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MODEL SELECTION VIA MULTIFOLD CROSS VALIDATION

By PING ZHANG

University of Pennsylvania

A natural extension of the simple leave-one-out cross validation (CV)
method is to allow the deletion of more than one observations. In this
article, several notions of the multifold cross validation (MCV) method have
been discussed. In the context of variable selection under a linear regres-
sion model, we show that the delete-d MCV criterion is asymptotically
equivalent to the well known FPE criterion. Two computationally more
feasible methods, the r-fold cross validation and the repeated learning-test-
ing criterion, are also studied. The performance of these criteria are
compared with the simple leave-one-out cross validation method. Simula-
tion results are obtained to gain some understanding on the small sample
properties of these methods.

1. Introduction. One of the most useful methods in selection problems
is the cross validation (CV) method. During the past decade, the CV method
has been developed quite extensively in the literature, especially in the area of
nonparametric curve estimation. One of the appealing characteristics of CV is
that it is applicable to a wide variety of problems, thus giving rise to applica-
tions in many areas. Examples include, but are not limited to, the choice of
smoothing parameters in nonparametric smoothing and variable selection in
regression. A considerable amount has been written on both the theoretical
and practical aspects of this method. The idea is simply splitting the data into
two parts, using one part to derive a prediction rule and then judge the
goodness of the prediction by matching its outputs with the rest of the data,
hence the name cross validation. One should, however, notice that in the
literature, unless indicated explicitly, CV is usually referred to as the simple
leave-one-out cross validation. This version of CV is unsatisfactory in several
respects. Efron (1986) showed that the simple CV is a poor candidate for
estimating the prediction error and suggested that some version of bootstrap
would be better off. When selecting the correct model is the concern, it is well
known that the model selected by CV criterion is apt to overfit.

The idea of multifold cross validation (MCV) first appeared in Geisser (1975)
where instead of deleting one observation as in the simple CV, d > 1 observa-
tions are deleted. Some recent development in this area can be found in
Breiman, Friedman, Olshen and Stone (1984) and Burman (1989). For general
variance estimation problem, Shao and Wu (1989) introduced multifold jack-
knife and successfully remedied a problem encountered by the simple leave-
one-out jackknife. For model selection, Breiman and Spector (1989) and
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Herzberg and Tsukanov (1986) have provided simulation evidence that MCV
does better than simple CV. For choosing the number of knots in spline
method, Burman (1990) shows that the multifold cross validation method is
asymptotically optimal. This paper treats only the case of linear regression and
our goal is to investigate, from a theoretical point of view, the performance of
various notions of MCV model selection criteria. In particular, we show that
the delete-d MCV is asymptotically equivalent to the well known FPE crite-
rion.

Let Y= (yy,...,¥,) be the response vector and X = (x;,), i=1,...,n,
J=1,..., K, be the design matrix for the full model defined as

Y=XB +e¢,

where ¢ = (¢,,...,¢,) is a vector of iid random variables. Suppose that the
true model has %, covariates, or the true parameters B has exactly £, non-
zero components. Throughout this paper, it is assumed that B =
By..-,B PR | A 0)*. This corresponds to the situation where the K covari-
ates are preordered according to their importance so that only the number of
covariates needs to be determined. Let s denote a subset of {1,...,n}. For
k < K, we define

X, r = (%), ies,j=1,...,k,
X = (x;;), it=1,...,n,j=1,...,k,

H, ,= Xs,k(Xl:Xk)_let,k’ Y, = (y;,i€s)".

Denote by .#, the regression model with % covariates, and X, the corre-
sponding design matrix. We define the deleting-d multifold cross validation
criterion as

-1
(1.1) MCV, = [d(g) YUY, = X, 1B ol

where ﬁ(_s),k is the OLS estimate of B under .#, using the cases not in s.
The summation runs over all possible subsets of size d.

