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INDETERMINATE PROBABILITIES ON FINITE SETS?

By RoBERT F. NAU

Duke University

This paper presents a quasi-Bayesian model of subjective uncertainty
in which beliefs which are represented by lower and upper probabilities
qualified by numerical confidence weights. The representation is derived
from a system of axioms of binary preferences which differs from standard
axiom systems insofar as completeness is not assumed and transitivity is
weakened. Confidence-weighted probabilities may be elicited through the
acceptance of bets with limited stakes, a generalization of the operational
method of de Finetti. The model is applicable to the reconciliation of
inconsistent probability judgments and to the sensitivity analysis of
Bayesian decision models.

1. Introduction. The determinacy of personal probabilities has long been
controversial among both adherents and critics of the Bayesian viewpoint.
Savage (1972), page 58, observes that ‘‘there seem to be some probability
relations about which we feel relatively ‘sure’ as compared with others. When
our opinions, as reflected in real or envisaged action, are inconsistent, we
sacrifice the unsure opinions to the sure ones.” Yet his theory provides no
measure of the “surety’” of a probability nor any prescription for reconciling
inconsistency. The intuitive conviction that personal probabilities cannot al-
ways be quantified exactly has been cited by Berger (1984), page 64, and
Leamer (1986), page 219, as an impediment to the acceptance of Bayesian
inference methods, and Berger uses this point to argue for Bayesian methods
which are robust against misspecifications of the prior distribution.

The quality of being unsure about a probability cannot itself be satisfacto-
rily modeled by another probability distribution, as the expectation of a
second-order distribution is behaviorally indistinguishable from a first-order
probability. [Savage attributes this observation to Woodbury; see also
Marschak, Borach, Chernoff, DeGroot, Dorfman, Edwards, Ferguson,
Miyasawa, Randolph, Savage, Schlaifer and Winkler (1975).] A useful alterna-
tive is to represent a subject’s beliefs by a convex set of distributions rather
than a unique distribution, leading to distinct lower and upper probabilities for
events. [An extensive treatment is given by Walley (1991). Special cases are
considered by DeRobertis and Hartigan (1981) and Wasserman (1990). There
are also varieties of lower and upper probabilities which are not envelopes of
convex sets, but these will not be discussed here.] Some authors consider these
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sets of distributions to represent beliefs which are merely imprecise—that is,
theoretically determinate but measured with error. Others consider them to
represent beliefs which are intrinsically indeterminate due to limits of ratio-
nality or to insufficient quantity or quality of information [Koopman (1940),
Smith (1961), Good (1962), Suppes (1974), Kyburg (1974), Williams (1976),
Levi (1980), Walley (1982), Seidenfeld, Kadane and Schervish (1989) and
Seidenfeld, Schervish and Kadane (1990)]. Competing views are discussed by
Levi (1985) and Walley (1991).

As a primitive representation of beliefs, the set-valued probability model is
obtained from the standard point-valued model by dropping the axiom of
completeness—an axiom many feel to be normatively uncompelling—and in
most respects it provides a satisfactory description of indeterminacy. Still, a
few intuitive and practical problems remain. To represent a subject’s belief in
the occurrence of an event by a unique probability interval [p, q] is to endow
each of the interval’s endpoints with much the same quality of surety as a
point probability, whereas intuition suggests that they, too, may be somewhat
indeterminate. [““The inequalities themselves have fuzziness,” as Good (1962)
observes.] The assumption that sets of probabilities are uniquely determined
also leaves the following practical problem: If an assessment of lower and
upper probabilities turns out to be inconsistent, there is still no basis for
““sacrificing the unsure opinions to the sure ones” in order to reconcile the
inconsistency.

Parametric families of sets of distributions are widely used in Bayesian
sensitivity analysis and robust inference, and various authors have explored
the idea that such families might be considered to represent second-order
indeterminacy in beliefs. Good (1962) suggests that lower and upper probabili-
ties might be qualified by higher-order distributions—at least conceptually—
although Woodbury’s objection is seemingly applicable here as well. Garden-
fors and Sahlin (1982, 1983) introduce the notion of an ‘“epistemic reliability”
function defined over a set of probability distributions, which yields larger or
smaller sets of probabilities as a reliability threshold is varied. Watson, Weiss
and Donnell (1979) and Freeling (1980) use ‘“membership” functions to
represent probabilities as fuzzy numbers, according to Zadeh’s (1965) theory of
fuzzy sets. In all of these models an indeterminate probability is described by a
general unimodal function on the unit interval rather than a rectangular
indicator function. However, the postulated function has no clear-cut behav-
ioral implications, and therefore it is not apparent how to elicit its parameters.

This paper presents a new theory of indeterminate sets of probabilities
which addresses the issues raised above. Beliefs are described by lower and
upper probabilities qualified by numerical confidence weights, which provide a
basis for making tradeoffs among probability judgments in order to reconcile
inconsistency or perform sensitivity analysis. Confidence weights are opera-
tienally defined as the relative stakes attached to different betting rates under
a modification of de Finetti’s (1937, 1974) elicitation method. As an illustra-
tion, consider a subject who is asked to reveal his probability for an event by
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announcing bets he would be willing to accept at the discretion of an opponent.
Suppose that, under the rules of the elicitation game, the subject is not
required to determine a rate at which he would indifferently bet on or against
the event—thus, he is allowed to announce distinct lower and upper betting
rates—and furthermore he is allowed to limit the stakes for which he will bet
at a given rate. For example, he might announce more than one lower or upper
betting rate for the same event, each with its own limit on stakes. (Presumably
he will accept higher stakes for more favorable rates.) The opponent is then
allowed to enforce a single bet, or else a convex combination, from among all
those offered.

Under these circumstances, suppose the subject offers to accept any one of
the following four bets: $100 on the occurrence of an event at a rate of 0.4,
$50 on its occurrence at a rate of 0.5, $50 against its occurrence at a rate of
0.7 or $100 against its occurrence at a rate of 0.8. [If he bets $c on the event at
rate p, the subject loses $¢ if the event does not occur and wins $¢(1 — p)/p if
it does occur. If he bets $c against the event at rate g, the subject loses $c if
the event does occur and wins $cq /(1 — ¢) if it does not.] The subject thereby
reveals that, with some degree of confidence, he places the probability of the
event in the interval [0.5,0.7], and with ““twice as much confidence” he places
it in the interval [0.4, 0.8]: His relative confidence in a betting rate is equated
with the relative amount of money he risks losing. Various psychological
mechanisms can be proposed to explain this assignment of nontrivial confi-
dence weights to probabilities when the rules of elicitation allow it—for
example, it is an appropriate response to an environment in which ‘‘people
accepting bets against our individual have better information than he has.”
[See de Finetti (1937), footnote on page 62 of the (1980) edition; also de Finetti
(1974), page 93. This interpretation is discussed by Nau (1989, 1990).] How-
ever, for the purposes of this paper, judgments of confidence will be considered
as behavioral primitives, comparable to numerical judgments of probabilities
themselves under de Finetti’s original definition.

The properties of confidence-weighted lower and upper probabilities will be
deduced from a system of axioms of binary preferences among monetary
lotteries over finite state spaces, which differs from standard axiom systems
insofar as the assumption of completeness is abandoned and the assumption of
transitivity is weakened. [In contrast, Fishburn (1983a, b) models ambiguous
beliefs by abandoning transitivity while preserving completeness.] However,
de Finetti’s axiom of coherence—the avoidance of sure loss—remains as a cen-
tral requirement of rationality. It will be shown that an assessment of confi-
dence-weighted probabilities for a finite state space is described by a concave
function on the probability simplex, and the degree of belief in a single event is
described by a unimodal function on the unit interval. These are technically
Bayes risk functions summarizing the decision problems that the subject’s
assessment presents to a betting opponent. However, they also have many of
thé postulated properties of Gardenfors and Sahlin’s epistemic reliability
functions and Watson, Weiss and Donnell’s and Freeling’s membership func-
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tions; and they parameterize families of nested, convex sets of distributions
which are formally similar to classes of “contaminated” distributions used in
robust Bayesian analysis [e.g., Berger (1984) and Berger and Berlinear (1986).]

