, and x?_, to x2_,_;. In the proof of Lemma 2.3,

the key decomposition (2.7) still holds, and e is still uniform on the unit sphere
orthogonal to w,. For Corollary 2.1, we can replace (2.9) and (2.10) by

) 2k/2r(p/2) 1 ||t||2 (p—k—2)/2 o
O TRV N ||w1||k( ) ||w1||2) e
It) = 2'I(p/2)  T((r-1)/2)

(w1, walt) = T((p—k)/2) T((p—k-1)/2)
1

(2.10") .
w1 llwy|*|sin 6]

2 9 \(p—k-3)/2
( 11w, — Wl )

- 2 2 .
lw,lI*llwy|I* sin® 6

2
et
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These changes do not alter the main argument in Section 3. Theorems 3.1 and
3.2 can be generalized by substituting B for 8. Therefore, (1.6) is seen to hold
in general.

APPENDIX A

Proof of Corollary 2.1. Result (2.9) follows from Lemma 2.2. To obtain
(2.10), we first use Lemma 2.3 to write @,(w,, w,|t) as the product of @,(w,¢),
the density of & given w, over ¢(k), and the density of |Iw3|| given w, and %
over a chi-squared density with p — 2 degrees of freedom:

)

(p—3)/2
\/§F(p/2) . 1 1 _ tz P et2/2
I((p-1/2) Iwi|"  iiwd?

Al 1 llwyl? 2\ . k2
———— eXp{ T ———— |k~ —— -
wiE—22 P 2w " w2

(p—4)/2
o V2T ((p-1)/2) 1 ( ~ 12 )p 22

2
A

I'((p —2)/2) liwsll

where 1 = t%(lw|l — £)%/(lw,|I> — t2). Note that [wsll = [lw,l |sin 6]. After
simplification, we can obtain (2.10).

APPENDIX B
Proofs for subsection 3.1.

Proor oF LEMMaA 3.1. First use Taylor expansion to get
lsin 6] ™' = 1 + O,(cos 62).

Similarly,

p—4 2%, —x, V¥
exp(t% + log(1 - -
{ 2 lIx,/I%l|x4)I® sin? 6
o P ||X1 - X2||2
2 lIx, l1%l1x,1?

= exp{t2 - O,(p") + O,(cos? 0)}

2
p Ix, — x,l

=1+#%1- 5 —s 2
( 2 x|l ?||x,)I

)(1 +0,(1)) + O,(p™ ") + O,(cos?0).
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Further expansion of the leading term in the preceding expression gives

lx, — x> 1
1+2(1- 2R 1——( I 2)+ L
2 |Ix,1%lIx,l 2\ x|l lIx,|l llx, Il 14l
1
=1+t21——( p2 5 +c0s0)
2\ Il lIx|l
+ 0,(cos 0).
This leads to Lemma 3.1. O
Proor or LEMMA 3.4.
X)X,
pE cos 6 = pE ————
[l 11 1%l
|z

2

“fex{ -

1
n:;iplE(b x)( Ixl/vp 1)

)]

This derives (3.16). Next, consider

’ ’ r N2
x| X,X,X XX
Ecos20=E——1—:-L1— =trace[(E )]

IA

2
AR Il

Now take b,,..., , as the elgenvectors of the matrix Exx’/ Ix||2. We see that
the last term in the above expression is equal to L(E(bx)?/[Ix/%)2, which is no
greater than

1

E(b:x)*E— <A ,E—.
EB(bx)° lIx II4 P )

This shows (3.17). O

ProoF oF LEMMA 3.5. Conditions (3.6) and (3.19) imply that var(;/p /I|x||)
converges to zero. Hence (3.22) follows from Lemma 3.4.
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Next, due to (3.17), we need only show one-sided convergence:

pEcos’0 <p) |E

(bix)*

2
x|

:
{2

b
2
lIx|1?
1jl— =1 <} .
b
The first term inside the summation is no greater than P{1(|Ix|®/p — 1| >
¢)}, which is of order o(p~!) by assumption. The second term inside the

summation is bounded by 1/[p(1 — ¢)]. Now we can obtain easily (3.23).
Consider (3.24). We have

