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BEST POSSIBLE CONSTANT FOR BANDWIDTH SELECTION'

By JiaNQING FAN AND JAMES S. MARRON

University of North Carolina

For the data based choice of the bandwidth of a kernel density estima-
tor, several methods have recently been proposed which have a very fast
asymptotic rate of convergence to the optimal bandwidth. In particular the
relative rate of convergence is the square root of the sample size, which is
known to be the best possible. The point of this paper is to show how
semiparametric arguments can be employed to calculate the best possible
constant coefficient, that is, an analog of the usual Fisher information, in
this convergence. This establishes an important benchmark as to how well
bandwidth selection methods can ever hope to perform. It is seen that some
existing methods attain the bound, others do not.

1. Introduction. Nonparametric curve estimation provides a useful tool
for understanding the structure of a data set. See Silverman (1986), Eubank
(1988), Miiller (1988), Hirdle (1990) and Wahba (1990) for many examples of
this and good introductions to the general subject area. The most important
practical hurdle, in applications of this methodology, is choice of the smoothing
parameter.

A large amount of recent progress has been made on data based smoothing
parameter selection. See the survey paper by Marron (1988). Because it
provides a simple context in which to study the problem (hence allowing
deeper results), much of this progress has come in the case of kernel density
estimation. Hence that setting is discussed here as well.

A useful asymptotic means of assessing performance of a data driven
smoothing parameter, that is, bandwidth, is through the relative rate of
convergence to the bandwidth that minimizes the mean integrated squared
error (MISE).

Hall, Sheather, Jones and Marron (1991), Jones, Marron and Park (1991)
and Chiu (1991) have all proposed methods for which this rate of convergence
is extremely fast. In particular, it goes down as O(n~'/2), where n denotes
sample size, which is unusually fast in nonparametric settings. This rate of
convergence has been shown to be the best possible, in an important minimax
sense, by Hall and Marron (1991). But the fact that there are competing
selectors motivates deeper analysis.
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A natural step in this direction is to consider not only the exponent in the
rate of convergence, but also the constant coefficient. This type of question is
frequently addressed in semiparametric analysis, which is an extension of the
classical Fisher information ideas. See Bickel, Klassen, Ritov and Wellner
(1991) and van de Vaart (1988) for details. In this paper a straightforward
application of these methods is used to calculate the best possible constant in
our setting of bandwidth selection for kernel density estimation. It turns out
that the problem of bandwidth selection is closely related to the problem of
estimating some specific kinds of quadratic functionals, which are studied by
Hall and Marron (1987), Bickel and Ritov (1988) and Jones and Sheather
(1991) in density estimation models, and by Donoho and Nussbaum (1990) and
Fan (1991) in Gaussian white noise models. The knowledge gained there is also
very useful to bandwidth selection.

Chiu (1991) proposes two n~1/2 bandwidth selectors, and shows that for
both, the relative error is asymptotically normal. It is a simple calculation to
show that his asymptotic variance is the same as the best possible constant
coefficient derived here. This provides a strong sense in which our lower bound
is informative. With more work, the selector of Hall, Sheather, Jones and
Marron (1991) can be shown to have the same limiting distribution. However
the n~1/2 method of Jones, Marron and Park (1991) has a larger constant, and
thus is not optimal in this sense.

Section 2 gives a precise formulation and discussion of the main results.
Proofs are in Section 3.

2. Main results. To mathematically formulate the problem of bandwidth
selection, assume that X;,..., X, are i.i.d. from an unknown density f. Let
K(-) denote a kernel function and %, be a bandwidth. A kernel density
estimator is defined by

R 1 » - X,
(2.1) fu(x) = ZK(xh )

nh, 7 n

Its performance is typically measured by the MISE
© A 2
(22) M(h,) =E[ (fux)~f(x)) dx

Here we take the optimal bandwidth A ,(f) to be the minimizer (with ties
broken arbitrarily) of MISE. See Hall and Marron (1991) for discussion of
other viewpoints on assessing performance of bandwidth selectors, including
reasons why the present approach is sensible.

