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REWEIGHTED LS ESTIMATORS CONVERGE AT THE SAME
RATE AS THE INITIAL ESTIMATOR

By XumiNG HE aND STEPHEN PorTNOY!

National University of Singapore and University of Illinois

The problem of combining high efficiency with high breakdown proper-
ties for regression estimators has piqued the interest of statisticians for
some time. One proposal specifically suggested by Rousseeuw and Leroy is
to use the least median of squares estimator, omit observations whose
residuals are larger than some constant cut-off value and apply least
squares to the remaining observations. Although this proposal does retain
high breakdown point, it actually converges no faster than the initial
estimator. In fact, the reweighted least squares estimator is asymptotically
a constant times the initial estimator if the initial estimator converges at a
rate strictly slower than n=1/2,

1. Introduction. Consider the linear model
(1.1) Y, =x,B+u,;, i=1,...,n,

where x; € R?, B € R? and {u;} are i.id. from c.d.f. F having density f. In
matrix form, Y = XB + u, where X denotes the n X p matrix with rows x;.
An intuitively appealing approach to the estimation of B in the presence of
outliers is to use a relatively simple high breakdown estimator 3, and to
identify outliers as observations with unusually large residuals r;( B,), where

(1.2) r(B) =Y, —x;B.

Omitting observations with residuals larger than some constant (called ““skip-
ping’’) would still retain the high breakdown properties of the initial estima-
tor. Rousseeuw and Leroy [(1987), pages 131 and 238] presented in detail a
specific proposal using reweighted least squares (LS) based on skipping residu-
als from the least median of squares (LMS) estimator. Similar proposals
appear elsewhere. We, and others apparently, have believed that this would
provide a reasonably efficient estimator even if B, converged at a rate less than
n~1/2, Note that the LMS estimator converges at rate n~1/3 [Davies (1990)].
However, it turns out that this hope is illusory: The convergence rate of a
skipped mean based on trimming large residuals is no better than that of the
initial estimator B, from which the residuals are computed. The purpose of
this note is to provide a formal result showing the asymptotic equivalence of
the reweighted least squares estimator and the initial estimator B, as pre-
sented in Section 2. Before presenting this result, it may be instructive to
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consider the simplest case: that of a single location parameter (p = 1, x;, = 1).
Given residuals r,( BO) from an initial estimator, consider a symmetric sklpped
mean:

1
r(Bo)| <a}’

Without loss of generahty, assume B = 0. If f is symmetric about zero, it is
relatively clear that § is approximately (up to order n~1/2)

ﬁEc Y Y, wherec= -
lr(Bl<a # <L:

flfoo:’aauf(u) du ~ fﬁ_oa—auf(u) du + ff““‘uf(u) du

(1.3) Jhraf(u) du 2F(a) = 1+ O(f,)
2af(a) .
= ’2?('(1)—_1‘30 + 0(“30”),

assuming that f is continuous at a. Clearly, if BO B =n~"r,, where 7,

converges in distribution to a nondegenerate limit, then (8 — B) w1ll be of the
same order (n~?) so long as f(a) is nonzero. The proof of Section 2 differs
somewhat from this argument by using asymptotic expansions to show that B
and BO have the same rate of convergence for y < 1/2 and for a reasonable
wide class of weighting functions. Our expansion is reminiscent of (though
simpler than) that of Ruppert and Carroll (1980), who consider root-rn conver-
gent initial estimators and find an asymptotically convergent expansion for
n'/2(B — B). Our result implies that some information is lost if one deletes
observations based on residuals from a more slowly converging estimator. Note
that one could also consider a trimming, that is, deleting a fixed fraction a of
observations with extreme residuals. The expansions of Section 2 are carried
out assuming skipping (rather than trimming) primarily because this is what
Rousseeuw and Leroy (1987) suggest in order to preserve the high breakdown
point of the initial estimator. In the case of a trimming, we can show by
similar techniques that the result of Section 2 remains true. We forego the
details.

