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GEOMETRY OF E-OPTIMALITY

By HoLGER DETTE AND WILLIAM J. STUDDEN'!

Universitit Gottingen and Purdue University

In the usual linear model y = 6'f(x) we consider the E-optimal design
problem. A sequence of generalized Elfving sets %, C R"** (where n is
the number of regression functions) is introduced and the corresponding
in-ball radii are investigated. It is shown that the E-optimal design is an
optimal design for A’'6, where A € R"*" is any in-ball vector of a general-
ized Elfving set &, c R"*”. The minimum eigenvalue of the E-optimal
design can be identified as the corresponding squared in-ball radius of %,,.
A necessary condition for the support points of the E-optimal design is
given by a consideration of the supporting hyperplanes corresponding to
the in-ball vectors of %, .

The results presented allow the determination of E-optimal designs by
an investigation of the geometric properties of a convex symmetric subset
£, of R**™ without using any equivalence theorems. The application is
demonstrated in several examples solving elementary geometric problems
for the determination of the E-optimal design. In particular we give a new
proof of the E-optimal spring balance and chemical balance weighing
(approximate) designs.

1. Introduction. Let f(x) = (fy(x),..., f,(x)) denote n linearly inde-
pendent regression functions on a compact set £° which contains at least n
points and let § = (6,,...,6,) denote a vector of parameters. We will consider
the usual linear regression model in which for every x € £” a random variable
Y(x) with mean 6'f(x) and variance o2 > 0 can be observed. An experimental
design is a probability measure ¢ defined on a o field of sets of & which
include the one point sets. The information matrix of the design ¢ is given by

M(¢) = [ f(2) f'(x) dé(x).

If ¢ concentrates mass n,/N at the points x;, i = 1,...,r, L7_in; = N, the
experimenter takes n; uncorrelated observations at each x;, i =1,...,r, and
the covariance matrix of the least squares estimator of 6 is proportional to
M~1(¢). An optimal design maximizes or minimizes an appropriate functional
of the information matrix or its inverse. In this paper we will investigate the
E-optimality criterion which maximizes the minimum eigenvalue of M(¢) with
respect to the design ¢. The E-optimal design minimizes the worst possible
variance of the least squares estimators for all possible linear combinations
c'0, where ¢ € R” has Euclidean norm 1. For this reason the E-optimal design
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problem is intimately related to the problem of optimal design for linear
combinations of the unknown parameter vector which is considered next.

Let 2 <n and A € R"** denote a real valued matrix. A design ¢ is called
optimal for A’ if it minimizes tr(M ™ (£) AA'), where M~ (¢) denotes a general-
ized version of M(¢) and tr(B) the trace of a matrix B. An optimal design for
A'6 can be used if the experimenter is interested in certain linear combinations
aih,...,d,0 of the unknown parameter vector, where a,,...,a, denote the
columns of the matrix A.

If the minimum eigenvalue of the E-optimal moment matrix has multiplic-
ity 1, there is a nice geometric interpretation of the minimum eigenvalue A,
and its corresponding normalized eigenvector a;, |la;llz = 1 [see Pukelsheim
and Studden (1991)]. In this case the design ¢ is E-optimal if and only if it is
optimal for a’6. Moreover, the vector |/A,;,a, is an in-ball vector of the
Elfving set

(1.1) Z, = conv({ef(x)lx € Z,e = F1}) CR”,

where conv(S) denotes the convex hull of S. This means that the ball
{x| Izl < Amin) i the largest ball which is included in the set %, (here |- |2
denotes the Euclidean norm on R") and the vector /A ,,;, @, is on the boundary
of #,. The set %, is due to Elfving (1952) and is very useful in discussing
optimal designs for ¢’6 where ¢ € R” [see also Pukelsheim (1981) or Studden
(1971)]. The above result suggests the following procedure for finding E-opti-
mal designs. At first the in-ball radius r; and a corresponding in-ball vector a,
are determined and then using the results on scalar-optimality the optimal
design for a';0 is found. Under the assumption that the minimum eigenvalue
of the E-optimal design has multiplicity 1 the resulting design is the E-opti-
mal one. An obvious drawback of this procedure is that the multiplicity of the
minimum eigenvalue is unknown because the E-optimal design (which has to
be determined by it) is not known. A simple striking example in which
E-optimality is obtained without any scalar optimality was given by Pukelsheim
[(1981), Example 5].

It is the purpose of this paper to develop a geometric characterization of
E-optimality without any assumption on the multiplicity of the minimum
eigenvalue of the E-optimal design. After stating some preliminary results
from the literature in Section 2 we will show in Section 3 that every E-optimal
design is optimal for a set of parameters A’'f, where the matrix A essentially
contains some of the eigenvectors corresponding to the minimum eigenvalue of
the E-optimal moment matrix. We will introduce generalized Elfving sets %,
and give a similar geometric characterization of the minimum eigenvalue of
the E-optimal design (with an arbitrary multiplicity) as an in-ball radius of
one of these sets. This result provides a procedure for the geometric determi-
nation of E-optimal designs without any prior knowledge of the multiplicity of
the minimum eigenvalue. The application of the results is illustrated by
several examples in Section 4. In particular we present an elementary (geomet-
ric) derivation of the E-optimal spring balance weighing designs which were
considered (among other things) by Cheng (1987).
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2. Preliminaries. In this section we will discuss some important tools
used in determining E-optimal designs and optimal designs for A'6, where
A € R™** is a given matrix. The following two equivalence theorems enjoy
particular popularity and can be found in Pukelsheim (1980).