This notion of MCV has an obvious disadvantage, namely that a consider-
able amount of computation is involved. However, the performance of many
useful alternative methods are closely related to the performance of the
criterion (1.1). We consider in this paper two such methods: The r-fold cross
validation of Breiman, Friedman, Olshen and Stone (1984) and the repeated
learning-testing method of Burman (1989). Suppose that the sample size n
can be written as n = rd, where r and d are integers. Instead of summing
over all possible subsets of size d as in (1.1), let us divide {1,...,n} into r
subgroups sy, ..., s, which are mutually exclusive. Without losing generality,
suppose that the division is as follows:

S1 Sy Sr

1,...,d,d+1,....,2d,...,(r—1)d,...,rd.
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Breiman, Friedman, Olshen and Stone (1984) define their r-fold cross valida-
tion as

1 .
(1.2) MOV = — LIV, = X, 1B ul®
i=1

Actually, the above authors suggested that the partition should be made
randomly to avoid possible biases.

The repeated learning-testing method is essentially a bootstrap method.
Here, instead of summing over all possible subsets of size d, we resample
without replacement d elements from the observed sample and repeat the
procedure many times. Let s7,..., si be the resampled subsets of size d. The
repeated learning-testing criterion is defined by

1 X .
(1.3) RLT, = — Y Ve — Xoo 1B_omy.all”.
Nd =1 1 P kF( 7)

The rest of the paper is organized the following way: In Section 2, some
basic results are given. As an implication of these results, we show an
interesting relationship between criterion (1.1) and the well known FPE
criterion. Sections 3 and 4 treat the r-fold cross validation and the repeated
learning-testing method, respectively. Finally in Section 5, brief discussion on
some of the practical issues are presented along with some simulation results.

2. Basic results. Let d = #{i: i €s}, f=XB and P,;)=1 — P,, where
P, = X,(X!X,)"'X}. We introduce the following assumptions:

AssUMPTION A. d — «, and d/n = A + o(1), where A > 0.

AssumPTION B. sup,_.suplld~'X!, X, , — V.l =o(1), where V},, k <K
is a sequence of positive definite matrices.

AssumpTiON C. For k <k,

liminf n~'f'Ptf=b,>0 and n~f'P,f—- 0.

n—oo

AssumptioN D. For k < K, max; _, k(%" — 0, where h®, i = 1,...,n, are
the diagonal elements of P,.

Except for the first one, these assumptions are rather mild for asymptotic
results. Actually, Assumption A is essential for all the proceeding results. Our
conjecture is that the first order asymptotic structure of MCV with d/n — 0
would be equivalent to the simple CV. For Assumption C, notice that b, is
decreasing and when % > &, b, = 0.
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The final prediction error (FPE) criterion can be written as
RSS(%) + akd?(K),

where RSS(%) is the residual sum of squares under model .#, and ¢% K) =
RSS(K)/(n — K). The main conclusion of this section is to show that the
MCYV criterion (1.1) is asymptotically equivalent to the FPE criterion with
a=(2—-))/(1 — A). In order to achieve this, we prove three useful lemmas
below.

Taken literally, the formula given by (1.1) requires the computation of a
least squares estimator B _,,, for all subsets of size d. This amounts to
solving (;) linear equations of dimension n — d. The following result gives the
relationship between ﬁ(_s), , and B, which in turn causes tremendous reduc-
tion in computation. More importantly, this relationship also provides us with
a theoretically more illuminating representation of MCV.