The practical implementation of estimator (2.1) involves selecting a suitable
amount of smoothing. The optimal bandwidth % ,(f) naturally would be used,
if it were known. In applications, .k ,(f) needs to be estimated. Several
promising methods have been proposed as indicated in the Introduction.
Which methods are optimal? Discussions on best possible bandwidth selectors
form the core of the paper.
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Our results are formulated essentially in terms of a nonnegative kernel K.
We assume rather strong smoothness, so strong that one could have a faster
asymptotic rate of MISE convergence through the use of higher order kernels.
However, we explicitly treat only nonnegative kernels because they are used
almost exclusively in practice. One reason is that nonnegative kernels give a
more interpretable result, since the intuition behind a local average is obvious,
while it takes far greater insight to understand at an intuitive level how
negative weights can benefit the averaging process. Another reason, as shown
in Marron and Wand (1992), is that large practical gains for higher order
kernels are often absent, or insignificant, in terms of MISE, for realistic
sample sizes.

The problem of estimating 4 ,(f) is closely related with that of estimating
quadratic functionals :

o o) . 2 .
(2.3) 0,(f)=[ (=) de, =23
Indeed, it will be shown (see Lemma 1 in Section 3) that the optimal band-
width A ,(f) can be approximated by
(2.4) d,.(f) =¢105°n7 Y% + ¢,0,058°n73/5,

where
1/5

¢) = (f:oK2(x) dx(f:zZK(z) dz)_z)

and

Cg

- % :ox“K(x) dx( f_lK?(x) dx)3/5( [:z%(z) dz) -

This reduces the problem of estimating the optimal bandwidth to that of
estimating the two quadratic functionals 6,( f) and 6,( f).
For convenience, denote a class of densities having (& + a) derivatives:

Frva = {81180 (x) — gP(y)| < Mlx — yI*, |gP(x)| < go(%)},

where g,(x) is bounded continuous and integrable and 0 < a < 1. Let |- |2
denote the usual L,-norm, and let
(2.5) H,(f,C) = {g € Fira: V& - VFl, < Crin)}

be a Hellinger ball in the neighborhood of f.
The following theorem shows that the asymptotic relative error of any
bandwidth selection procedure cannot be smaller than B(f)n~1/2, where

2 foioo(f“)(x))zf(x) dx
2.6 B - g
. M (J2ul £(x))" dx)
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THEOREM 1. Let K be a continuous second order kernel with
/? Lx|°K(x)dx < ©. Assume that f€ %,,, and k + a > 4. Then, for any
bandwidth selection procedure h ,,

(2.7) lim liminf inf sup nEg(
Coxo n-oow ﬁ" geHn(f,C)

As discussed in the Introduction, the lower bound in (2.7) is the best
attainable when % + a > 4.25. It is worthwhile to note that (2.7) does not
depend on the kernel function K, even though the optimal bandwidth A (f)
does. In other words, B(f) measures the intrinsic difficulty of bandwidth
selection.

The following theorem gives an analogous lower bound for the relative error
of MISE. See, for example, Hall and Marron (1987) for discussion of the close
relationship between Theorems 1 and 2.

THEOREM 2. Under the assumption of Theorem 1, for any bandwidth
selector h ,,

2
M(h ) - M(h
lim liminf inf sup n2Eg ( ") ’ (hn(8))
C—ow n—o fzn gEH,,(f,C) M(hn(g))
where M(-) was defined by (2.2).

> 4B*(f),

The last result indicates that for any bandwidth selector, the relative error
of MISE cannot be smaller than 2n~'B2( f). Thus, the quantity B( f) plays an
important role to the relative error of bandwidth selection, measured in either
way: the larger B(f), the harder the problem. In other words, B(f) measures
the difficulty of bandwidth selection problems.

Note that B(f) is both location and scale invariant for any o > 0 and u,
B(f, ,) = B(f), where

1 (x—p
fuol®) = —F(2).
This is expected because, for example, estimating the N(0,1) density is as
difficult as estimating the N(2,4) density: Plots of two estimates should look
the same except the scales on x axis and y axis are labeled differently. For the
normal case,

2 [4864
B(f) =5\ 555 — 1 = 1.300.

Table 1 shows the values of B(f) for the 15 normal mixture densities in
Figure 1. See Marron and Wand (1992) for the parameters and for discussion
of these densities.