THEOREM 2.1 (E-optimality). A design &g is E-optimal [i.e., it maximizes
the minimum eigenvalue of M(&)] if and only if there exists a matrix
E € conv(S) such that

(2.1) f'(x)Ef(x) <A, foralxe .

Here A, denotes the minimum eigenvalue of the matrix M(¢g) € R™™™
and conv(S) is the convex hull of the set S of all n X n matrices of the form z2',
with |lzll; = 1, such that z is an eigenvector of M(¢g) corresponding to A,

THEOREM 2.2 (Optimality for A’'0). Let A € R™"** denote a given matrix of
rank k and £, denote a design for which range(A) C range(M(&,)). The
design &, is optimal for A'0 if and only if there exists a generalized inverse G
of M(¢,) such that

tr( AGf(x) f'(x)G'A) < tr(AM~(£,)A) forallx € .

The following theorem was proved by Studden (1971) and is a generaliza-
tion of the famous theorem of Elfving (1952) for scalar optimality. It provides
a geometric characterization of the optimal design for A’6 by considering
boundary points of a symmetric convex subset of R™**. Define

(2.2) Ry = conv({f(x)e'lx € ', e € RE, [lelly = 1}) € R*>*

[note that this definition corresponds to (1.1) for 2 = 1]; we have the following
result.

TueoreM 2.3 (Elfving’s theorem for A'9). A design & = {;‘}i=1 is optimal

for A6 if and only if there exists a number y > 0 and vectors ey, ..., ¢, € R
with Euclidean norm 1 such that the point

(2.3) YA =Y p;f(x;)e]
i=1
is a boundary point of the set %,,.

For the application of this result we will need an appropriate characteriza-
tion of the boundary points of #,. For convex subsets of R* boundary points
can be characterized by supporting hyperplanes. The same is still true for
(convex) subsets of R*** when the vectors are replaced by matrices. More
precisely we have the following result [see Studden (1971), Lemma 3.2].
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LEMMA 2.4. A matrix yA of the form (2.3) is a boundary point of %, if
and only if there exists a ‘‘supporting hyperplane” D € R*** such that:

@) tr(yAD) = 1,
Gi) ID'FGI% = f(x)DD'f(x) < 1 forallx € X

and equality holds in (ii) for each x; with p, > 0. Moreover we have ¢; =
D'f(x;),i =1,..., m in the representation (2.3).

For our later investigations it is useful to identify the supporting hyper-
plane of the boundary point yA in (2.3) of Theorem 2.3. It follows from the
proof of this theorem [see Studden (1971)] that

(2.4) YA =M(é,)D,

where M(¢,) is the information matrix of the optimal design for A’8. Moreover
we have for the number y in this theorem

(2.5) Y 2= tr(AM (£4)A)

for any generalized inverse of M(¢,).

3. Main results. In this section we will investigate the relationship be-
tween the E-optimal design and the optimal designs for A’6. In what follows
Amin @always denotes the minimum eigenvalue of the information matrix of the
E-optimal design £ and A, (B) denotes the minimum eigenvalue of a matrix
B. By Theorem 2.1 the design ¢ is E-optimal if and only if there exists a
matrix E which satisfies (2.1) and has the representation

ko
(3.1) E=Y a2z,
i=1
where z,,..., 2, are normalized eigenvectors (|2l = 1) corresponding to the

minimum eigenvalue A,;, of M(¢z) and the a; are positive numbers with sum
1. The following auxiliary result shows that we can always assume that the
vectors 2y, ..., 2, in this representation are linearly independent.

LEmMA 3.1. Let & denote the E-optimal design and let E denote a matrix
which satisfies the conditions of the equivalence Theorem 2.1. There exists a
representation of E of the form (3.1) such that the vectors z,,...,z, are
linearly independent.

Proor. Letting %, = rank(E) we obtain for E the representations

k ko
E= ) a;z2; and E= ) pypj,
i=1 i-1

where the first one follows from Theorem 2.1 and the second from the
eigenvalue decomposition of the nonnegative definite matrix E (note that
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Pis-- -5 Pp, 8re linearly independent). Let x denote a vector with zjx =0,
i =1,..., k. From the identity 0 = T*_,a,(x'z,)(z}x) = x'Ex = Tke 1(plx)2 we
conclude nullspace{z,, . . ., 2,} C nullspace{pl, ..., Pg,} Or equivalently
span{py, ..., pp,} S span{zl, ..., 2}. This shows that p,,...,p, are eigenvec-
tors of M(¢5) correspondmg to Apyin- From Theorem 2.1 we have llz;llz = 1 and
Y*_,a; = 1 which implies

ko k
Ylpl3=trE= Y a;lz;l3=1.