(b/x)*

2
Il

-1

=pZ(E

(bix)”

+E——_
x>

x’ X
pEcosO(l— pz)=E"/l7 1(1— pz)E 2
I, I [, lIx, 12 ) =N/
xl
_gVP 1(1_ pz)E VP .
[, %, Il

The norm of the second expectation term converges to zero due to (3.22).
We can bound the norm of first expectation term by

(1 i)

x|
Break the expectation into two parts, I + II, with

_ b
=1

sup E
lloll=1

x'b ]I
I1=E ‘/; (1 P 5 )1 <cl,
x|l x|l p
x'b x|
II=E‘/5 (1— p2)1 >cl.
4] lIx]l p

The II term is no greater than

¢TVH(1 + 2/¢)Elb'xl < ¢ V2(1 + 2/c).

The I term is no greater than

2
Il

x'b

3
x|

2p3/2
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which in turn is bounded by

1 lIx/1?
p¥PE— 1| — <c|.
lIxIl p

APPENDIX C

We have verified (3.24).

Proofs for subsection 3.2. Proofs of Theorems 3.1 and 3.2 follow from
the three lemmas given below.

LEmMa C.1. Assume (3.6) and (3.8). Then (3.3) holds for t #+ 0. In addi-
tion, if the following additional condition also holds:

s

b
B 1(Bu(e)) = o(1),
then (3.3) holds for t = 0.
Lemma C.2. Assume (3.6), (3.8), (3.26) and (3.27). Then (3.4) holds.
Lemma C.3. Assume (3.6), (3.8), (3.28) and (3.29). Then (3.5) holds.

Proor oF LEMma C.1. Take the derivative of @Q(x,¢) with respect to x and
verify that the maximum of Q(x,t) is achieved at |x||® = t2(p — 2). The

maximum value converges to ¢~ le“*~/2, This completes the proof of the first
part. The second part is obvious. O

Proor oF LemMmMA C.2. Observe that @Q(x,, x,[¢) is bounded by
p(Ix,ll Ix,|l[sin 8)~*. Therefore it suffices to find a finite upper bound for

Ep(lix, |l Ix,]lsin 1)~
We now use the Cauchy—Schwarz inequality to complete the proof. O
Proor oF LEMMA C.3. For any small positive ¢, define

I, 1%
-1

¢, or

BAD = {xl,x2: > ¢, or |cos 0] > c}.
Then

1
e PEIx x,Q(x,, X,/t)|1( BAD) < PE i 1(BAD)

1(By(c)) + p(1 — ¢?)” ' P{BAD}.

< pE
=Pp |sin 6|
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This is seen to converge to zero by our assumptions. Similarly, define L(x,x,/¢)
to be the leading term of x;x,@,(x;,X,|¢), given in Corollary 3.1. We have

1
E|L(x,,%,lt)le™* < pE|1 + 2% + Ept2(||x1||_2 +|Ix,I7*)|1( BAD)

b

2
x|l

< (1 + 2t%)pP( BAD) + t*pE——1(By(c))

+t2(1 — ¢) *pE1( BAD),

which converges to zero. This completes the proof. O

APPENDIX D

Proof of (4.4). The distribution of the angle between e, and e, is the
same as the distribution of the angle between a p-dimensional standard
normal random vector (zy,...,2,) and the first coordinate. Therefore the
probability that the tangent of this angle has absolute value less than ¢ is
equal to

which equals

2I'(p/2) - 2\ P2
VP = 1VaT((p - 1)/2) f\/zT—T/t(l e 1) -
Delete the constant “1” in the integrand and change variable to get a bound
2I'(p/2) tp1
VP - 1Vrl((p-1)/2) p— 1’

Now use Stirling’s formula and the relationship between sine and tangent to
get (4.4). O
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