LeEmMA 1. Under Assumptions A and B, we have for large d that
Y, - Xs,kB(—s),k =(I- Hs,k)_l(Ys - Xs,kBk)'

Proor. For any matrices A,,, and U,,, p < n, it is straightforward to
verify that

(2.1) (A-UU) '=A"1+ A" WUYI - UA-WUY) 'UAY,

provided that all the inverses exist. This is often referred to as the
Sherman-Morrison-Woodbury formula. Take A = XX, and U = X, ,. It is
easy to see from the assumptions that the inverses all exist when d is large.
Hence by (2.1),

(X(t—S), kX(—S), k)

= (XiX, - XL, X, ,) "

-1

-1 -1 — -1
= (XiX,) "+ (XEX) XTI - H, ) X W(XiXL)
where X _, , = (x;;), i & s. Observe that
X o 1Yo =XpY — X! .Y,
and
A -1
B-s),k = (X{—s),kX(—s),k) X<t—s),kY(—s)'
Some algebra will show that
Xs,kB(—s),k = s,kBk + Hs,k(I - Hs,k)_le,kBk

- Hs,kY; - Hs,k(I - Hs,k)_le,kY;'
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Consequently,
Y, - Xs,kB(—s),k =Y - Xs,kﬁk —H, (I~ Hs,k)_le,kBk
+H, Y, + H, (I - H, ;) "H,,Y,
=1+ H,,(1-H,,)""|(Y, - X, B:)
= (I_Hs,k)_l(Ys_Xs,kBk)' d
The above lemma shows that
1 )
@2 mev=[a(3)] Tla- a7 - xab)[

In other words, for each model .#,, B, only needs to be calculated once. When
d = 1, this reduces to the ordinary cross validation or PRESS. Likewise, we

have

(2.3) MCV; - %il (1-H,,) (% - X8|
i
and
1 X 1 . 12
(2.4) RLT, = Nd '§1 “(I —Hg ) (Ys;k — Xox 1B

The following two lemmas are key to our main result. It is essential to
assume Assumption A, that is, one has to delete a fixed proportion of the whole

sample.

Lemma 2. Let P, , and P, be the projection matrzces correspondtng the
X, 1, and X, respectwely Suppose that Ee; = 0, Ee2 =02 i=1,...,n. Then
under Assumptions A, B and D,

[d(g)] ZeéPs,kes = ;(etha +

1-—

A
koz) +o,(n7Y).

ProorF. By definition and Assumption B, it is easy to see that
-1
Ps,k = Xs,k(Xst,sz,k) Xst,k

X, o(XEX,) XL+ 0,(1)

=AT'H, , +0,(1).
Next, let H, , = (h, ;) be the n X n matrix with h . equaling to the corre-
sponding element in H xifi,j€sand h,,=0 otherwise. Notice that H_,

is actually a diagonal submatrlx of P,. Slmple combinatorics will show that
X, H s, x» While summing over all possible subsets, will accumulate the diagonal
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elements of P, (Z - i) times, and the off diagonal elements ("; " g) times.

Consequently,

[a(a)] Bt =[a(3)] Lot

[l (23
+((Z:i) (Z g)) tdlag(Pk)g]

- A
ko-z) +o,(n7t).

I

A 1
— (EthE +
n

The last equation is due to Assumption D, which implies that &’ diag(P,)e =
ko? +o »(1). The proof is completed by noting the relationship between H_ ,
and P, , shown above. O

LeEmMMA 3. Under the same assumptions of Lemma 2, if k > k, then

- A ko?
[o(2)] " St~ b - 5 2 0.

Proor. Let Y,=f, +¢, and Y=f+ e. When &k > k), it is easy to verify

that P, ,f, = X, x(X}X,) X! f. Thus
N 2 _ 2
a(Ye = X, B =Pl £+ e — X (X X0) T XECF+ )]
_ 2

=||P, e, - X, W(X1X,) T XLe|
= &' P, e, — 261X, (XiX,) X}e

+ e X, (X1 X)) XL X, (XX Xe
=&l P, &, — 28;Xs’k(X,ﬁXk)—1X,§e + A&'Pye + 0,(1).