i=1 i=1

P; !
£= Lot (1)
lzl”” 2\ ol )\ Tl

is a representation of E of the form (3.1) with linearly independent eigenvec-
tors of M(£y) corresponding to the minimum eigenvalue A ;. O

Therefore

In what follows we will always assume a representation of E by linearly
independent eigenvectors z,...,2,,. Note that k, is not necessarily the
multiplicity of A_;, and that k, < n. For these representations we have the
following result.

min

THEOREM 3.2. Let {5 denote the E-optimal design and E denote the matrix
in the equivalence Theorem 2.1 with a linearly independent representation of
the form (8.1). Then the design §&p is optimal for A0, where A =

a2y, -5 yfag,2,,) € R o,

ProoF. Let E = IFo a;z;z, denote a representation of the matrix E,
where z;,..., 2, are llnearly 1ndependent eigenvectors of M(&5) correspond-
ing to A, From Theorem 2.1 we obtain for all x € &~

Amin = F/(2) Ef(x) = f'(%) Z( z)(Va;z:) f(x) = tr( f'(x) AAf(x)),

where A = (ya,z2,..., 1/“kozko) € R™**0 has rank k,. Because we are inter-

ested in the E-optimal design for the whole parameter vector we may assume
that M(¢&5) is positive definite which yields [note that M(£z)z; = A;,2;]

Amin = tr(Af(x) f'(x) A) = X tr(AM ™ (£5) (%) f'(x) M~ (£5) A).
Therefore we have for all x € £ (note that ||zl = 1)

ko
= Y a;ziM Y (£p)z;
i=1

tr(AM (&) f(x) () M (ép)A) < 5

ko
= Y a; tr(M_l(gE)zizg)
i=1

= tr(M~(é5) AA)
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and it follows from Theorem 2.2 that the design £ is optimal for A’'6, where
the matrix A is given by A = (/a;2,,.. ., V%o 2ky)- O

REMARK. Reversing the above steps one can easily obtain a converse to
Theorem 3.2. That is, suppose that the design £, is optimal for A6, where
A =(Jayzy,..., /ey, 2,,) for some set {a}fe;, TFo o, = 1, and 2,,..., 2, are
linearly independent normahzed eigenvectors corresponding to A, (M(£,)) >
0. Then the design ¢, is also E-optimal and a matrix E in the representation
(2.1) of Theorem 2.1 is given by E = L%, a;2;2..

The preceding result is the basic step for a discussion of the geometric
characterization of E-optimality according to Elfving’s Theorem 2.3. Recalling
the definition of the Elfving set in (2.2) we obtain that there exists a number

vy > 0 and vectors ¢),..., ¢, such that for the E-optimal design ¢ = { » }l L
the point
(3.2) yA = ) p;f(x;)e;
i=1
lies on the boundary of the set %, where &, is the number of eigenvectors in

the representation (3.1) and A = (ya; 2y, ..., \/a—k:zko) € R"**0 ig the matrix
of Theorem 3.2. Moreover we have for the number y from (2.5)

(3.3) y 2 =tr(M (&) AA) = .
and for the supporting hyperplane D at the point yA = /A ;, A by Lemma 2.4
and (2.4)

D=yM Y(&)A = A,

1
V Amin

(3.4) )
g=Dﬂ%)=%rfAﬂ%) i=1,...,m.

Equations (3.2) and (3.4) show that the boundary point /A, A € 0%, and
its supporting hyperplane D at %, have the same direction. This suggests
that the boundary point /A,;,A is an in-ball vector of the Elfving set

min

Py, S R*>**o which means that the norm of /A, A attains the minimum
distance to the origin r, = min{llx|lslx € 0%, } among all boundary points of
R -

THEOREM 3.3. Let ¢g denote the E-optimal design, E a matrix which
satisfies the conditions of Theorem 2.1 with a linearly independent representa-
tion (3.1) and define the matrix A, = oy 2y, ..., ‘/a—k:zko, 0,...,0) € R**%,
ko <k < n, where the last k — k columns of A, contain only zeros. Then the
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point /A ;n A, is an in-ball vector of the set %, for any k > k, and we have
r2=Ay, forallk > k.

Proor. From (3.2) and (3.3) we have that the matrix /A, A, is a
boundary point of %, with supporting hyperplane D given by (3.4). By
Lemma 2.4 /A, A, is a boundary point of %, with supporting hyperplane
D, =(D,0,...,0) € R*** for any k > k,. For the norm of A, we obtain
| A,ll5 = tr(A, A}) = Tk a;2}2; = 1 which implies (A, A, € 9.%,)

(3.5) 2 < W Amin Agll = Ay forall & > k.

On the other hand, we have for every D € R®** with ||D'f(x)|ls < 1 (for all
x € &) that tr(D’'M(£)D) < 1 for every design ¢ on . This implies that

o FMLTNOFF) tr2(G'F) 1
we Eom wFE PP PP\ w(GM(6)G) t(FF)
‘ tr2(D'F) 1 tr2(D'F)
> inf sup > sup = tr(D'D).