The novelty of this representation of second-order indeterminacy is that it is
linked to material betting behavior and possesses definite rules of inference
which follow from the underlying axioms. These, of course, are generalizations
of the corresponding rules of inference for point-valued and interval-valued
probabilities. On a practical level, it justifies the use of simple linear-program-
ming methods for reconciling incoherence and performing sensitivity analysis
in Bayesian decision models [Nau (1989)].

The next section of the paper introduces axioms of confidence-weighted
preferences among monetary lotteries, and Section 3 establishes basic duality
results analogous to de Finetti’s coherence theorem. Section 4 specializes these
results for assessments of confidence-weighted probabilities; Section 5 gives an
example of inference; and Section 6 discusses potential applications. Proofs are
given in Appendix 1 and a computational algorithm is given in Appendix 2.

2. Confidence-weighted preferences among monetary lotteries.
Consider a finite set ® of states of nature with respect to which we wish to
characterize an individual’s beliefs. Let X, Y, X;, Y;, etc., denote bounded
random variables over O, interpreted as payoff vectors of monetary lotteries,
and suppose that an individual (“the subject,” ‘“he’’) reveals his beliefs by
asserting preferences among a finite number of pairs of such lotteries. Let 7,
denote the subject’s assertion that X, > Y, (“X,, is weakly preferred to Y,”)
for some lotteries X, and Y,; let .#'={1,..., N} denote the set of all n for
which such direct assertions are made; and let &7, = A, ._,/,, where “A”
denotes conjunction. 27, will be called the subject’s assessment with respect
to ©. We will be interested in judging whether such an assessment is internally
consistent and, if so, in determining what other preferences may be inferred
from it under suitable axioms of rationality.

Lotteries are represented by vectors in R, where M = |®|, and will be
interpreted as potential changes in the wealth distribution of the subject; the
payoff of lottery X in state 6 € ® will be denoted X(6). 0 and 1 will denote
the vectors in R whose elements are identically 0 and 1, respectively, and the
symbols E, F, etc., will denote events (subsets of ®) and also the indicator
functions thereof. Thus, E(9) = 1 if the event E includes state 6, and E(6) = 0
otherwise; 1 — E is the complement of E, which will also be denoted as E.
Addition and multiplication of lotteries by scalars and indicator functions are
defined pointwise. For example, aX + (1 — a)Y is the lottery paying a X(8) +
(1 — @)Y(#) in state 0, and EX + (1 — E)Y is the lottery paying E(6)X(6) +
(1 — E(0))Y(0) in state 6. The latter is a conditional lottery paying X if E
occurs and Y otherwise. [X],;, is defined as the minimum element of X:

[X]min = min X(6).

“>*” and “>* ” denote nonstrict and strict dominance (vector inequality)
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between lotteries:
X>*Y if[ X-Y]n=0
and
X>*Y if[ X = Y]mn > 0.
The symbol B will be used to denote a difference of two lotteries—for example,

B=X-Y. If[B]_, <0, then B* denotes the normalization of B so that its
minimum element is —1:

B
- [B]min ’
whence [B*] ;. = —1 by definition. If @ is any collection of vectors in R™,

CONV{2} denotes the convex hull of 2, and CONV*{2} denotes the sum of
CONV{2} and the nonnegative orthant:

CONV*{2} = {Y|Y >* Z for some Z € CONV{2}}.

B* =

The following axioms will be assumed to govern preference:

A.1. (Reflexivity): X = X.

A.2. (Dominance): {X > YAX >* X} = X" > Y.

A.3. (Cancellation): X = YAX-Y=X-Y}=X>Y.

A4. (Convexity): (X = YAX =Y} =2aX+(1-a)X =2YVac(,1.
A.5. (Coherence): X >* Y = Not Y > X.

These are similar to axioms for preferences among monetary lotteries on finite
sets which have been used by de Finetti (1937), Buehler (1976), Williams
(1976) and Walley (1982). The dominance axiom implies that more is preferred
to less; and cancellation implies that preferences between lotteries do not
depend on absolute levels of wealth, only on statewise differences. The latter
assumption is reasonable for changes in wealth which are relatively ‘“‘small.”
The convexity assumption replaces—and weakens—the usual assumptions of
linearity and transitivity. Like Williams and Walley (but unlike de Finetti) we
do not assume completeness of preferences, that is, we do not assume that, for
any X and Y, either X > Y or Y = X, or both. No Archimedian axiom is
included here because only finitely generated preference structures will be
considered.

The axioms imply that preferences can be diluted: X = Y = aX > aY for
a € (0, 1) by successive application of A.1, A.4 and A.3. However, because only
convexity rather than linearity is assumed, they cannot necessarily be undi-
luted: The preceding implication does not hold for a > 1. Correspondingly, the
conventional transitivity property does not hold, but a diluted form of transi-
tivity holds instead. A.3 and A.4 together imply the stronger convexity prop-
erty X=YAX =Y} =aX+ (1 -a)X zaY + (1 - )Y for @ €(0,1), so
that {X, = X, A X, = X;} = 31X, + $X, > 3X, + ;X;, whence by cancella-
tion we obtain only X, > X, instead of the usual X; > X,. More generally,
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the same construction yields
1 1
(21) {XizXoAXp 2 XA AX, 2 X4} = le z Zxk+1‘

Lest the reader be alarmed at this weakening of transitivity—normally consid-
ered a compelling axiom of preference—it should be emphasized that the
binary relation axiomatized here is not merely a qualitative ordering relation.
The lack of an undilution property means that between any two lotteries X
and Y there is not merely a direction of preference, but also a secondary,
quantitative attribute which later will be termed “confidence,” and which is
proportional to the maximum value of a for which aX > Y. It is this
secondary attribute, rather than the qualitative direction of preference, which
fails to be conserved in chains of inference such as (2.1). In the presence of the
cancellation assumption, we could not assume undiluted transitivity without
implying the undilution of preferences, since X > Y={X+X>X+YA
X+Y>Y+Y} = 2X >2Y. The absence of an undilution property (or,
equivalently, the dilution of transitivity) distinguishes the model of prefer-
ences presented here from Aumann’s (1962) utility theory sans completeness,
Buehler’s (1976) model of coherent preferences, and the lower and upper
probability models of Smith (1961), Williams (1976), Levi (1980) and Walley
(1982, 1991).

If the chain of weak preferences on the left-hand side of (2.1) is converted to
a cycle by appending X, , ; = X, then a cycle of diluted preferences is implied
in the other direction, namely (1/£)X; = (1/k)X;_, for all j. For the reasons
just noted, these cannot necessarily be undiluted to infer X; > X._;. However,
it is still forbidden to have a cycle of preferences in which at least one
preference is strict, under a natural definition of strict preference: X > Y if
X = Y and not Y = aX for every a > 0. Under this definition, strict prefer-
ence is dilutable—that is, X > Y = aX > aY for o € (0, 1)—and A.5 is equiv-
alent (given the other axioms) to X >* Y = X > Y. If preferences could be
undiluted, this definition would reduce to the more familiar one, namely the
asymmetric part of > (X =Y and not Y x X). Absent the undilution prop-
erty, the asymmetric part of > by itself is not a useful definition of strict
preference, because it is possible to have X > Y and (1 — ¢)Y = (1 — &)X but
not Y = X for arbitrarily small . Furthermore, the asymmetric part of > is
not dilutable.

Under the axioms given above, the implications of the subject’s assessment
can be summarized as follows.

DEFINITIONS. A preference relation > on RY is a convex extension of &7,

~

ifX, =Y, forall n € # and x> satisfies A.1-A.4. It is a coherent extension
if it also satisfies A.5. &7, is coherent if it has a coherent extension.

THEOREM 1. Let
#,= CONV*{0,B,,...,By},
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where B, =X, - Y,V n e . Then:

(i) The minimal convex extension of &/, is given by X =YX -Ye
Q@‘/t/o

(ii) ©7, is coherent if and only if %, does not contain a strictly negative
vector.

Henceforth, ““ = ”’ will be used to denote the subject’s directly asserted prefer-
ences as well as their minimal convex extension. For example, &7, = X, > Y,
indicates that .7, is an assertion of preference for X, over Y,, and &/, =
X > Y (“o, implies that X is preferred to Y”) indicates that the minimal
convex extension of &7, satisfies X > Y.