Observe that
-1
[d(g)] YetX, , =n"'X,.
S
Thus from Lemma 2,

[a(z)] "=

-1
Ps,k(Ys - )(s,kﬁk)”2 = l:d(g)] ZEgPs,kgs

1
——&'Pye +0,(n7")
n

1-A ko? .
=T~T+op(n ) O
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Regarding MCV, as a stochastic function of %, it turns out that asymptoti-
cally, MCV, has a rather simple structure which allows us to study in an
elegant fashion the properties of the selected model. OQur main result of this
paper is the following.

THEOREM 1. Under Assumptions A to D, suppose that Ee; = 0, Ee? = o2,
t=1,...,n. Then

1tpt 2-A k0'2+ L b b

- ko” - -

Mev, = " CTRET T, op(n7); 0
n~le'e + b, + 0,(1), k <k

Proor. From Assumption B, it is easy to verify that

H,,=X, (XX, 'X.,= (A +o(1)P, ,
Thus
(I-H,,)>=I-X2-2)P, , +0(P, ;).

Here by an abuse of notation, o(P, ,) represents a symmetric matrix I' such
that I'<y,P, ,, v, > 0. Let u = A(2 —A)/(1 — M2 The previous equation
implies that

(2.5) (I-H,,) ?=I+uP,,+0(P,,).
Therefore,
(1 - H, 07 (% - X, 1B
= (Y = X, 4B) [T+ wP, 4 + o(P, )](Y, - X, .Bs)
1% - X el + ] 2% - X B[
+o(|Pu(¥, - X,.B)[).

Substitute this into (2.2). By Lemma 3, for & > &,

2—-A ko? 1
Y T+op(n )

(2.6)

MCVk=[ )] ZIIY X, Bl +
Moreover, when k& > &,
-1
([2(3)] T~ Xkl = n Y - Xl = o epe,

Consequently, for & > k&,

2—-\ ko? .
1= /\-——-—n +op(n ).

(2.7) MCVk = n_l th e+
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When £ < k,, however, we still have

P, (Y, - X, B

-1
MCV, = =YY — X3, 1I* + 0([01(3)] Y|

For the first term on the right hand side, we have
nUY - X,B,17 = n P f + Pitell?
=n"1%Ple +n P+ 2n" E'Pf
=n"e’e + nTIf'Plf+0,(1).

For the second term on the right-hand side, since n~!f ‘P, f — 0, an argument
similar to that leading to Lemma 3 will show that

El Ps,k(Ys - Xs,kBk)Ilz = Op(]')‘

The conclusion follows immediately. O

Suppose that S,,...,Sgx is a sequence of random walk. Let E=
argmin, _ x S,. We define

(28) n-2{15 (%))

i=171;:
and
* (k1 (1—a\"
(2.9) %=Zh1ﬁ(. )}
l=17‘i. l

where a; = P( S; < 0) and the sum X* is over all k-tuples (ry,. .., r,) such that
r, + 2ry + +krk = k. From standard random walk theory, we know that
P(k = k) = p,qx_;. The following result follows immediately from Theorem
1. A proof can be found in Shibata (1984).

CoroLLARY 1. Suppose that k = argmin, _, MCV,. Then under the as-
sumptions of Theorem 1, E converges weakly to a random variable k having
the following distribution:

P(h, = ) = {pk—kOQK—k; ko < k's K,
0, otherwise,

where p, and q, are defined by (2.8) and (2.9) with a; = P(x2 > i(2 — 1)/
-

It is interesting to notice that the asymptotic distribution does not depend
on the design matrix or any other features of the underlying true model. In
fact, it is totally determined by the value of K — %, that is, the number of
superfluous variables observed.
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3. The r-fold cross validation criterion. As defined in (2.3), the r-fold
cross validation criterion is aimed at reducing the computation involved in the
simple CV method. As a result, the performance of the MCV}* is expected to be
not as good as that of CV. We present some useful theoretical results in this
section.

As usual, regarding MCV}* as a stochastic process indexed by £ = 1,..., K,
we have the following result.