¢ p tr(DM(£)D) tr(FF') = "5 tr(FF')

Here we have used the identity tr(M~'FF’) = supg(tr? G'F /tr (G’ MG)) [see
Studden (1971), page 1614] which follows from the Cauchy-Schwarz inequal-
ity, as does the last step. Because the distance from the hyperplane D to the
origin is given by 1/tr(D’D) we obtain for the squared in-ball radius the
representation

(36)  ri-= inf{ D e R | D'f(x)l, < 1Vx € ,92”}

1
tr(D'D)
Thus we have r2 > A_;, & > k,, which in combination with (8.5) proves the
assertion of the theorem. O

Theorem 3.3 can roughly be summarized in the following way. Considering
the Elfving sets %, #,, H#s,... there exists a number %k, such that all
squared in-ball radii r? are equal to the minimum eigenvalue of the E-optimal
design for &k > k. In every set #,, k > k,, there exists at least one in-ball
vector /A, A € R™** for which the E-optimal design is also optimal for A’6.
From the linear independence of the vectors zy,..., 2, in the representation
(3.1) we obtain that k, < n. This suggests the following procedure for the
determination of E-optimal designs. Look at the in-ball vectors A of the set
%, (because we do not know the numbers %2, < n in the representation (3.1)]
and determine the optimal designs for A’ by known results for this optimality
criterion. However, some caution is appropriate in the application of this
procedure for the determination of E-optimal designs as indicated in the
following example.
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_ _ o [(1 1) [(12) (-1r2
ExampLE . Let n =2, f(x)=(x,x,), 2= {(1),(_1), ( | ),( § )}
It can easily be shown that r2=r2=1=2_, (note that n =2 implies

ré=a 0 0) is a boundary point of %, with supporting

). Because A = (1 0

min

10
representation [note that ¢, = f'(x;,)D by Lemma 2.4]

0 0 1(1 1

A= =—21(1,0) + =

(1 0) 2 ( 1 )( 0) 2

we obtain from the (Elfving) Theorem 2.3 that the design which puts equal
mass at the points 1{ %) and ( - 11/ 2) is optimal for A'6, where A is an in-ball

hyperplane D = (O 0) we see that A is an in-ball vector of %,. By the

12)(1,0)

vector of Z,. Its information matrix and its minimum eigenvalue are given by
10
0 1
and therefore the design £, is not the E-optimal one. On the other hand, we
have for A the representation

R IR

which shows that the design ¢, which puts equal mass at (i) and ( #i) is also
optimal for A’6. It is easily verified that this design is an E-optimal one.

M(gA) = ( )’ Amin(M(gA)) = % </\min

The preceding example shows that not every optimal design for A’ (where
A is an in-ball vector of #,) is necessarily an E-optimal design. However, by
Theorem 3.3 there always exists an in-ball vector A of %, such that the
corresponding optimal design for A'0 is E-optimal. The following theorem
shows that the E-optimal design is optimal for A9 for every in-ball vector A of
the set %, k > k,,.

THEOREM 3.4. Let &5 denote the E-optimal design and E the corresponding
matrix of Theorem 2.1 with a representation (3.1) of k linearly independent
vectors zy, ..., 2;,. Whenever n > k > ko and /A, A is any in-ball vector of

%), the E-optimal design is also optimal for A'0 (or equivalently for /A ;, A'9).
Moreover, if D € R™** is a supporting hyperplane of %, at VAmin A, we
have | D'f(x)llz = 1 for all support points x; of the E-optimal design.

ProOF. Because /A, A is an in-ball vector of &%, and %k > &k, we have
from Theorem 3.3

)‘min = rkz = tr(v)‘min AA’\/ /\min) = )‘min tr AA,’

which implies tr AA’ = 1. Let ¢, denote an optimal design for A’'6. Then from
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(Elfving’s) Theorem 2.3 and (2.5) we obtain AL} = tr(AM (£,)A) =
inf, tr(AM~(¢)A). On the other hand, it follows for the E-optimal design ¢z
that

inf tr( AM™(£) A) < tr(AM (&) A)

>

min

r(AM (6 A) _tr(AMN(Ep)A) 1
tr(AA) 4 tr(AA) A

)

which shows that £ is also optimal for A’6 [because tr(A'M~1(£;)A) attains
the optimal value 1/A,,, 1.