Although our result here is negative, it is important to notice that the
problem is in reweighting, and not only in the use of a more slowly convergent
initial estimator (like the LMS estimator). For example, one-step M estimators
using the LMS estimator as a starting value can be defined so that they
converge at rate n~1/2 and are efficient. In fact, such one-step estimators were
explicitly suggested by Rousseeuw (1984). Further studies were carried out in
Juretkova and Portnoy (1987) and Simpson, Ruppert and Carroll (1992).
Practical experience suggests that more than one step should be taken, but the
first order asymptotic distribution is still the same. Furthermore, if the
skipping point (or trimming fraction) tends to infinity (or zero) sufficiently
quickly as n — o (instead of remaining constant), then skipped (or trimmed)
LS estimators should again converge at rate n~'/2. In particular, consider the
case of a single location parameter previously cons1dered and let B omit
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observations with [r(8y)| > a,, where a, — . If sup{lxlf(x): |x| >a,} =
o(n~1/2*7) then clearly the error in (1.3) converges to zero faster than n~1/2
and such asymptotic skipping will work. Similar results should extend to the
linear model (1.1). The finite-sample breakdown point of such estimators can
remain high, but the sensitivity curves would become unbounded. Finally, an
alternative for constructing estimators with high efficiency, bounded influence
and high breakdown point is given in He (1991). The idea is to compute one
efficient (and bounded influence) estimator and one high breakdown estimator;
and to use the former if the two estimators are sufficiently close. This idea
appears explicitly in the on-line menu of the new S-Plus package.

Remarks. (1) In practice, residuals are generally standardized by dividing
by an estimate of the standard deviation of the errqr. If this estimate con-
verges at a rate of n~!/2, then the expansion of Section 2 still holds. In fact, in
typical cases, the standard deviation estimate based on an initial estimator will
converge at a root-n rate, even if the initial estimator converges more slowly.
In particular, Rousseeuw and Leroy (1988) and Davies (1990) showed that the
scale estimate from the LMS estimate converges at a root-n rate.

(2) Since v in the theorem is typically less than 1 (and, in fact, may be quite
small), the reweighted LS estimator is asymptotically closer to the true
parameter value than the initial estimator. However, its rate of convergence is
no better, and so the reweighted LS estimator must be inefficient. How an
estimator performs in finite sample situations, however, is another question of
practical importance. In a Monte Carlo study described in Rousseeuw and
Leroy [(1987), pages 208—-214] the reweighted least squares estimator substan-
tially improved the finite sample efficiency of the initial least median of
squares estimator and actually outperformed a one-step M estimator for a
sample size of 50. It is not unlikely that a much larger sample size is needed to
see the effect of a slower convergence rate for the initial estimator. The result
in this paper should not be interpreted as a rejection of the reweighted least
squares method. More extensive comparisons for various proposals are neces-
sary to make any recommendation as to which is the best way to estimate a
linear regression model. See Ruppert (1991) for a recent attempt.

2. The asymptotic equivalence result. In this section, we give condi-
tions and some formal expansions providing the desired result. The conditions
are formulated more to simplify the proofs than to give the most general
theorem possible. The conditions are as follows:

ConDITION F. The density is twice continuously differentiable.

ConpITION W. The weighting function w(r) has at most finitely many
jump discontinuities, is continuous and Lipschitz elsewhere, has compact
support and satisfies w(r) > 0 for all » and w(0) > 0. Furthermore
Juw(w) f(u) du = 0.
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ConpITION 1. ﬁo is regression equivariant with ﬁo - B =0,(n),
vy €(0,1/2).

ConpitioN X.  T7_,llx;|I* < bn for some constant b, n™'X'X — @, where @
is a positive definite p X p matrix and max, _; _,llx;[l = o(n? "1/%).

REMARK. Somewhat more careful analysis would permit Condition F to be
weakened to require only one continuous derivative for f. Furthermore,
regression equivariance is only introduced to justify taking 8 = 0 in the proof
without loss of generality. It is actually not needed since the terms introduced
by leaving B general cancel exactly. However, computation of these terms
would complicate the proof.

Now, the weighted least squares estimator is § = (X' WX)~'X'WY, where
W is the n X n diagonal matrix with diagonal elements w(r(By). Following
Ruppert and Carroll (1980) we seek to represent B in terms of BO Since

n'/ 2(B — B) = «, the Ruppert-Carroll result does not apply directly. How-
ever, we can stlll expand BO directly, actually affording somewhat simpler
computations. The basic approach uses the chaining argument to obtain the
preliminary lemma. Since the proof is quite similar to those in Koenker and
Portnoy (1987), we omit some of the details. First, given £ > 0, choose K so
that for n large enough,

(2.1) Pl - Bl <Kn} =1 -e.
LEMMA 2.1. Define
(2.2) = {5: |8 < Kn"7},
Ty(3) = Z w(r(B +8))xY;,  Ty(8) = X w(ry(B +8))x;x},
(2.3) =t ot

T,(8) = T,(8) — ET,(8) fork=1,2.
Then, under the preceding conditions,

sup({| T(8)[: 6 € A} = 0,((nlog n)"?) fork =1,2.