Note that the set &, consists of (i) the zero vector, (ii) the lottery
differences X, — Y, for all n € .#, (iii) all convex combinations of those
preceding and (iv) all vectors that dominate those preceding: It is a convex
polyhedron in R having the nonnegative orthant as its cone of recession
[Rockafellar (1970)]. & , will be called the set of acceptable gambles, following
de Finetti’s operational view that an assertion of preference X > Y implies a
willingness to exchange Y for X, which is equivalent to accepting a gamble
whose payoff vector is X — Y, at the discretion of an opponent. The decision
problem for the opponent (‘“‘she”) is to select a gamble from this set to enforce.
By comparison, the set of acceptable gambles is a convex cone under Smith’s
operational definition of lower and upper probabilities, and it is a half-space

Payoff given not-E
------- Ordinary probability
N = = = = Lower and upper probabilities
ht Confidence-weighted probabilities
\\
)
)
cq/(1-q)
c(1-p)lp Payoff given E —»
1 -c
-c
- ~
. e ~
4 . . So
‘e s ~ -~ <

F16. 1. Frontiers of sets of acceptable gambles corresponding to assessments of an ordinary
probability, a lower and upper probability and confidence-weighted probabilities. p and q are
confidence-weighted lower and upper probabilities with confidence c.
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under de Finetti’s definition of ordinary probabilities. (Under de Finetti’s and
Smith’s definitions, acceptable gambles are additive, not merely convexifiable.)
These differences are illustrated in Figure 1 for the case M = 2, where
0 = (E, E} for some event E.

The secondary attribute of preference noted above will now be made ex-
plicit. Let X and Y be lotteries for which [X — Y], < 0, and suppose the
subject asserts that aX is preferred to aY for some a > 0, meaning that he
will accept a gamble whose payoff vector is a(X — Y). Then ¢ = —alX — Y],
is the maximum amount of money the subject might lose if his acceptance of
this gamble were enforced by the opponent. Using the normalization operation
introduced above, this gamble can be equivalently expressed as c(X — Y)*.
Thus, c is the size of the stake the subject is willing to risk in accepting a
gamble proportional to (X —Y), and it will be defined as the amount of
confidence with which he prefers X to Y:

DeriNTION. X = Y (“X is preferred to Y with confidence ¢”) if aX = oY
and ¢ = —of[X — Y] ;.-

From Theorem 1, it follows that &/, = X »_Y is and only if ¢(X — Y)*
% ,. The subject’s assessment (as well as its inferences) will hereafter be
recoded entirely in terms of confidence-weighted preferences. For example, we
will write &7, = X, =, Y, (meaning that «,X, is asserted to be preferred to
a,Y,,and ¢, = —a,[X, - Y,]..) for every n. =, will be considered as the
minimal convex extension of the subject’s assessment of confidence-weighted
preferences. In the terminology of Luce and Narens (1985), =, is a relational
structure comprising an uncountable infinity of binary relations indexed by c.
Note that >, unlike 3 , possesses the undilution property:

X>Ye®aX >, aY Ya>0.

Given a pair of lotteries X and Y, neither of which dominates the other, we
will generally be interested in determining the maximum confidence with
which it can be inferred that X is preferred to Y. Note that if preferences could
be undiluted, the acceptability of a gamble proportional to X — Y would be
independent of the stake: The subject would have infinite confidence in his
preference for X over Y if he had any preference at all. Absent the undilution
property, the subject’s confidence in his preference for X over Y will be finite if
X does not dominate Y. In particular, if we define

C = mMmax c
7 net

where c,, is the degree of confidence in assertion 27, then ¢ , is an upper
bound on the confidence of any preferences which may be inferred from the
assessment, because inferences are obtained through the formation of convex
combinations. For convenience, we will hereafter take c , as the unit of
confidence (i.e., we set ¢_, = 1) so that all confidence weights will lie between 0
and 1.
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There are several reasons for identifying the subject’s ‘“‘confidence’” in a
gamble with the amount of money he is willing to lose, rather than some other
measure such as the amount he might win, the length of the payoff vector in
Euclidean space or another attribute. First, it will be demonstrated that this
definition has mathematically interesting properties which are in accord with
intuitive notions of a subject’s degree of conviction in his beliefs. Second, it is
psychologically convenient: Our goal is to associate a confidence weight with
an odds ratio or probability, and the definition of confidence in this way
coincides with the familiar decomposition of gambles into “odds’ and ““stakes.”
Third, it is closely related to the formal definition of.regret—that is, the
difference between what is actually received and what might have been re-
ceived had another decision been made—which a number of researchers have
identified as a factor in behavior which violates subjective expected utility
theory, particularly in situations where the estimation of a probability is
subject to second-guessing [Bell (1982) and Loomes and Sugden (1982)]. The
subject’s confidence in accepting a gamble, as defined here, is the relative
amount of regret to which he thereby exposes himself.

Although the focus here is on the modeling of probabilities and not utilities,
the axioms given above do not rule out the possibility that the subject is a
subjective-expected-utility maximizer with constant absolute risk aversion—
that is, exponential utility for money. If this were the case, his apparent
confidence in any gamble having both positive and negative payoffs would
always be finite merely because of risk aversion, even if his beliefs were highly
determinate. [Leamer (1986) discusses the phenomenon of lower and upper
probabilities in precisely these terms.] Specifically, we would expect his confi-
dence in any reasonable gamble to be of the same order of magnitude as his
risk tolerance, and we would also expect to see certain patterns among the
gambles he would accept on different events. [If the subject’s utility-for-money
function has the exponential form u(x) = 1 — exp(—x/T'), the constant T is
his risk tolerance. Roughly speaking, it is the amount of money such that he
would be indifferent to accepting a gamble offering equal chances of winning
that amount or losing half that amount.] For example, he would be able to
weakly order events according to likelihood, and we would expect him to accept
the gambles E — pl1 and E' — p1 with equal confidence for every value of p if
the events E and E' were judged equally likely and had no a priori bearing on
his wealth. The viewpoint adopted here, nonetheless, is that the subject’s
attachment of finite confidence weights to preferences is not primarily due to
risk aversion, that the amount of money at risk is small in comparison with his
risk tolerance (f the latter is finite) and that its value is in fact somewhat
arbitrary. Thus, it is assumed that the information conveyed by the confidence
weights inheres in the ratios ¢, /c_, rather than the magnitude of c_,.

3. Duality results: coherence and inference. The convex set &, of
acteptable gambles generated by 27, constitutes the primal geometric repre-
sentation of the subject’s beliefs, and there is a corresponding dual or conju-
gate representation in the form of a concave function on the simplex of
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probability distributions on ©® [Rockafellar (1970), Corollary 16.5.1]. In the
fundamental coherence theorem for confidence-weighted probabilities to be
given below, this function plays the role that is occupied by a unique probabil-
ity distribution in de Finetti’s theory, or by a convex set of ‘“medial” distribu-
tions in Smith’s theory. This function is in fact the Bayes risk function
summarizing the statistical decision problem that the subject’s assessment
presents to his betting opponent. The Bayes risk for a statistical decision
problem is conventionally defined as the minimum achievable expected loss for
the decision maker (here, the opponent) as a function of her probability
distribution, where “loss” is measured in such a way as to be intrinsically
nonnegative [DeGroot (1970)].

Let IT denote the simplex of probability distributions on ©, and let = — P_(-)
denote the probability (expectation) assigned to-an event (lottery) by the
distribution 7 € II. That is,

P(E)= ¥ w(0)E(9)

[FX={C]
and
P_(E[F) = P_(EF)/P_(F) if P(F) > 0.