If D is a supporting hyperplane of %, at /A, A, it follows from
ID’f(x)lls < 1 that tr(D'M(£)D) < 1 for any design ¢ on £ and we obtain

tr2(F'A) . tr2(D'A)
tr(F'M(é5)F) = tr(D'M(£5) D)

— = tr(AM~'(¢g)A) = sup

min F

> tr2(D'A) =

min

Thus we have 1 =tr(D'M(¢p)D) =X p, tr(D'f(x,)f'(x,)D) <1, which
shows || D'f(x))llz = 1 for all support points x; of the E-optimal design. O

The results derived so far suggest the following procedure for the determi-
nation of the E-optimal design. First the in-ball radius of %, an in-ball vector
A and its supporting hyperplane D have to be found. From Theorem 3.3 we
know the existence of &, < n such that r? = A, for all £ > &, which shows
that the squared in-ball radius of %, is given by the minimum eigenvalue of
the E-optimal design. In a second step we have to find the designs which are
optimal for A'6 and calculate the minimum eigenvalue of the corresponding
moment matrices. Any design whose minimum eigenvalue is equal to the
in-ball radius of %, is, of course, E-optimal. Theorem 3.4 says that the
E-optimal design has to be among these designs and that all support points x;
satisfy || D'f(x;)llz = 1. Moreover if there are several in-ball vectors A;(j € I)
of &%, with supporting hyperplanes D; we have for the support of the
E-optimal design

supp(¢z) = () {«lI1D,xls = 1).

jel

We will demonstrate this procedure in some examples in Section 4. The main
step is the determination of the in-ball radius of %, . The following result gives
estimates of the in-ball radius r,, by the in-ball radius r,, m < k, and is often
very useful for the calculation of the in-ball radii of %,.
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THEOREM 3.5. Let r, denote the in-ball radius of %#,, k=1,...,n, and
A i, denote the minimum eigenvalue of the E-optimal design.

(a) The sequence ry,ry, 1y, ... is decreasing.
() r2 > Ay forall 1 <k <n.
(¢) Forallm <k < n we have mr2 < kr?.

Proor. Let A, € R"** denote an in-ball vector of %, with supporting
hyperplane D,. Then the point A,,; = (A,,0) € R****D ig also a boundary
point of %,.; with supporting hyperplane D, ., = (D,,0) € R****+D (by
Lemma 2.4). This implies

ric Str(Ap AL, ) = tr(ALAL) =17,

which proves part (a). By Theorem 3.3 we find r? = A, and thus (a) im-
plies (b). To prove (c) let D =(d,,...,d,) € R"** be a matrix such that
ID'f(x)llz < 1 for all x € 2, then we have for any subset I c {1,..., &} with
#I=m <k

k
12 IDF(x)If = T (dif(x))" = L (dif(2))
i=1 iel
Therefore D;=(d;,...,d; ) € R fulfills |D;f(x)llz <1 for all x € 2
andall I ={i,...,7,} €{1,...,k}). Thus D; is a supporting hypeplane of %Z,,
and (3.6) implies

1

-1
ds— b (raa)”

tr(D;D}) ier
From this inequality we obtain

1

Zk:d'idim( ) Zdédi)ﬁ(—kl—l)— ) %

i=1 Ic{1,..., k}yiel Icq,..., k}
m — #I=m m-—1 #I=m
k
(m) 1 k1
E—1\r2 mr?’
m—1

which proves part (c) of the theorem. O

We should mention at this point that the bounds of (b) and (c) are sharp.
More precisely, Example 2 in Section 4 provides situations for which A, ;, has
multiplicity n» and we have equality in (b) or (c).

Although the calculation of the in-ball radii r, is not always possible in
general we can usually find upper bounds for r, by identifying some boundary
points of %,. These bounds can be used as bounds in the E-efficiency
calculation of a given design. For example if ¢ > r, for some & we obtain for



426 H. DETTE AND W. J. STUDDEN

the E-efficiency Eff(¢) of a design ¢ from Theorem 3.5(b)
Amin( M(f)) > /\mm(M('f)) > /\min( M(f))

2 2
/\min Ty, ¢

(3.7)  Eff(¢) =

We will finish this section by giving a bound of the multiplicity of the
minimum eigenvalue of the E-optimal design which can be determined from
the sequence of in-ball radii (r, 7y, ..., r,).

COROLLARY 3.6. Let r, denote the in-ball radius of %, and f = max{i|r; <
ri_ Gfry=ry= -+ =r, define f = 1), then the multiplicity of the minimum
eigenvalue of the E-optimal design is greater or equal f.

Proor. Let E denote the matrix of the equivalence Theorem 2.1 with a
linearly independent representation (3.1). From Theorem 3.3 we have r, =
Tho+1 = '°° =T, which implies f <k, < multiplicity of A;,. O

4, Examples.

4.1. Spring balance weighing designs. In a recent paper Cheng (1987)
investigated ®,-optimal designs for the regression setup f(x) =x =
(%1, %9, ...,%,), Z=1{0,1}" (Cheng considers y = [0, 1]*; however, these are
equivalent in the ‘“‘approximate’ theory). These designs are called spring
balance weighing designs [see Raghavarao (1971), Chapter 17]. Cheng (1987)
applied an equivalence theorem of Kiefer (1974) and determined the ®,-opti-
mal approximate designs. For p = «» he found the E-optimal spring balance
weighing design. By the application of our results we can present a geometric
solution of this E-optimal design problem. To this end let %} denote the
Elfving set of Theorem 2.3 and r,(n) the corresponding in-ball radius (here
the index n represents the number of regression functions). Let D' =
(d,,...,d,) € R**" denote a matrix satisfying ||D'f(x)ll; <1 for all x €
Z (note that in contrast to Section 3 the vectors d,...,d, denote here the
columns of D’). For the determination of the in-ball radius r,(n) of %},
k < n, we have to solve the problem [see (3.6)]

1
(4.1) Minimize W subject to |D'xlls < 1Vx € &Z.