Proor. (i) For each fixed 6§ € A, use a large deviation result [as in the
proposition of Koenker and Portnoy (1987, page 855) or by extending Theorem
4 of Feller [(1966), page 524] to show there is ¢ such that for any A > ¢

IP{” T,(8)| = A(n log n)l/z} < ce”(A-ologn,
(ii) Now use the chaining argument: Cover A with balls S, of radius n~3.
We first wish to show that for any fixed S,,

P{sup{|| Ty(8,) — Ty(8,): {8;, 85} € 8,} = A(n log n)"/?}

—(A—c)logn

(2.4)
< ce
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To do this, first note that,
n
Ty(81) — Ty(83) = X (w(u,; — x}8,) —w(u,; — x;85))x;(u; + x;B).
i=1 .

By Condition X, for 6 € A, [x/8| is uniformly bounded (it actually tends to
zero); and so

1T4(8,) = Tu(8,) |

Y (w(u; —x}8;) —w(u, - x;85))x;(u; + x;B)

lu,|<B

(2.5)

for some B since w has compact support. Now, if i is such that (u; — ] 81)
and (u; — x}8,) are not separated by a jump dlscontlnulty, then since w is
L1psch1tz,

“(w(uz —x}8;) — w(u,; — x,8,))x;(u; + x,B)|
<c|x,(8, - 52)’(”xi”B + ”xi“2B)
< (Il l? + llx,l1%)n =2,

whose sum is uniformly bounded (say, by c,) for {5, 8,} < A. Otherwise, u;
must lie in an interval oJ; of length |x/(§; — 6,)| < cn™2" on A. So

ks .
Pl#{i:u, ed} 22} < ¥ (’?)(cn—zﬂs)J
. J
J=I[Al]
n
< Y —'(cn“175) < eCn-L75r
j=m1J:

Therefore, since each term in (2.5) contributes at most ¢ N, 1l + ¢”llx; % <
c*nl/2, there is ¢ such that

IP’{sup{” Ty(8;) — Ty(8,)|: {81,685} ©S,} = Ac*nl/2 + cl} < ce Mlogn

for each ball S,. Thus, (2.4) follows for n large enough.
Furthermore it is direct to show that E|T(5,) — T1(82)|| is uniformly
bounded on each S,. Hence, T1 can be replaced by T, in (2.4). An entirely

analogous argument holds for T; and, therefore, using part (i),
P{sup{“ T,(8)|: 5 SV} > 2A(n log n)l/z} < 2ce”(Aologn,

Last, the number of such balls needed to cover A is smaller than c,n®?
Therefore,

P{sup{“f‘k(a)“: s e A} > 2A(n log n)l/z} < 2ccyn®Pe=AmNoEn _,

for A > ¢ + 3p; and the result follows [using (2.1)]. O

The lemma leads to the following main theorem.
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THEOREM. Under the preceding conditions,

B-B= v(ﬁo - B) + op(n~v),
where v =1 + fuw(u) f'(v) du/ fw(u) f(u) du.

Proor. First compute ET,(8) by expanding the density and using the
conditions. Without loss of generality, assume B = 0:

Y Ew(Y; — xip — x;8)x,Y,

i=1

f: fw(u) f(u +x8)x,(u + x.8) du
i=1 .

Y {alxix§8 + O(leill(x;ﬁ)z)}
i=1

a (X'X)s + O(nllsl?),

where a, = [w(u) f(v)du + [fuw(w) f'(u) du. Similarly,

ET\(9)

ETy(8) = ay(X'X) + O(nllsl),  ay= [w(u)f(u)du.
Now, except with probability bounded by &, Lemma 2.1 applies (by 2.1); and
- A=l A
B= (Tz(ﬁo)) Ty(Bo)

26 = [aa(X'X) + 0,(n'™") + O((n log n)/?)] "
. X [al(X'X)ﬁo +0,(n' ") + 0((n log n)l/z)]

=vBy + 0,(n~?) + O((log n/n)l/z),

where the last step follows since (X’X/n)~! exists and has bounded eigenval-
ues (by Condition X). The result follows. O

ReEMARK. Note that by (2.6), the result of the theorem does not hold if
y = 1/2. Here, the more complicated expansion [Ruppert and Carroll (1980)] is
required.
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