The subject’s assertion that X, is preferred to Y, with confidence c, means he
will accept a gamble whose gain for him is ¢,B%, where B, =X, —Y,, and
whose gain for the opponent is therefore —c,B%. If the opponent’s distribu-
tion on O is 1, she should enforce this gamble only if P_(B¥*) < 0, obtaining
an expected gain of —c, P, (B?); otherwise, she should decline the gamble,
obtaining an expected gain of 0. (Introduction of “‘the opponent’s distribution
7’’ should not be interpreted to mean that we impute to the opponent the very
determinacy of beliefs which we deny to the subject; it is merely a technical
device whose usefulness will ultimately be justified by the role it plays in
representation theorems given below.) Consequently, the maximum achievable
expected gain presented to her by &/, alone is —c, min{0, P, (B¥)}. The
opponent’s maximum possible gain over all acceptable gambles is the subject’s
maximum possible loss, which is equal to 1 by our choice of units. Therefore,
we define a nonnegative ‘“‘loss’ for the opponent as 1 minus her actual gain,
and the “Bayes risk against 7 induced by £7,,” denoted as = — R_(&7,), is
then given by

R,(o4,) = 1 + ¢, min{0, P,(B%)).

The decision problem posed by the entire assessment is a mixture (convex
combination) of the problems posed by the separate assertions. In general, the
Bayes risk induced by a mixture of decision problems is the pointwise mini-
mum of their separate Bayes risks, since for any s it is always an optimal
strategy to take the pure decision yielding the smallest expected loss. There-
fore, the Bayes risk against 7 induced by the entire assessment, denoted as
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m— R (&), is given by
R.(%,) = min R_(&,) = min 1 + ¢, min{0, P,(B})}.
ned ned

Being the pointwise minimum of a finite collection of affine functions, it is
piecewise linear and concave on the simplex.

Let & denote a hypothetical additional assertion that X is preferred to Y
with confidence c, for given values of X, Y and c; and let B = ¢(X — Y)*. In
other words, B is the gamble whose acceptance would operationally define the
assertion &7. By the same reasoning as above, the Bayes risk which would be
induced by the assertion &7 alone is given by

R (&) = 1 + c¢min{0, P.(B*)}.

However, recall from Theorem 1 that & is already implied by <7, if and only
if B € 4 ,.In these terms, the ‘“‘fundamental theorem” of confidence-weighted
preferences is as follows.

THEOREM 2.

(i) &7, is coherent if and only if R (7, ) = 1 for some = € II.
(i) &, = & ifand only if R (& ,) <R _&Z)V 7w Il

Note that R _(&7,) =1 implies P (B,) >0, or equivalently P (X,) >
P _(Y,), for all n € .#. Hence, coherence requires the existence of a probability
distribution under which every asserted preference is in the direction of
increasing expected value.

The construction of the function R_(&7,) can be visualized as follows.
Imagine an M-dimensional frosted layer cake whose base is the simplex IT
(which has dimension M — 1) and whose height (in the z direction) is initially
equal to 1 everywhere. Then, for each preference assertion of the form
X, =, Y,, imagine making a downward, angled cut into the cake and remov-
ing the material above the cut. In particular, let the nth cutting plane be the
set of (1, 2) satisfying z = 1 + ¢, P, (B*), where B, = X, — Y,. For ¢, € [0, 1],
such a cut does not intersect the base of the cake: It enters through the top
along the line where P (X,) = P_(Y,) and exits through the side along which
P_(X,) < P(Y,) at a height of 1 — ¢,, above the base. The graph of R _(&7,)
on II is the upper surface of the whittled-down cake that remains after all N
cuts have been made. The assessment is coherent if any of the frosted top
surface remains—that is, if the cake still attains an altitude of 1 at some point.
The assertion X »>.Y can be inferred from the assessment if its own cutting
plane lies above or tangent to the remainder of the cake—that is, if it would
not remove any additional material.

4. Confidence-weighted probabilities. The case in which an assess-
ment refers directly to probabilities is of special interest. So, for events E and
F and numbers p and ¢ between 0 and 1, we introduce the following:
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DEeriNiTIONS. The conditional probability of E given F is at least p with
confidence ¢, or equivalently, (p, ¢) is a confidence-weighted lower probability
for E|F, if EF >, pF. Similarly, (q, ¢) is a confidence-weighted upper probabil-
ity for E|F if EF <, ¢F, or equivalently, (1 — E)F >, (1 — ¢)F.

The assertion of (p, c¢) as a confidence-weighted lower probability for E|F
implies acceptance of the gamble whose payoff vector is c¢c(EF — pF)*. Since
EF — pF is normalized upon division by p, this gamble can be rewritten as
(¢/p)(E — p1F. Confidence-weighted probabilities defined in this way are a
generalization of lower and upper probabilities as operationally defined by
Smith (1961), which in turn are generalizations of ordinary probabilities as
operationally defined by de Finetti (1937, 1974). This is illustrated by Figure 1,
in which p and g are confidence-weighted lower and>upper probabilities with
confidence ¢ for the unconditional event E. The properties of confidence-
weighted probabilities are implicit in the results of Theorem 2, but this section
will recast those results in terms that highlight their relationship with other
representations of beliefs.

When beliefs are represented by ordinary probabilities (or intervals of
probabilities), an assessment is usually made by eliciting probability judgments
with respect to some finite set of “source” events. These judgments determine
a distribution (or convex set of distributions) in the simplex, which is subse-
quently marginalized to yield inferences concerning the probabilities of other,
“target” events. A similar procedure exists for confidence-weighted probabili-
ties: In this case, it is the Bayes risk function on II that is marginalized. For
example, suppose (p, c) is asserted to be a confidence-weighted (unconditional)
lower probability for E, and let x denote a possible value for the opponent’s
marginal probability of E. [That is, x = P_(E), where 7 denotes the opponent’s
distribution on @.] The associated gamble yields a gain of —(c¢/pXE — p1) to
the opponent, and its expected value for her is —(c/p)Xx — p), which is
positive if x < p. Hence, the Bayes risk (which is 1 minus the opponent’s
maximum achievable expected gain) depends on 7 only through the marginal
probability x. This will be called the “marginal”’ Bayes risk against x induced
by (p, ¢); it will be denoted as x — u,(p, ¢), and it is given by

4.1 _ b Fx2P 4 eminfo, S -1
( . ) l'Lx(p,C) - 1+ (c/p)(x—p), OtherWise, = Cc min ,p .
By complementarity, the marginal Bayes risk against x induced by the asser-
tion of (g, ¢) as a confidence-weighted upper probability for E can be expressed

in terms of u as

1-x
mi_,(1—q,c)=1 +cmin{0, 1=q - 1}.

The function p will serve as the building block for subsequent constructions:
For fixed p and c, the graph of u,(p,c) versus x consists of line segments
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Fic. 2. Generic marginal Bayes risk (MBR) function induced by the assessment of p as a lower
probability with confidence ¢ (p = 0.4, ¢ = 0.7).

connecting the three points whose (x, y) coordinates are (0,1 — ¢), (p, 1) and
(1, 1), as shown in Figure 2.

With lower and upper probabilities qualified by confidence weights, the
subject may express his uncertainty about an event using several lower and /or
upper probabilities at different levels of confidence. For example, he might
assert that (py, ¢,) and (p,, ¢,) are confidence-weighted lower probabilities for
the same event, with ¢; > ¢, if p; < py. The lesser of two lower probabilities
for the same event must have the greater confidence in order to be informa-
tive; otherwise, its implied gamble would be dominated for the opponent by the
other gamble. Similarly, the greater of two values for an upper probability
must have the greater confidence. Thus, the subject’s uncertainty may be
represented by a sequence of nested intervals [p;, ¢;]1 D [py, g2] © - - -, indexed
by confidence weights ¢; > ¢, > -, rather than by a single point or interval
in [0,1]. This nested sequence of intervals may be thought of as a single
“fuzzy-edged” probability interval, for reasons to be elaborated below.

First, consider the properties of an assessment given entirely in terms of
unconditional confidence-weighted probabilities for a set of source events,
{E,In € #}. To explicitly accommodate multiple lower and /or upper probabil-
ities for each event, a more detailed notation will be introduced. Let the
subject’s assessment consist of a conjunction of assertions {7, ,In € .7, j €
/), where

'Q{nj = {En bc,U pnjl A En ﬁc,u qn_]l}
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In other words, 27,; is the joint assertion that p,; and g, ; are confidence-
weighted lower and upper probabilities, respectively, with confidence c,; for
the event E . (It is not necessary to assume lower and upper probabilities are
always assessed in matched pairs at the same level of confidence, but there is
no loss of generality in doing so, and it will simplify subsequent comparisons
with other models.) Henceforth, let &, = A ;. ,&7,; and &, = A, c .
That is, &7, is the partial assessment referring only to E,, and &7, is once
again the entire assessment. Given the assessment &7 ,, we wish to determine
the confidence-weighted probabilities which can be inferred for an arbitrary
target event E.