Inserting all possible points x € £'= {0, 1} in the constraint, (4.1) is equiva-
lent to the problem

Ld,

iel

n
Maximize Y. Ild;ll3 subject to
i-1

<1forall I c({1,...,n}
2

which has the following nice geometric interpretation: ‘“In the set of n vectors
{d,,...,d,} in the unit ball B of R* such that the sum of any of these vectors
is also contained in B, maximize the sum of the squared norms of all n
vectors.” For the solution of this problem it is convenient to distinguish the
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case n = 2m and n = 2m + 1. We consider at first the even case and £ = 2m
which is the interesting case for E-optimality. The matrix D' = (dy,...,d,,)
has to satisfy the conditions

2
(4.2) Yldilz+ Y Ydid,=||Ld,| <1
iel iel jel iel 2
i%j
for all subsets I c{1,...,2m}. Considering only the subsets I with exactly m

elements and adding the inequalities of (4.2) corresponding to these sets we
obtain

(4.3)

—
2m - 1) w 2 m )\ 2
( )Elnd,-uz vl

From |[£2™, d,ll3 > 0 it follows that
i=1 i

2m 2m 2m
Y ¥ did; >~ Y Id;l3
i=1j=1 i=1
J#i
and (4.3) reduces after some algebra to
2m 2(2m — 1)
(4.4) tr(DD') = Y |ld,lI3 < ——.
i=1
On the other hand, it is easy to verify that the matrix

2m -1 -1 - -1
1 -1 2m-1 - -1

= 2mX2m
D, = eR

~1 1 - 2m-1

satisfies || Djx|l3 < 1 for all x € {0,1}>™ and that tr D,D}, = 2@m — 1)/m.
This shows that D, is a solution of the problem (4.1) and that the in-ball
radius r,,(2m) of Z27 and the minimum eigenvalue of the E-optimal design
are given by (see Theorem 3.3)

m
22m - 1)
The in-ball vector of % is given by /A ;,A=(m/2(m — 1))D, with

supporting hyperplane D, and by Theorem 3.4 we obtain that the support of
the E-optimal design is included in the set

/\min = r22m(2m) =

{xlIDyxlle = 1} = {x € {0,1}*"|x has exactly m components equal 1}.

Let {v;} denote the set of vectors in R®*™ with m components 0 and m
components 1, then it is straightforward to show that the design {5 which



428 H. DETTE AND W. J. STUDDEN

puts uniform mass on the (2,;") vectors v, has information matrix M(¢g) =
(m/2@2m — D)I,,, + (m — 1)/2(2m — 1))J,,, with minimum eigenvalue
Apin = m/2(2m — 1) (here I,, denotes the identity matrix and J,,, the
matrix with all elements equal 1). Therefore ¢ is the E-optimal spring
balance weighing (approximate) design (for n = 2m) and the minimum eigen-
value A, has multiplicity 2m — 1. By the same reasoning it can be shown
that for n = 2m + 1 the E-optimal design puts equal mass at the (2’” +1
vertices of [0, 1]2™*! with m + 1 coordinates equal 1 and m coordinates equal
0. The minimum eigenvalue is r3, . ,2m + 1) = A, = (m + 1)/2@Cm + 1)
and has multiplicity 2m.

For the determination of E-optimal design it is sufficient to look at the set
R and its corresponding in-ball radius r,(n). However for the illustration of
the theorems of Section 3 it might be useful to investigate also the in-ball
radius r,(n) for & < n in this example. At first we will show that the in-ball
radius of the set %#)_; is the same as for &%;. For this purpose we consider
again only the case of n = 2m even. Because the derivation of (4.4) does not
depend on the dimension of the vectors d; we still have rj,_,(2m)>m/
22m — 1). Let Dy =(d,,...,d,,,_,) € R¥"*@™~D where

’

i V2 Vem —i 0 01 1 1 R?
L= ey ,1,— EEEE . € m’
i m V2m —i+ 1 | =2~ 2m — 1 2m — 1

i — 1

! 2m — i

i=1,...,2m — 1. Then it is straightforward to check that D, fulfills
|Dyxlls < 1 for all x € 2 and tr(DyD}) = 2(2m — 1)/m. This shows that the
lower bound for r2, _,(2m) is attained and we have rZ,_,2m) =rZ,(2m) =
Amin- In the same way we can prove the case n = 2m + 1 and obtain r,_(n)
= r,(n) for all n > 2. In the next step we will show that r,(n) = r,(k + 1) for
all n > k + 1. The inequality r,(n) < r,(k + 1) is obvious [by the same rea-
soning as in the proof of Theorem 3.5(a)]; for the converse inequality consider
at first the case 2 = 2m + 1. We have from the first part r7, ., ,(2m + 2) =

ré2 ..2m+2)=(m+1/2@2m + 1) =rZ,.(2m + 1). Now we consider the
case n=2m + 3 and let D' =(d,,...,dy, 3) € REMTDXCm+  ith
ID'x|l, < 1V x € {0, 1}2™*3, It can easily be proved (by looking at the signs of
the inner products) that the minimum of the angles between n + 2 vectors in
R” is less or equal 90°. Therefore D’ contains at least two vectors, say d; and
d, with did, >0. For the matrix D' =(d, +d, ds,...,d3,,50) €