Table 1 gives us an idea as to how difficult it is to select a bandwidth for a
variety of densities. For example, density 4 is asymptotically (2.638 /1.300)? =
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TaBLE 1
Constant factors in the lower bounds

Density number  B(f) Density number B(fF) Density number  B(f)

1 1.300 2 1.771 3 4.973
4 2.638 5 1.388 6 1.868
7 1.286 8 3.390 9 4.742
10 2.125 11 19.394 12 9.635
13 25.587 14 9.408 15 3.515

4.1 times as difficult as a normal density in terms of bandwidth selection: The
best selector with sample size 820 would have roughly the same accuracy of
estimating optimal bandwidth as in the normal case with sample size 200.
Similarly, density 11 would be asymptotically (19.394 /1.3000)? =~ 222.6 times
as difficult as normal density in bandwidth selection terms. These are compati-
ble in an intuitive sense.

REMark 1. A direct consequence of Theorem 1 is that for any open
neighborhood V of f (in L, topology), we have
i;’n - hn(g )
h.(8)

A similar formula holds for MISE. Alternate formulations are possible in
terms of balls, in various metrics, centered at f.

2
liminf inf  sup nEg( ) > B2(f).

nUe by geVNFi,

REMARK 2. Note that B2(f) plays a role analogous to the classical Fisher
information. Thus, given any bandwidth selector (either already existing, or
that may be constructed in the future) % ,, its efficiency can be defined by

B*(f)
nEy((hy = b 1)) /ha( )]

REMARK 3. On the Hellinger ball H,(f,C), we have

h
lim sup (&) - 1(=0.
n=® geH,(f,C) hn( f)
Moreover,
lim  sup [g@(x) -~ fP(x)[=0, Vx
n—® gEHn(fvc)
.and
28)  lim s |[ (g(x)’dx— [ (f'(x))*dx|=0.
n—o geH,,(f,C) — 00 — o
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In other words, the Hellinger neighborhood is so small that the important
characteristics of g are very close to those of f. These conclusions are proved
in Lemma 5 of Section 3, by using statistical ideas, because they cannot easily
be shown by conventional mathematical methods.

3. Proof. The idea of the proof of Theorem 1 is to relate the problem of
estimating h ,( f) with that of estimating 85 '/°(f) defined by (2.3), via a series
of lemmas. These lemmas are established under the conditions of Theorem 1.
We will not state them explicitly in the following lemmas.

In the following discussions, we will suppress the dependence of 6;(g) on
the argument g, whenever the density g is in the Hellinger neighborhood of
f. Recall that f is fixed throughout the following proofs.

Lemma 1. The optimal bandwidth h,( f) satisfies

O(n_1/2),
geHn(f,C) d’n(g)

where ¢,(g) is defined by (2.4).

ProoF. Straightforward from calculations as in Section 2 of Hall, Sheather,
Jones and Marron (1991). O

Thus, it is intuitively clear that the problem of estimating h,(f) is equiva-
lent to that of estimating ¢,( f). The following lemma gives a lower bound for
estimating 05 /5(f).

LEmma 2. Let R, ¢ ((f) be the minimax risk for estimating 05 V3(f):

. _ 2
R,c(f)=1inf sup E(h,—0;°(g)).
h, geH,(fC)

Then,
(3.2) lim liminfnR, o ,(f) = 0, %/5(f)B2(f),

C—x n

where B(f) was defined by (2.6).

Proor. It was shown in the proof of Theorem 2(i) of Bickel and Ritov
(1988) that 6,(f) is pathwise differentiable along paths

(1, WF, = VF]l, = 0, and (£ = F9)YF ], = 0}

with the derivative function

4(fO(x) = 0(F))Vf (=) -
Thus, 65 /5(f) is also pathwise differentiable along such paths with derivative
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function

(—30°(F)AFD(x) = 0 ))VF (%) -

As at the end of the proof of Theorem 2(i) of Bickel and Ritov (1988), the
information bound for 8;'/5(f) is

|- 2655/ £)(FO(x) — 0 FIWF(E) s

= 50,5 [ (FO(x) = 0,)" F(x) dx

= 5032/ [ (£ 1) dx - 03],

by using the fact that 6, = [~ f®(x) f(x) dx. The result follows by standard
semiparametric theory [see Theorem 2.10 of van der Vaart (1988)]. O

In order to show that the second term of ¢,(f) is negligible, the following
lemma gives an estimate of 8(f) = 0,(£)8;%/5(f).