The function w introduced above may be used to construct Bayes risk
functions summarizing different levels of the assessment. First, let x —
r(E,; &, ;) denote the “marginal Bayes risk against x as a value for the
probability of E, that is induced by 7, ;.” Since &/, ; is actually the conjunc-
tion of two elementary assertions—namely that (p,;,c,;) and (q,;,c,;) are
confidence-weighted lower and upper probabilities, respectively, for E,—the
Bayes risk it induces is the pointwise minimum of their separate contribu-
tions:

rx(En;"Q{nj) = min{/"‘x(pnj’cnj)’l"‘l—x(]‘ - qnj’cnj)}

(4.2a) . x 1-x
=1+¢,;mn{0, — -1, — — 1).
Dy l_qnj

The graph of this function on [0, 1] consists of line segments connecting the
four points (0,1 — ¢, ), (p,;, D, (q,;, D and (1,1 — ¢, ;). The pointwise mini-
mum of these functions for all j € #, yields the marginal Bayes risk induced
by the partial assessment 7,:
(4.2b) r.(E,; ) = min r,(E,; &),

i/t
which is piecewise linear and concave on [0, 1]. Next, the Bayes risk induced by
&/, against the full distribution = is obtained by extending r(E,; 27,).to the
simplex II via the mapping x — {7|P_(E,) = x}:

R() = 1oy (B )

4.3 x,(m 1—x,(m
(43) = min 1 + ¢,; min{0, ()—1, ( )—1,
JES, Dnj l_qnj

where x,(w) = P_(E,). This function is piecewise linear and concave on II.
The Bayes risk against 7 induced by the entire assessment &/, is the
pointwise minimum of these functions over n:

(4.4) R,(/,) = min R (27,).
. ned
Now suppose that for some target event E it is desired to determine the

marginal Bayes risk against x as a value for the probability of E which is
induced by the assessment 27,. Consistent with the notation introduced
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above, this will be denoted as x — r (E; o/ "4). Given knowledge of x (but not
necessarily ), it can only be said that the opponent’s minimum achievable
expected loss is less than or equal to the maximum of the Bayes risk R (27 ,)
over all 7 satisfying P_(E) = x whence
(4.5) r(E;o,)= max R_(&,).

x: P (E)=x
Note that if E = E,, for some n € .#~that is, if the target event is taken to be
one of the source events—it follows by substitution of (4.3) and (4.4) in (4.5)
that r(E; »7,) < r(E,; &) for all x € [0, 1].

When the source and/or target events are conditional , the development is
only slightly more complex. Let &, ; now denote the joint assertion of
(P, €a;) and (q,;, c,;) as confidence-weighted lower and upper probabilities
for E, conditional on F,. That is,

"Q{nj = {EnFn tc,u pnan A EnFn Scnj anFn}

The marginal Bayes risk x — r,(E,|F,; &,) induced by 27, depends on the
parameters p, ;, q,; and c,; in the same way as before:

rx(EnIFn;Ja/n) = Jn;? min{:u'x(pnj: cnj): :u'l—x(l - qnj:cnj)}'

Strictly speaking, this should be called the conditional Bayes risk induced by
&/, against x as a value for the probability of E, given F,, although we will
still refer to it generically as a “marginal” Bayes risk (MBR) function. Now,
conditional on the occurrence of F,, which has probability P_(F,), the oppo-
nent’s minimum achievable expected loss with respect to &7, alone is the
marginal Bayes risk given above; and conditional on F,, which has probability
1 — P_(F,), her minimum achievable expected loss is 1. (If F, fails to occur,
the bets on E, are called off: This yields the opponent a gain of 0, which is
considered a ““loss” of 1 relative to her maximum possible gain.) The uncondi-
tional Bayes risk against 7 induced by &/, is therefore given by the modified
extension formula:

R‘rr("Q{n) = Pr(Fn)rx,L('rr)(EnIFn; "Q/n) + (1 - P‘n'(Fn))

=1-P(F,)(1-r, (E,F,; ¥
) (B[ = 1o )
min 1 + P, (F,)c,; min{0, -1, -
jeygn pnj 1- qnj

2

where x,(7) = P(E,|F,). By inverting this operation, we obtain the corre-
sponding projection formula:

(4.5) (EIF; «,) L~ B.()
b r, ; = sup -—
, 7 BB, P(F)>0 P_(F)

The “laws” of confidence-weighted probabilities are now formalized in the
following theorem.
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THEOREM 3. For any assessment &, and any target events E and F:

() r(E|F;.27,) is nonnegative, piecewise linear and concave on [0,1];
furthermore, if R_(2/,) = 1 for some m such that P, (F) > 0, then
max r (E|IF;27,)=1.
x€<[0, 1] ( JV)
(ii) Consequently, there exist finite sets of confidence-weighted lower proba-
bilities {(p,,¢,), s € S} and confidence-weighted upper probabilities {(d,, ¢,),
t € T} such that

r,(EIF; 27,) = min{ (min . (5., ¢,)), (min w: (1 - 4..6,)).

(iii) &, = EF x, pF if and only if r(EIF;Z,) < u,(p,c) for all x €
[0,1].

Hence, the inferences which can be derived from a finite assessment with
respect to an arbitrary target event can be summarized by finitely many
confidence-weighted probabilities. Note that p is the greatest lower probability
with confidence ¢ which can be inferred for E[F if

(4.6) p = max{plr,(EIF; 2, ) < n.(p,&) Vx €[0,1]}.

In this case, we will say that (, é) is an informative confidence-weighted lower
probability for E|F in the context of the assessment 7, . Geometrically, (5, ¢)
is informative if the line passing through the points (0,1 — é) and (B, 1) is
tangent to the graph of the marginal Bayes risk function r(E|F; 7, ).

More generally, it is possible to elicit and infer lower and upper expectations
(previsions) for lotteries with arbitrary payoffs. In this way, families of arbi-
trarily shaped convex sets of distributions can be determined, overcoming the
limitations of “intervalism” discussed by Levi (1980). Let (p, c¢) be defined as a
confidence-weighted lower conditional expectation for a lottery X given the
occurrence of an event F if XF x>, pF. From the undilution property of
confidence-weighted preferences, it follows that for any constants « and B
with B > 0, (p, c) is a confidence-weighted lower expectation for X|F if and
only if (@ + Bp, ¢) is a confidence-weighted lower expectation for (a1 + BX)|F.
It therefore suffices to restrict attention to lotteries which have been normal-
ized by positive linear transformations so that their minimum and maximum
elements are 0 and 1, respectively. The results of Theorem 3 apply to confi-
dence-weighted expectations if E is taken to be a normalized lottery rather
than the indicator of an event.

Throughout the sequence of inferential calculations above, the functions
u(+), r(-) and R(-) play the role of generalized indicator functions on [0, 1] or
I, in the sense that the max and min operations performed on them are
identical to those which would be performed on indicator functions for convex
.sets of probabilities induced by an assessment of lower and upper probabilities
under the Koopman-Smith-Good model. Consequently, for any target events,
the greatest lower and least upper probabilities with nonzero confidence
(which are the endpoints of intervals on which the marginal Bayes risk is equal
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to 1) obey the Koopman-Smith—Good laws of lower and upper probabilities.
Since the idea of a generalized indicator function taking on values intermedi-
ate between 0 and 1 and obeying max/min rules for union and intersection
was the motivation behind Zadeh’s (1965) original definition of a fuzzy set, it is
suggestive to think of the Bayes risk functions as membership functions for
fuzzy convex sets of probabilities. Thus, the subject’s assertion of p as a lower
probability with confidence ¢ induces a fuzzy subinterval of [0, 1] having
the “atomic” membership function u(p, ¢) given by (4.1); the intersection of
these over all {(p,;, c,)lj € 74,} yields a fuzzy subinterval with membership
function r(E,; &,) given by (4.2a) and (4.2b), summarizing all the direct
assertions about E,; extension of this to the simplex via the mapping x —
{m: P(E,IF,) = x} yields a fuzzy subset of Il with membership function
R(&7,) given by (4.3); the intersection of these over all n yields a fuzzy convex
subset of Il with membership function R_(27,) given by (4.4), summarizing
the entire assessment. Finally, projection of the latter back onto the unit
interval via the mapping = — P_(E) yields a fuzzy probability interval for the
target event E whose membership function is r(E; &7, ) given by (4.5), from
which informative confidence-weighted probabilities may be extracted via (4.6).