REm+DxEm+3) we verify that ||D'x|ls < 1 (because all sums of the vectors of D’
are in the unit ball of R*”*! this is also fulfilled for the vectors of D’) and
obtain tr D'D > tr D'D. The matrix Dj = (d; + dy, dg, ..., dg,,43) €

R@m+DXEm+2) can also be used for the calculation of r,,,,,(2m + 2) and we
have from (3.6)

1 1

me1(2m + 2 =
Tam (2 4 2) S G5B T w(bD) - w(DD)
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TABLE 1
The squared in-ball radii of the sets R (n < 7, k < 7) for the spring balance weighing designs

n

k 1 2 3 4 5 6 7
1 1 1/2 1/2 1/2 1/2 1/2 1/2
2 1 1/2 1/3 1/3 1/3 1/3 1/3
3 1 1/2 1/3 1/3 1/3 1/3 1/3
4 1 1/2 1/3 1/3 3/10 3/10 3/10
5 1 1/2 1/3 1/3 3/10 3/10 3,10
6 1 1/2 1/3 1/3 3/10 3/10 2/7
7 1

1/2 1/3 1/3 3/10 3/10 2,7

for all matrices D € R@m+3X@Em+1) gatisfying || D'x|l; < 1, x € {0, 1}2™*+3, This
shows r,,, ,2m + 2) < ry,, . (2m + 3) and because the converse inequality is
obvious we have r,,,,,(2m + 3) =r,,,,(2m + 2) =ry,,,(2m + 1). Repeat-
ing these arguments gives the desired result r,,, , (n) = ry,, .(2m + 1) for all
n >2m + 1. For the case ¢ = 2m we apply Theorem 3.5(a) and obtain by
similar arguments r,,(n) = r,,(2m + 1) whenever n > 2m + 1. Summariz-
ing all results obtained so far we have for the squared in-ball radii 72(n) in the
spring balance weighing design example,

[(n+1)/2]
r2(n) = 2(2[(n +1)/2] - 1) Api, fork=n—1,n,
k (1) = A, forall k > n,
ri(k +1), foralln >k + 1.

The squared in-ball radii are illustrated in Table 1 for n < 7, & < 7.
We see that for fixed n the sequence of in-ball radii (r;, ry, rs,...) is not
strictly decreasing.

4.2. Linear regression without intercept on the n-ball in the l ,-norm. The
following example is more of mathematical interest than of practical interest
compared to the previous example. Only some special cases—for example,
p = 2 or p = » (chemical balance weighing designs)—arise in various applica-
tions of linear regression. Let f(x)=x = (x,,...,x,), the design space is
2= {xllxll, < 1}, where llxll, = (Z}-,|x;/")"/? denotes the [,-norm on R”,
1 < p < . It is convenient to distinguish the cases 1 <p <2 and 2 <p <
and we will begin with the first one. Let D' = (d,,...,d,) € R**" such that
ID'xll < 1 for all x € Z". Inserting the unit vectors e; = (0,...,0,1,0,...,0)
€ R” in this inequality and adding these inequalities we obtain ¥?_,dd; < n,
which shows that 1/n is a lower bound for the (squared) in-ball vector r2(n),
that is, r2(n) > 1/n. For the matrix D =I, we have (note that p < 2)
I Dxllz = llxllz < llxll, < 1 and tr(D’'D) = 1/n, which shows that r2(n) = 1/n.
From Theorems 3.3 and 3.4 we conclude that A, = 1/n and by straightfor-
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ward arguments it can be shown that the E-optimal design puts equal masses

at the points e,, i = 1,...,n.
For the case p > 2 we consider the 2"! vectors of the form y =
n~YP(1,F1,...,F 1) € Z. By a summation of all inequalities of the form

ID'yll3 < 1 we obtain

2"~ 1n=2/P ¥ did, < 2",
i=1
which shows r2(n) > n=2/P, To prove equality we have to find a matrix
D with ||[D'x|l; < 1 and tr(DD’) = n?/P. The last equation is obviously ful-
filled for the matrix D, = n'/?~'/2] . On the other hand, we see from (1/p +