LEMMA 3. There exists an estimator 8, such that

(3.3) sup  E,(5, - 0(g)) = O(n22/%),
geH,(f,C)

Proor. Note that for g € %, ,, £¥(x) is bounded by g,(x) € L, N L.
By the construction of Bickel and Ritov (1988) [see Hall and Marron (1991)
and Jones and Sheather (1991) for a simpler estimator which can also be used],
there exist estimators 6, > 0 and 8, such that

(3.4) sup  E(By — 05)° = O(n=+x4/17)
geH,(f,C)

and

(3.5) sup E(@2 - 02)4 = O(n~4*8/17),
gEH,(f,C)

To guard against zero denominator, we choose

A _ 03

0, = ég/s +po /1T
Then,

A A 2

B . 9 08/50 _ 08/50 _ n—4/170

(36)  E(5,-6) = E( 22 28 o) _ I +1,,
(03/5 + n—4/17) 0%6/5
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where

A A 2

; (08756, — 83/%05 — n=4/V"6,) .

1= . 2 (12— 0] > 05/2)
(03/5 + n—4/17) 0%6/5 27720772

and I, is defined with the complementary indicators. )
Since I, is integrated over the range |8, — 65| < 0,/2 and 6, > 0, we have

6, > 8,/2. Hence, the denominator in I, is bounded away from zero. This
leads to

A oA 2
I, = 0(E(03/503 — 6%/%0, — n="/10,) )
— O(E(d - 0,)" + B(0y/° - 63°) + n~1T) = O(n~*/").
Now, let us consider I;. The fact that 6, > 0 entails that
A A _ 2
I, = O(n¥/VTE(03/°6; = 05/°0, — n™*/8,) 1jpp-y0, /2):
By Holder’s inequality with p = 5/4 and ¢ = 5,
R R 10/4\4/5
Il _ O(n8/17(E(og/503 _ 03/503 _ n—4/1703) ) (E1|@2—02|>02/2)1/5)
= O(n®/\Tn=8/1Tp32/85) = O(n~3/%),
where the inequality
A 0 2\* . 4
P(|02 —0,] > —2) <|=| Eld, - 0,] =0(n2¥17)
2 9,
was used. This completes the proof. O
The following lemma shows that the minimax lower bound for ¢,(f) is
equivalent to that of n~'/5c,0; /%, that is, the second term of ¢,(f) is indeed
negligible.
LemMa 4. Let R, ¢ o(f) be the minimax risk for estimating ¢,(f):

Rn,C,Z( f) = inf sup Eg(i;’n - d)n(g))
h, geH/f,C)

2

Then, we have the lower bound

R, cof) = n=252R, ¢1(f)(1+0(1)),
where ¢, ¢ = o(1) means that limg_lim, . ¢, ¢ =0, and ¢; was defined
by (2.4).

ProoF. Recall that § = 0,05 %/% and that ¢,(g) is given by (2.4). Let 5, be
the estimator defined by Lemma 3 and c3 = c,/c;. Then by making the change
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of variable &, — n~"%c(h, + n=%/%c35),

A A 2
R, co(f)=n"?5}inf sup E(h, - 0;"%+n"*5cy(5 - 0))
hn gEHn(f,C)

>n"2?5c2inf sup (E(ﬁn - 02‘1/5)2 - an\/E(ﬁn - 02'1/5)2 ),
k. geH,(f,C)
where a, = 2¢,n~2%(E(§, — 6)?)!/2. By Lemma 3, we have

a, = O(n—2/5—16/85) — O(n—1/2)-

Thus,
(3.7) Ryca(f) = n*%ct inf(q*(h,) — a,a(hn),

n

where
R R 9 1/2
q(h,) = ( sup E(h,-06;'7) ) .
geH (f,C)