THEOREM 2. Suppose that r > 1 is a fixed integer. Under Assumptions
A-D, we have

n”le’e + an"'L]_jel P, &, — bn"'e'Pye + 0,(n7 "), k >k,

MCV =
P nTle%e + by +0,(1), k <k,

wherea = (r/(r—1)2—-1andb=a + 1.

Proor. A slight modification of Lemma 3 shows that for 2 > &,

1 r
w L

e 2 1 ¢ ¢ 1 ¢ -1
Ps,,k(y;l _Xs,,kBk)“ = ;igeslps,,kes, - ;8 Pke +Op(n )
By substituting (2.6) into (2.3), we have for £ > k,,,

i

12 S 12 a t a t -1
MCVI;k = ; E ”Y;l - Xs,,kBk“ + ; Z EslPs ks, — ;8 Pks + Op(n )
i=1 i=1

-
=nle's +an”' } &l P, &, —bn"'e'Pye +0,(n7 ).
i=1
The case k < &, follows the same argument as in the proof of Theorem 1. O

It is easy to relate MCV;* to a random walk sequence so that the argument
used in the previous section can also be applied here. Specifically, we have the
following theorem.

THEOREM 3. Suppose that k = argmin r<x MCV). Then under the as-
sumptions of Theorem 2, k converges weakly to a random variable k, having
the following distribution:

Pr_r9K-k> ko<k <K,
Pk, =k)= 0
( " ) {0, otherwise,

where p, and q, are defined by (2.8) and (2.9) with a,=P(F, ,_;, >
@r - 1/(r - 1).
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Proor. As in Theorem 2, we only need to consider the case when % > k.
It is clear that minimizing MCV;* is equivalent to minimizing S, = n MCV}* —
e’e. Theorem 2 thus implies that for & > &,

S,=a) ec Py n&5, — be'Pye + 0,(1).
i=1

Let P, = diag(P, ,..., P, ;). Then
Sy, = &'(aP, — bP,)e + 0,(1).
Define W, =aP, —bP;, and W,=a(P, - P,_,)—b(P,~P,_), k> 1.

Then the preceding equation can be written as

k
S, = L eWee +o0,(1).
i=1

It is easy to verify that W,, 2 = 1,..., K are perpendicular to each other.

Thus S, is approximately a random walk.
Next, let Z, =d~'?%L;.,¢;, Z=(Z,,...,Z,)". Then

e'Wie = ae’Pe — be'Pje

(o ged]- 45

i€s; i€s,

a

d

=aZ'Z — bZ'P,Z
=aZ'P;}Z — Z'P,Z.
Here we use P, to denote the r-dimensional projection matrix onto the space
spanned by (1,...,1)". We have therefore shown that ¢‘W,s can be written as
e'We = a¢; — m;,

where ¢; is independent of 7, and (¢;, n,) are iid with distribution (x2_,, x?).
Let a = (2r — 1) /(r — 1), the conclusion follows from standard random walk
theory while noting that

a;, = P(S, < 0)
=Pla ) ¢ < nj+op(1))
j=1 j=1
—P(F, 1y > (2r — 1) /(r — 1)) + 0(1). O

4. The repeated learning-testing criterion. We mentioned earlier that
the MCV criterion defined by (1.1) is not a practical method due to the huge

amount of computation required. Notice, literally, that ((’;) regressions are to
be carried out when implementing (1.1). Let d = An, we have by Stirling’s
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formula that
(g) ~ (2mn) 2@ -0

Thus the computational complexity of MCV is exponential.

By means of bootstrap, we can reduce the amount of computation substan-
tially while still perform as well as MCV,, in selecting models. The main result
is the following theorem.