1/g=1)

n
2 — —
IDyxll5 = n?/ P~ Yx|l3 = n2/P~1 Y x?
i=1

n 1/p/ n 1/q
_ 2
<20 l(zmv’) (Zu,-w) <l <1
i=1

i=1

that D, satisfies also the other condition. Here we have used the inequality
n??~Yxll, <llxll, for p > 2, which is an elementary consequence of the
Hélder inequality. Therefore the minimum eigenvalue of the E-optimal design
is given by A, = r2(n) = n~?/P. To identify the design itself we apply Theo-
rem 3.4 and obtain that the design which puts equal masses at the points
n~YP(¥1,¥1,...,F 1) is E-optimal if p > 2. Note that in the case p = 2
there may exist E-optimal designs with different support points than the
points given above. This is a consequence of the fact that for p = 2 the
necessary condition ||Djyx|lz =1 of Theorem 3.4 reduces to [lx|lz = 1. For
example, the design which puts equal masses at the unit vectors e; is also
E-optimal. Note also that the case p = « yields to the E-optimal chemical
weighing designs.

4.3. Cubic regression on the interval [—b,b]. Let f(x)=(1,x,x?% x3),
Z'=[-b,b], b > 1. In a recent paper Pukelsheim and Studden (1991) showed
for the interval [— 1, 1] that the minimum eigenvalue of the E-optimal design
is given by |lc|lz% where ¢'f(x) = Ty(x) = 4x° — 3x denotes the third Cheby-
shev polynomial of the first kind (these authors proved this statement for
arbitrary degree and also identified the support of the E-optimal design on
[—1, 1]. By an application of the results of Section 3 we will show that this is
not true on [—b, b] if b is sufficiently large. To this end we give estimates for
the in-ball radii of the first two Elfving sets #, and %, Let d =
(0, —3/b,0,4 /b3 denote the vector of the coefficients of the third Chebyshev
polynomial on [—b, b]. Then we have for all x € [—b, b]

ld'f ()3 = (—3—; + 4(%—)3)2 - (T3(%))2 <1,
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which gives the upper bound [see (3.6)]

45) hw == (2] + ()]

For the determination of an upper bound for r, we remark that it follows from
the results of Dette (1992) that for any « € [0, 1] the matrix

2
—Va(2 - a) 0 b—z\/a(2 - a) 0

b= o 3-a . 2(2 — a)
b b3
satisfies the inequality
x\2]? x x\3]?
IDF(x)I2 = a(2 — a)| ~1 + 2(3) +-@-a)F +202- a)(z) ] <1

for all x € [—b, b] (this can also be verified directly checking that the above
expression attains its maximum in [—b, b] at the points Fb and
F V(1 -a)/2(2 — @) b and that this maximum is equal 1). Therefore we
have

B-a)? 42-a)®
b2 + b6

1 4
(46) 5 =2 8(a) = tr(DD) = a(2 - a)(l . F) N

for all @ € [0, 1]. By elementary calculations it can be shown that g(«) attains
its maximum in [0, 1] at [note that f"(a) = —(2/6%)(b2% — 1)(b* + 4) < 0 for
all b > 1]

b® — 3b* + 462 -8
Aoy = (B2 —1)(b* +4) ’
0, if b <b,,

if b > by,

where b, = 1.62307279 and the maximum value is given by

b8 + 3b% + 8b* + 12b% + 12
b2(b% — 1)(b* +4)

3\ [4)?
(g) +(ﬁ), lbebo

Here we have to distinguish the cases b > b, and b < b, because the solution
of f'(a) = 0 is not contained in the interval [0, 1] if b < b,. From (4.6) we

if b > b,,
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obtain the upper bound
b2(b% — 1)(b* + 4)
b8 + 3b% + 8b* + 12b% + 12°

3\2 (4"

EEEIE
Because f(ay,,) > f(0) = (3/b)* + (4/b%)* whenever b > b,, we see from
(4.7) that for b > b, the minimum eigenvalue of the E-optimal design is not
given by ||d||z%, where d = (0, —3/b,0,4/b°) denotes the vector of the coeffi-
cients of the third Chebyshev polynomial on [—b, b] [d'f(x) = Ts(x/b)]. The
same arguments will hold for polynomial regression of arbitrary degree n > 2
on[-b,b].

The calculation of the in-ball radii for the cubic model on [—b, b] (or general
for the model of degree n) seems to be difficult because this problem is
equivalent to a problem in nonlinear approximation theory. However, as
mentioned in Section 3 upper bounds of the in-ball radii r, are very useful for
the calculation of E-efficiencies for a given design. As an illustration we
consider the case b = 3 and obtain from (4.7) A, < rZ < 510/793 = 0.6431,
which gives the lower bound for the E-efficiency of a given design ¢ [see (3.7)]

Amm(M(g)) > 793
A — 510

if b > by,
(4.7) Apin < T

min =

Do

Eff(£) =

. Nin( M(£)).

As an example we take the design 1 which puts masses proportional to
1:4:4:1 at the points —38, —1,1,3. The minimum eigenvalue of M(%) is
Apin(M(7n)) = 0.5881 and its E-efficiency Effin) > 91.44%. If we put masses
proportional to 1:9:9:1 at the same points, we obtain a minimum eigenvalue
0.6137 and an E-efficiency greater than or equal to 94.42%.
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