This is literally a ‘fuzzification” of the Koopman-Smith-Good model,;
it should not be confused with attempts to link fuzzy set theory to the
Dempster—Shafer theory of belief functions [DuBois and Prade (1989)] or to
nonadditive probability theory based on Choquet integration [Wakker (1990)].
Rather, it is formally similar to Watson, Weiss and Donnell’s (1979) and
Freeling’s (1980) models of fuzzy decision analysis, in which the probability
laws are fuzzified by invoking the ‘“extension principle” suggested by Zadeh
(1975) for propagating membership in functional mappings. However, the
theory of confidence-weighted probabilities diverges from fuzzy decision analy-
sis in its treatment of conditionality: The probability of the conditioning event
interacts multiplicatively with the Bayes risk/membership function in (4.3")
and (4.5'), which violates the extension principle. This interaction has the
important effect of maintaining the piecewise linearity and concavity of all the
Bayes risk/membership functions despite the fact that the mapping = —
P_(E|F) is nonlinear if F is a proper subset of 0. In fuzzy decision analysis, the
laws of lower and upper probabilities are obeyed by level sets of
probabilities—that is, sets of probabilities whose degree of membership ex-
ceeds a given threshold—at every level of membership. In the confidence-
weighted probability model, this is generally true only at a membership level
of 1.

5. An example of inference with confidence-weighted probabilities.
To illustrate the results of the preceding section, consider the assessment
given in Table 1 with respect to a three-element set of events, ® = {E,, E,, E}.
For example, 0.3 and 0.6 are asserted to be lower and upper probabilities with
confidence 1.0, and 0.4 and 0.5 are asserted to be lower and upper probabilities
with confidence 0.5, for the event E,. This portion of the assessment referring
to E;, denoted &7, = &7, A &y, is summarized by the MBR function
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TaBLE 1
Confidence-weighted probability assessment

Assertion Event Lower probability Upper probability Confidence weight

&y E, 0.3 0.6 1.0
&y E, 0.4 0.5 0.5
Ay, E,|E, 0.2 0.5 1.0
ALpy E,E, 0.3 0.4 0.5

r(E;; o7;), whose graph is shown in Figure 3a. Its value at a point x is the
minimum of u,(0.3,1.0), u,(0.4,0.5), u,_,(1—-0.5),0.5) and u,_ (1 -
0.6),1.0), where p is the function defined in (4.1).and shown in Figure 2.
Extension of this function to the simplex II via (4.3) yields the Bayes risk
function R(27)), a contour plot of which is shown in Figure 3b. [The simplex is
drawn in triangular coordinates, and contours are given at intervals of 0.05.
The shaded area is the set of = on which R (&) = 1, corresponding to the
set of x on which r (E; o) = 1. Note that the contours are parallel lines.]
Similarly, the partial assessment referring to E2IE1 is summarized by the
MBR function r(E,|E,; %/,) whose graph is shown in Figure 4a; its extension
to II via (4.3') yields the Bayes risk function R(%7,) whose contours are shown
in Figure 4b. Since this part of the assessment refers to a conditional event,
the contours are not parallel. The “cuts” in this case enter the top of the
“cake” along lines on which P_(E,|E,) is constant, which radiate from its
lower-right vertex.

The entire assessment is summarized by the Bayes risk function R(&/,)
whose contours are shown in Figure 5a: This is the pointwise minimum of the
two functions in Figures 3b and 4b. (The shaded area in this figure is the set of
“medial” distributions enveloped by the greatest lower and least upper proba-
bilities with nonzero confidence under the Koopman—Smith—Good model.)
The inferences which can be drawn from this assessment with respect to the
unconditional event E, are summarized by the MBR function r(E,; o7 ,),
whose graph is shown in Figure 5b. This curve is the outline of the shadow
which would be cast by the surface in Figure 5a if it were illuminated by
parallel rays of light traveling horizontally from right to left. Inferences with
respect to the conditional event E3IE2 are summarized by the MBR function
r(E;|Ey; &7 ,), whose graph is shown in Figure 5c. This curve is the outline of
the shadow which would be cast by the surface in Figure 5a if it were
illuminated by rays of light emanating from a point source located at an
altitude of 1 unit above the vertex at the top of the figure. The finite sets of
informative confidence-weighted probabilities which generate the two inferred
MBR functions, as provided in part (ii) of Theorem 3, are listed in Table 2.
(These are computed by parametric linear programming. Details of the LP
formulation are given in Appendix 2.) Each confidence-weighted lower or
upper probability in Table 2 corresponds to one of the dotted lines forming the
envelopes of the curves in Figures 5b or 5c.
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Fic. 3a. Assessed MBR function for the unconditional event E,: 0.3 and 0.6 are lower and
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F16. 3b. Contour plot of the corresponding Bayes risk function (extension of the MBR function in
Figure 3a to the simplex T, shown in triangular coordinates). Shaded area consists of points at
which the Bayes risk equals 1.0; surrounding lines are isoquants at heights of 0.95, 0.90, 0.85, etc.
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Figure 4a to the simplex 11). Isoquants are nonparallel because of conditionality: The probability
of the conditioning event (E;) goes to 0 at the lower-right vertex.
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given in Table 2.
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Fic. 5c. Inferred MBR function for the conditional event E4|E, (outline of the shadow cast by
the surface in Figure 5a when illuminated by a point source of light at a height of 1.0 unit above
the top vertex of the simplex, at which the conditioning event has probability 0). Confidence-
weighted probabilities summarizing this function (corresponding to dotted lines) are given in
Table 2.

TABLE 2
Inferences from assessment

Event Lower probability Upper probability Confidence weight

E, 0.08 — 0.2857
E, 0.10 — 0.2500
E, 0.15 — 0.1667
E, — 0.24 0.5000
E, — 0.30 0.7778
E, — 0.25 1.0000
E|E, 0.2500 — 0.4000
E,|E, 0.3333 - 0.3333
E,[E, 0.3750 — 0.2500
E;E, — 0.5122 0.5000
E;|E, — 0.5455 0.5556

E,|E, — 0.6512 1.0000
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Notice that no nontrivial lower probability can be inferred for either target
event with a confidence greater than 0.4: The inferences obtained for the
target events are less ‘“‘sharp’ than the direct assessments given for the source
events. This is a manifestation of the dissipation-of-confidence effect discussed
in Section 2. It calls into question the usual divide-and-conquer method of
decision analysis, in which complex, hard-to-think-about events are first de-
composed into simpler constituents (often by conditioning), probabilities are
directly elicited for the latter, and seemingly precise judgments are then
constructed for the original events through the application of probability
calculus. Under the confidence-weighted probability model, indirect judgments
are not necessarily perfect substitutes for direct ones even in principle, and
the subject is therefore encouraged to assess his uncertainty about events in ®
from many angles, top-down as well as bottom-up.

It is possible in this framework for every conditional or unconditional event
defined on O to have a lower and upper probability which coincide and which
both have confidence 1. (If p is simultaneously a lower and upper probability
for E, both with confidence 1, the MBR function for E is just a triangle with its
apex at x = p.) In this case, the confidence weights and lower /upper distinc-
tions are superfluous: There is effectively a ‘‘determinate” distribution 7° on
O consisting of the unique probabilities assigned to its atoms. This situation
arises if and only if the subject directly assesses a lower probability with
confidence 1 for every atom of @, and these sum to 1; a decomposed assess-
ment cannot yield this result. (The set of acceptable gambles in this case is the
intersection of the orthant of gambles whose minimum element is greater than
or equal to —1 with the half-space of gambles whose expectation is nonnega-
tive with respect to 7°. The vertices of this set are precisely the acceptable
gambles generated by assigning a lower probability of 72 with confidence 1 to
the mth atom of ® for m € {1,..., M}.) For example, with respect to the
three-atom state space discussed above, the subject might assert that 0.45,
0.35 and 0.2 are lower probabilities for E;, E, and E,, respectively, all with
confidence 1. The Bayes risk function on II for this assessment would be a
pyramid with its apex at 7° = (0.45,0.35, 0.2), whose contours are plotted in
Figure 6. The extent to which the subject’s actual beliefs are determinate or
indeterminate is revealed by the qualitative resemblance of his Bayes risk
function to that of Figure 6 or that of Figure 5a.