THEOREM 4. In addition to the assumptions of Theorem 1, let Ee} < . If
N/n? - , then
RLT), = MCV,, + 0,(n"").
ProoF. Define a(s) = d 'Y, — Xs,kB(_s),kllz. Let &, be the o-field gener-

ated by Y,,...,Y,. Then conditional on %,, RLT, = N7'LY ja(s¥) is the
mean of N iid random variables. Thus

E(RLT,| %) = E(a(s})|%;) = MCV,

and

1
var(RLT,|%,) = N var(a(si)lF,)

IA

SE(a(s)1%,)

1 1 A
TN [ ZI - Xpbe ol
d

By (2.6) and Lemma 1, it is easy to show that

E|Y, - X, ,Bo4| =< O(EIY, - X, ,B,I*)

< O(ElY - X,3,I") = 0(»?),
where the last equality used the Assumption C. Consequently, we have
E(var(RLT,| %)) = O(N™1),
which further implies that
RLT, = E(RLT,|%,) + O,(N~'/?) = MCV,, + 0,(n"1). |
To conclude, by using this resampling scheme, we can reduce the computa-
tional complexity of the MCV method from exponential to just a bit more than

second order polynomial. In particular, the result of Corollary 1 holds for RLT,
given the assumptions of Theorem 4.
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5. Discussion. Suppose that Y = f+ § is a new observation from the
true model. Let PE, be the conditional prediction error based on model .#;. It
is then easy to show that

PE, = n 'E(IY - X,3,I% %)
=n"'E(ll5 + P, f — Pyel®| F,)
=02+ n P} f+n"ePe.

Thus asymptotically, the FPE criterion is unbiased in estimating PE, if and
only if @ = 2. In this sense, the simple CV criterion can be viewed as an
unbiased estimator of PE,. It is obvious from Theorem 1 that the delete-d
MCV lacks this property since (2 —A)/(1 — A) > 2. Some bias correction
methods are suggested by Burman (1989). The bias in estimating prediction
error, however, is compensated by the enhancement in the chance of selecting
the correct model. This can be seen by noting that P(y2 < k(2 — 1)/(1 — 1)) is
an increasing function of A. Thus by Corollary 1, P(£ » = ko), or the probabil-
ity of choosing the correct model, is also an increasing function of A. When
A — 0, the criterion (1.1) becomes equivalent to the CV criterion. In this sense,
MCV, is always better than CV in terms of the chance of overfitting.

A natural question arises how to choose d, the number of observations
deleted. It would be desirable if one could provide some guideline for this
choice. For instance, one might want to suggest a threshold value which
characterizes a significant improvement. Unfortunately, this does not seem to
be possible. Let f(A) = P(E, = k,) be the probability of choosing the right
model. Figure 1 shows the function when K — k£, = 1, 5 and 10, respectively.
As we can see, the curves are almost linear except when A is very high, making
it difficult to choose an appropriate A. For further discussion on this matter,
the reader is referred to Zhang (1992).

1.00

0.90

0.80

0.70

0.0 0.2 0.4 0.6 0.8 1.0

Fie. 1. fQ) =P r» = ko); the smooth, dotted and dashed curves correspond to the case
K — ky =1, 5 and 10, respectively.
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Fic. 2. g(r) = P(l%r = kg); the smooth, dotted and dashed curves correspond to the case
K — ky =1, 5 and 10, respectively.

For MCV;*, when r decreases, the criterion is actually getting cruder in the
sense that less information is being used. The difficulty here is how to divide
the sample into r groups. Some approaches have been suggested by Geisser
(1975). Assuming that this partition is given a priori, we now consider the
impact of different r on the model selected. Intuitively, P(k, = k) should be
increasing with r. This has been confirmed by Figure 2. Notice that when
r—w, P(k, =k)— P(kg, = k). Thus MCV}* is always worse than CV in
terms of the chance of overfitting. The worst case is r = 2. This point is also
observed by Burman (1989). It is interesting to notice that deleting half of the
data is also the worst strategy for the MCV,, criterion since the computational
complexity of MCV,, is a monotone function of [A*(1 — A)*~Y]~! which achieves
its maximum at A = 1/2.