By Lemma 2, for any estimator fzn,
q(h,) = RY% ., = 30;°(f)B(f)n"'2,

where n and C are large. This entails that q(ﬁn) > a, for large n and C.
Since the quadratic function x? —a,x is increasing for x >a,/2 and
RYZ | = inf; q(h,), we obtain that '

i;:f(g2(ﬁn) - ang(ﬁn)) = i;;fgz(ﬁn) - a, infg(k,)
. h

n n

3.8
( ) =Rn,C,1 _anVRn,C,l
' =R, (1 +0(1)).
The conclusion follows from (3.7) and (3.8). O

LEmMMA 5. On the Hellinger ball H,(f,C), we have

h.(8)
h(f)

lim sup

- 1‘ = 0.
nT® geH(f,0)

ProoF. By Lemma 1, k,(g) and A ,(f) can be approximated by ¢,(g) and
¢,(f), respectively. Hence, we need only to prove (2.8). By a useful statistical
lower bound [see for example page 18 of Fan (1989)], for any estimator 7', we
have

sup  B|T, — (=)
geH,(f,C)
3.9
(3-9) 1-V1-e2¢

. . 2
>————— sw |g9(x) - o).
gEH,(f,C)
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Since g has more than four derivatives, there exist estimators [e.g., kernel
density estimators (2.1)] such that gV(x) (j =0,...,4) can be estimated
consistently, that is, such that the left-hand side of (3.9) converges to 0. Thus,

sup ‘g(j)(x) —f(j)(x)| -0, forj=0,...,4.
geH,(f,C)

Now, by the dominate convergence theorem,

sup ([ (g'(x)*dx — [ (f'(x))"dx
gEH (f,C)I" —= —-®
= sw |[ g%~ [ for
geH,(f,0) f-“’ [‘“’ .
<[ f sup |g9—f@|+[ g sup lg—fl,
~© geH,(f,C) —®  geH,f,C)
-0,

where |g@| < g, (see the definition of %, , ) was used in the last inequality.
This completes the proof. O

Proor oF THEOREM 1. Write & ,(g) = ¢,(g) + £,(g), where by Lemma 1,

sup  £,(g) =o(n”V/271/%),
geH (f,C)

Lemma 5 entails that

& ( h.(8)

2

inf  sup
k. geH(f,C)

%

inf( sup Eg(ﬁn—hn(g))2 sup h2n(g))
ha \geH(f,C) g<H(f,C)

inf  sup  E,(h, - 6.(8) — £.(8)) 0% %085 £)(1 + o(1)).
h, geH,/(f,C)

Using this together with the argument used at the end of the proof of Lemma
4, we can show that £,(g) is in deed negligible and conclude that

ﬁn_hn(g)
E ( h(®)

The conclusion follows directly from Lemmas 4 and 2. O

inf  sup

2
) > n/56:203/5( )R,y o o( F)(1 + 0(1)).
hy geH(f,C)

Proor or THEOREM 2. Denote

r=[ K*x)dv, and u=[ x°K(x)dx.
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By using the fact that M'(h,(g)) = 0, we have

A ~ A 2
(3.10) M(h,) - M(h,(g)) =3sM"(h)(h, - h,(8)),
where £ lies between ﬁn and h,(g). Remark that [see Hall, Sheather, Jones
and Marron (1991)]

M"(h) = 2rn"'h® + 3h%u?0, + O((nh) " + h?)

(3.11)
> 5r2/5u5/503/5n-2/5(1 + o(1))

and
(3.12) M(h,(g)) = $r*/u/%0Y/5n=4/5(1 + o(1)).
Expression (3.11) entails that
(3.13) M"(h) > 5r2/5u8/503/5n-2/5(1 + o(1)).
Combination of Lemma 1, (3.12) and (3.13) gives

M"(h)h2

MURIRAE) 5 1 o1y,

2M(h,(g))

This together with (3.10) leads to
2
M(h,) - M(h,(g)) )

inf sup n’E, (

by geH(f,C) M(h,(g))
. 2 4
P Ly XY
h, geH, (f,C) £ 2M(hn(g)) hn(g)
ho—h (g))“
>inf sup n2E,|——""2|(4+0(1
h, geH(g,C) g( h.(8) ( (1)
A 2y 2
> |inf  sup nEg(m) (4 +o0(1)).
h, geH(f,C) h.(8)

The conclusion follows directly from Theorem 1. O
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