6. Applications and extensions. These results show that a relaxation
of standard axioms of subjective probability, beyond abandonment of complete-
ness, does indeed lead to a nontrivial model of second-order indeterminacy, as
many authors have previously conjectured. The model is applicable to the
reconciliation of inconsistent probability judgments and to the sensitivity
analysis of Bayesian decision models. These applications will now be briefly
sketched; more details are given in Nau (1989).

Subjective probability judgments obtained from real decision makers are
often inconsistent [Lindley, Tversky and Brown (1979) and Moskowitz and
Sarin (1983)], particularly when the source events are conditional. In such
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F1G. 6. Contour plot of the Bayes risk function induced by a “determinate” assessment: 0.45, 0.35
and 0.2 are lower probabilities with confidence 1 for E,, E, and Eg, respectively.

cases it is helpful to be able to suggest directions and magnitudes for revisions
of the conflicting probability judgments, which entails making tradeoffs: Those
which are the most ‘“sure” presumably should be revised the least. The
association of a confidence weight with every lower or upper probability
provides a basis for such tradeoffs, and an assessment of confidence-weighted
probabilities is therefore effectively self-reconciling. The Bayes risk function of
an inconsistent (incoherent) assessment achieves a maximum value of less
than unity [Theorem 2(i)], but otherwise it qualitatively resembles the Bayes
risk function of a consistent assessment: It is not vacuous. The point at which
the Bayes risk is maximized provides an anchor for a reconciled assessment.
This is the distribution which minimizes the maximum of the terms:

cnj[Pfr(Fn) - Pfr(EnFn)/pn_]] and cnj[Pfr(Fn) - Pfr(_E_nFn)/(l - qnj)]

over all n € 4, j € _f£,. [See Appendix 2, (A.2.4).] Note that the assessment of
D,; as a lower probability for E, ;IF,; is equivalent to the constraint p,; <
P (E ;IF,;), whose linearized form is P (F,) — P(E,F,)/p,; <0, and simi-
larly for upper probabilities. The terms above are deviations from these
constraints, scaled by the corresponding confidence weights, and their maxi-
mum is nonpositive if and only if the assessment is coherent. Hence, the
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confidence-weighted probability model supports a minimax-weighted-deviation
approach to the reconciliation of incoherence.

As an illustration, suppose the subject whose assessment was given in Table
1 adds that he is quite confident the probability of E;|E, is not more than 0.3
—that is, he adds the judgment that 0.3 is an upper probability for E;|E, with
confidence 1. This is inconsistent with the original assessment, which implies
0.375 to be a lower probability for E,|E, with confidence 0.25. The Bayes risk
function for the augmented assessment attains a maximum value of 0.966, and
this occurs uniquely at = = (0.527,0.221,0.252), yielding P,(E,) = 0.527,
P_(E,|E,) = 0.467 and P_(E,|E,) = 0.324 as a suggested reconciliation of the
conflicting judgments. Thus, the directly assessed least upper probabilities of
E,, E,E, and E,|E, are revised upward by 0.027, 0.067 and 0.024, respec-
tively. .

In Bayesian sensitivity analysis and robust inference, the unique prior
probability distribution of standard Bayesian analysis is typically replaced by a
family of nested sets of distributions, parameterized by some measure of
“distance” from a set of reference distributions. (The reference set itself may
or may not be a singleton.) For the alternative decisions or estimators under
consideration, an evaluation function is defined on sets of distributions—for
example, minimum or minimax expected loss. The evaluation function is then
used to rate the alternatives on sets of distributions within a specified distance
from the reference set. The objective is to find an alternative which performs
well across a reasonably broad range of distributions—for example, an alterna-
tive which is “within § of being optimal for every distribution within distance
&’ from the reference set. [See, e.g., the concepts of “potentially optimal’’ and
“almost potentially optimal” decisions discussed by Rios Insua (1990) or the
classes of ‘“‘c-contaminated distributions” and the criterion of ‘“‘e-procedure
robustness’’ discussed by Berger (1984).]

The need for such extensions of Bayesian decision analysis and inference
methods is widely accepted, yet the rationale for introducing families of sets of
distributions is extraneous to the standard theory of subjective probability,
and consequently the theory provides no guidelines for their construction (e.g.,
choosing ‘“metrics” with which to measure distances). The results of this
paper bring such procedures within the scope of the subjective theory. An
assessment of confidence-weighted probabilities is summarized by a Bayes risk
function on the probability simplex II, and the set of distributions whose
Bayes risk exceeds a threshold 1 — ¢ may be considered as the set of distribu-
tions ““within distance & of the subject’s reference set of distributions. With
regard to sensitivity analysis, this subjective concept of distance has been
applied to finite-state decision models by Nau (1989), yielding results very
similar to the minimum-weighted-distance criterion of Fishburn, Murphy and
Isaacs (1968) and the almost potentially optimal criterion of Rios Insua (1990).

With regard to Bayesian robustness, the set of distributions whose Bayes
risk ‘exceeds 1 — ¢ in the maximally confident assessment of Figure 6 is
precisely the set of s-contaminated distributions whose contamination class is
(as usual) the entire set II. In other words, the contours of the Bayes risk
function in Figure 6 are the boundaries of sets of e-contaminated distributions
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centered on the reference distribution 7. In the more general case exemplified
by Figure 5a, the diameter of the set of distributions whose Bayes risk exceeds
1 — ¢ is a concave rather than a linear function of &, and the reference set
(corresponding to ¢ = 0) need not be a singleton. Of course, robust Bayesian
analysis typically deals with situations for which the elicitation of classes of
priors in terms of confidence-weighted probabilities would be impractical:
State spaces are infinite, so classes of priors must be characterized economi-
cally, and their subjective origins are often downplayed.

The axioms which have been used here explicitly require either risk neutral-
ity or constant absolute risk aversion, and no attempt has been made to
separate nonlinear utility from belief indeterminacy. [Indeed, this would be
difficult to achieve in practice for reasons noted by Leamer (1986) and Kadane
and Winkler (1988.] However, the confidence-weighted-probability model can
be formally extended in a straightforward way to deal jointly with probability
and utility through the device of extraneous scaling probabilities or ‘“horse
lotteries” in the manner of Anscombe and Aumann (1963). This leads to a
theory of confidence-weighted subjective expected utilities over finite sets of
events and consequences, a generalization of the partially ordered preference
theory of Seidenfeld, Kadane and Schervish (1989); details appear in Nau
(1990).

APPENDIX 1. Proofs of theorems

For part (i) of Theorem 1, note that the cancellation axiom implies that the
truth value of “X = Y” depends only on X — Y, whence any preference
relation satisfying this axiom is defined by X x Y X -Y e & for some
subset # of RM, If it satisfies A.1 and also X, = Y, for all n € .#, then
&% minimally must contain 0 and X, — Y, for all n € .#. The cancellation
and convexity axioms together imply that X >Y and X' > Y} = aX +
(1 -a)Y zaX + (1 — a)Y’, whence 4 must be convex. The dominance ax-
iom implies that any vector which dominates a vector in & is also in . Taken
together, these operations establish that the set & defining a convex extension
of &7, must contain the set 4, = CONV*(0,X; - Y;,...,Xy — Yy}, but no
more than this; hence, the preference relation defined by % , is the minimal
convex extension. For part (ii), note that every assessment has a minimal
convex extension as defined above; this is coherent if and only if there do not
exist X and Y such that X > Y and X >* Y, which by part (i) is equivalent to
the conditionX -Ye &, and X -Y < 0.