Let g(r) = P(k, = k). Figure 2 shows the function when K — %k, =1, 5
and 10, respectively. Unlike the case with MCV,, a crude threshold for
choosing r is available. It is interesting to notice that the most dramatic
improvement occurs between r = 2 and r = 10. After that, the curves are
rather flat. Thus while 5-fold or 10-fold MCV could be beneficial, 20-fold MCV
might not be worth the trouble because the intent of MCV,)" is to reduce
computation. This in some sense confirms the observation made by Breiman
and Spector (1989).

We close this paper by a simple simulation study. Pseudo observations are
generated from the model
(5.1) y; = 0.6x,; + ¢, i=1,...,20,
where ¢; ~ N(0,0.01). Competing models are the null model y = ¢, the model
(5.1) and a two-dimensional model y = ax; + Bx, + . Here x;, x, € R are
iid samples from N(0, 1) and fixed before simulation starts. Random numbers
are generated using the IMSL subroutine library.

The results for the MCV* criterion are summarized in Table 1. Notice that
underfitting never occurs. As far as the chance of overfitting is concerned,
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TABLE 1
Criterion MCV*; 500 replications

Frequencies Estimated PE
0 1 2 PE
r=2 0 68.8 31.2 1.080E — 2 + 1.847E — 4
r=5 0 82.4 17.6 1.046E — 2 + 1.606E — 4
r=10 0 82.6 174 1.057E — 2 + 1.547E — 4
r=20 0 82.8 17.2 1.058E — 2 + 1.582E — 4
TABLE 2
Criterion RLT with N = 20; 500 replications
Frequencies Estimated PE
0 1 2 PE
d=1 0 75.6 24.4 1.042E — 2 + 2.103E — 4
d=5 0 79.6 20.4 1.065E — 2 + 1.636E — 4
d=10 0 90.0 10.0 1.121E — 2 + 1.723E — 4
d=15 0 96.6 3.4 1.300E — 2 + 2.084E — 4
TABLE 3
Criterion RLT with N = 100; 500 replications
Frequencies Estimated PE
0 1 2 PE
d=1 0 79.8 20.2 1.043E — 2 + 1.704E — 4
d=5 0 84.2 15.8 1.072E - 2 + 1.551E — 4
d=10 0 91.4 8.6 1.109E — 2 + 1.642E — 4
d=15 0 98.6 14 1.355E — 2 + 2.108E — 4

5-fold MCV performs as well as 20-fold MCV which by definition is simply the
leave-one-out CV criterion. 2-fold MCYV is clearly the poorest. By estimated PE,
we mean the Monte Carlo average of min, MCV;*. Since the true prediction
error equals

(1 + ko/n)o? = (1 + 1/20).01 = 1.05 X 102,

we see that for r > 5, MCV* estimates the prediction error pretty well. The
observation fits very well with the speculation described above.

Tables 2 to 4 contain the results for the RLT criterion with N = 20, 100
and 400, respectively. In all cases, deleting 75% of the data leads to a 97%
chance of choosing the correct model, much better than the CV criterion does.
The gain, however, is at the expense of overestimating the prediction error.
The most encouraging observation is that although Theorem 4 requires N to
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TABLE 4
Criterion RLT with N = 400; 500 replications

Frequencies Estimated PE
0 1 2 PE
d=1 0 76.4 23.6 1.042E — 2 + 1.601E — 4
d=5 0 84.2 15.8 1.058E — 2 + 1.559E — 4
d=10 0 89.6 104 1.131E — 2 + 1.655E — 4
d=15 0 97.8 2.2 1.310E — 2 + 1.817E — 4

be much larger than 400, no significant differences can be found between
N =20 and N = 400. When N = 20, the computation of RLT is about the
same as that of CV. In this respect, it seems that the RLT method could be
even more practical than what Theorem 4 asserts.
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