The remaining proofs invoke a familiar separating-hyperplane theorem of
linear algebra [Gale (1960), Theorem 2.8] stating that exactly one of the
following systems has a solution:

(D Ax<b, x>0,
(II) wiA>0, w'b<0, w20,

where A is an arbitrary matrix, and “T” denotes transposition. Let A be the
matrix whose nth column is the vector (1,c¢,B?) for n =1,..., N; and let
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b =(1,B) and w = (2, 7), where B and 7w are M vectors and z is a scalar.
Note that any solution to (II) must satisfy ¥, m(6) > 0, and hence may be
normalized so that X, gm(6) = 1. Therefore, if (II) has a solution it may be
assumed to satisfy 7 € II. With these values for A, b and w, (I) has a solution
if and only if B € & ,, and (II) has a solution if and only if there exists a
mell and z >0 such that 1 —¢,P(-B%¥)>1-2>1- P (—B) for all
n € N, which is equivalent to R_(27,) > 1 + min{0, P,(B)}. Hence, by the
separating-hyperplane theorem, B e %, if and only if R (&7,) <1+
min{0, P,(B)} for all = € II. Part (i) of Theorem 2 then follows by letting

= —¢gl as ¢ » 0. Part (ii) follows by letting B = ¢(X — Y)*.

For part (iii) of Theorem 3, let B = (¢/pXE — pDF. Then B € 4, (i.e., &
is inferable from &7 ) if and only if

1-R.(,) 2 —(c/p)P,((E - p1)F)
= (¢/p)[pP,(F) - P(EF)] VYwmell.

Since R_(&7,) <1 on II, this holds trivially wherever P, (F) = P_(EF) = 0.
Elsewhere, it is equivalent to

[1-R.(,)]|/P.(F) = (c/p)[p — P(EIF)] V7 ell: P(F) >0
©1-[1-R.(,)|/P(F) <1~ (c/p)[p — P,(EIF)]
Vrell: P(F) >0
e sup {1-[1-R.()]/P.(F)} <1-(c/p)[p —«]
7: P(E|F)=x, P (F)>0
Vxe[0,1]
= r(ElF;2,) <1+ (¢/p)[x —p]Vxe][0,1].

Since R_(&7,) < 1, it follows that r (E|F; %7, ) < 1, whence the last inequal-
ity can be rewritten w.l.o.g. as

rx(ElF’M./V) <1+ (c/p)mln{O,x _p} = ”Lx(p7c) Vxe [071]’

as asserted.

For parts (i) and (ii) of Theorem 3, note that 0 < R (&7 ,) < 1 for all w € I
implies 0 < r(E|F; &7, ) < 1 for all x € [0, 1]; and if R, (27,) = 1 for some 7
satisfying P_(F) > 0, then r,(E|F; 27,) = 1 at x = P_(E|F). To establish con-
cavity and piecewise linearity, it remains to show that r(E|F;</,) is a
polyhedral function, or equivalently, that the surgraph of r(E|F; %7, )—that
is, the set of all (x, y) such that y < r,(E|F; &7, )—is a polyhedral convex set.
To show this, note that the surgraph of r(E|F;%,) on [0, 1] is the image of
the surgraph of R(&7,) on Il under the mapping (m, z) — (x, y) defined by

(A.1.1) x = P_(E|F), y=1-(1-2)/P.(F).
While this transformation is not linear, it is linearity preserving in the sense
that if (7, z) and (', 2’) are mapped into (x, y) and (x', ¥'), respectively, then

every convex combination of (w,z) and (#,2') is mapped into a convex
combination of (x,y) and (x',y'). In particular, a(m,2) + (1 — aX=',2') is
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mapped into B(x,y) + (1 — B)(«x’,y’), where
B «P.(F)
B aP‘rr(F) + (1 - a)P‘n"(F) ’

B

and this relation between a and B is a one-to-one mapping of [0, 1] onto [0, 1]
provided P,(F) > 0 and P_.(F) > 0. However, points in II at which F has zero
probability can be ignored during the construction of r(E|F; 27, ), because the
quantity

1-R. ()
max - T A s
m: P(E[F)=x, P(F)=¢ P (F)

either remains constant or goes to —» as ¢ = 0+ while x remains fixed, by
virtue of the local linearity of R(&7, ). That is, for some positive ¢, we have for
all x [0, 1]:

1-R. (,)
r.(EF;o»7,) = max 1- —
=(BIF; 7, ) m: PEIF)=x, P(F)>¢ P_(F)
It follows that the surgraph of r(E|F; %7, ) is the convex hull of the images,
under the mapping defined by (A.1.1), of the extreme points of the surgraph of
R(&7,) at which F has positive probability. Hence, r(E|F; &7, ) inherits the
polyhedrality of R(&7,), as asserted. O

APPENDIX 2. Computation of confidence-weighted probabilities

Theorem 3 states that the inferences which can be derived from an assess-
ment &, with respect to a target event E|F are summarized by a piecewise
linear MBR function, r(E|F; &, ), which is generated by finite sets of confi-
dence-weighted lower and upper probabilities. (For example, see Figures 5b
and 5c and Table 2.) These can be computed in practice by linear programming
in the following way. The graph of the MBR function is a polygon, so it is
defined by its vertices, which can be found as points of tangency with lines of
differing slopes. For example, for any 7 € [—1, 1], the point of tangency with
the line having slope —7/(1 — |7]) can be found by solving

min 7x — (1 — |7])r (EIF; &7, ).
x<[0,1]

Using (4.5'), this can be rewritten as a minimization over :

min P (EIF) — (1 - |)[1 - (1 - R,(%,))/P.(F)]

for some small ¢ > 0. Dropping the constant term and expanding P, (E|F)
yields

(A2.1) wel]l:l})i:gF)ze [+P(EF) + (1 - I7)(1 - R.(«,))] /P.(F).

The presence of P_(F) in the denominator renders this problem nonlinear, but
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it can be linearized by solving

(A2.2)  min 7P (EF) + (1= l)(1 - R,(a7,)) = A,(F)

parametrically in A, and finding the largest A that yields an optimal objective
value not less than 0. The value of 7 that solves (A.2.2) for this A is also a
solution to (A.2.1). In turn, (A.2.2) is equivalent to the following linear
program:

min P,(EF) + (1 - |7)z — AP(F
(ﬂ’z)EHX[O’I]:P,(F)ZET 11( ) ( |T|)z 17-( )
(A.2.3)

subjecttoz > 1 — R_(,),

in which a new scalar variable z has been introduced. The constraint z > 1 —
R, (27 ,) represents the system of inequalities:

z=z cnj[Pﬂ'(Fn) - Pw(EnFn)/pnj]7

(A.2.4) —

z22c¢,,[P.(F,) - P(E,F,)/(1-q,,)] Vned, jez,
together with the implicit constraint z > 0. [Compare with (4.3') and (4.4),
noting that P (F,)x,(w) = P(F,)P(E,F,) =P (E,F,), etc.] The recipe for
constructing r(E|F; 27, ) is as follows: For some value of 7 in the interval
[—1, 1], solve (A.2.3) parametrically in A and find the largest A for which the
optimal objective value is not less than 0. Let # and £ denote the optimal
values of 7 and z for this A, let £ = P,(E|F), and let § = 1 — 2/P.(F). Then
(£, §) is a vertex on the graph of r (E|F; 27, ) versus x that is touched by the
tangent line with slope —7/(1 — |7|). By a finite search procedure, this process
can be repeated for different values of 7 until all the vertices have been found.
When lines are extrapolated through pairs of adjacent vertices, each line
defines one of the confidence-weighted lower or upper probabilities (p,, ;) or
(4;, é,) generating r(E|F; 27, ). (For example, p, is the y = 1 intercept and &,
is 1 minus the x = 0 intercept of the sth such line with positive slope.) If F is
logically certain, the A term can be dropped from the objective function, and
the linear program can simply be solved parametrically in 7 over the interval
[—1, 1]. In this case, vertices will be found only at values of 7 where a change
of basis occurs. Software which implements this algorithm and plots graphs
such as those in Figures 3, 4 and 5 is available from the author on request.
The software is written in STSC APL* Plus /PC.
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