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SOME ASPECTS OF POLYA TREE DISTRIBUTIONS
FOR STATISTICAL MODELLING!

By MicHAEL LAVINE

Duke University

Polya tree distributions are defined. They are generalizations of
Dirichlet processes that allow for the possibility of putting positive mass on
the set of continuous distributions. Predictive and posterior distributions

* are explained. A canonical construction of a Polya tree is given so that the
Polya tree has any desired predictive distribution. Choices of the Polya tree
parameters are discussed. Mixtures of Polya trees are defined and examples
are given.

1. Introduction. Polya trees form a class of distributions for a random
probability measure & intermediate between Dirichlet processes [Ferguson
(1973)] and tailfree processes [Freedman (1963) and Fabius (1964)]. Their
advantage over Dirichlet processes is that they can be constructed to give
probability 1 to the set of continuous or absolutely continuous probability
measures, whereas their advantage over more general tailfree processes is
their much greater tractability. Many of the ideas discussed later can also be
found in Ferguson (1974) and Mauldin, Sudderth and Williams (1991) (MSW).

Let E ={0,1}, E® = @, E™ be the m-fold product E X E X -+- X E, E* =
USE™ and EV be the set of infinite sequences of elements of E. Let Q be a
separable measureable space, m, = Q and Il = {m,,; m =0,1,...} be a sepa-
rating binary tree of partitions of Q; that is, let 7, 7,,... be a sequence of
partitions such that UG, generates the measurable sets and such that every
B € m,, ., is obtained by splitting some B’ € 7, into two pieces. Let B, = Q
and, forall e = ¢, -+ ¢,, € E* let B_, and B,; be the two pieces into which
B, is split. Degenerate splits are permitted, for example, B, = B,, U @.

DerINITION 1. A random probability measure & on Q is said to have a
Polya tree distribution, or a Polya tree prior, with parameter (I, /), written
P~ PT(l, &), if there exist nonnegative numbers &= {a,: ¢ € E*} and
random variables 2'= {Y,: ¢ € E*} such that the following hold:

(1) all the random variables in 2’ are independent;
(i) for every ¢ € E*, Y, has a Beta distribution with parameters «,, and
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(iii) for every m = 1,2,... and every e € E™,

(@(Bglmgm)=( I Y)( M 0-%...)

j=1;¢,=0 j=lie,=1
where the first term in the products is interpreted as Y, or as 1 — Y.

Degenerate Beta distributions are permitted, for example, «,, = 0 making
the distribution degenerate at 0. The notation in Definition 1 follows that of
Ferguson [(1974), page 620]. Polya trees were so named by MSW, who repre-
sent the Beta distributions by Polya urns. Our development differs from that
of MSW in two other ways. First, MSW define Polya trees using the set
E ={0,1,...,k}, rather than our E = {0, 1}, and therefore deal with Dirichlet
rather than Beta distributions. Our definition loses no mathematical general-
ity although it may be less convenient for some modelling problems. Second,
MSW define Polya trees directly on E¥ and induce Polya tree distributions on
Q through measurable functions g: EN — Q.

The random variables @, ®,,... are said to be a sample from & if, given
P, they are i.i.d. with distribution &. The Y,.’s have the following interpreta-
tion: Y, and 1 — Y, are, respectively, the probabilities that ®;, € B, and
®, € B;,and Y, and 1 — Y, are the conditional probabilities that ®, € B, and
0, € B,, given that O, € B,. A Polya tree prior can be elicited by questions
about these probabilities.

Polya trees are conjugate and easily updated. See Ferguson [(1974), page
620] or Theorem 4.3 of MSW. Y, is the unknown probability of the event
0, € B,,. In a Polya tree Y, has a Beta distribution. When 0, is observed, so is
the truth of ®; € B,,. Therefore the conditional distribution of Y given 0, is
a Beta distribution in which one of the parameters has been incremented by 1.
A similar argument applies either to Y, if ®, € B, or to Y; if ®, € B, and
so forth, down through the tree, adding 1 to every «, for which ®; € B,.

The new Polya tree formed by updating gives the distribution of &#10,; we
write £|0,; ~ PT(I1, &710,). Sometimes we will not have observed ®, exactly
but will only know that ®; belongs to some set. If that set happens to be B
for some § € E*, then again the updating follows the same rule. The differ-
ence is that when 0O, is observed exactly there are infinitely many «,’s to
update; when we see ©; € B;, there are only finitely many.

Ferguson (1974) constructs a Polya tree prior on (0, 1] using partitions
comprised of the diadic intervals (j/2",(j + 1)/2"]. Except for minor details,
the result is identical to one of MSW’s Polya trees. Ferguson (personal
communication) notes one such detail. The sets (0, 1/2"] decrease to &. The
probability of the nth such set is Y; X Y, X -+ X Y, ... o. If this product does
not converge to 0 then & will not be continuous and hence not countably
additive. If & is to be countably additive with probability 1, then the «,’s
must be chosen so that this and other similar products converge to 0 with
probability 1.
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The following are important facts about Polya trees:

1. Dirichlet processes are special cases of Polya trees. A Polya tree is a
Dirichlet process if, for every ¢ € E*, a_ = @, + a,; [Ferguson (1974)].

2. Some Polya trees assign probability 1 to the set of continuous distributions.
Kraft (1964), Metivier (1971), Ferguson (1974) and MSW give sufficient
conditions for & to be continuous or absolutely continuous with prob-
ability 1.

Polya trees have advantages and disadvantages for modellers relative to
Dirichlet process priors. An obvious advantage is that they can give probability
1 to the set of continuous random variables. A second advantage, as we shall
see later, is that some sampling situations that lead to posterior mixtures of
Dirichlet processes lead to just a single posterior Polya tree. A disadvantage is
that, except for trivial special cases, the Dirichlet processes are the only tailfree
processes in which II does not play an essential role [Fabius (1973), Doksum
(1974) and Ferguson (1974)].

2. Theory. This section discusses some computations with Polya trees,
how to construct a Polya tree with any given marginal distribution for the
data, how to choose the parameters Il and &/ and how to use mixtures of
Polya trees. Throughout, & is a random probability measure, & ~ PT(Il, &),
and @ = 0,,0,,... is a sample from &.

2.1. E[#?]. We wish to define the probability measure @ = E[Z] by
Q(B) = E[#(B)] for any measurable set B. Definition 1(iii) gives, for any
e € E*,

m m
eB)=8 Il Y . . Il (1-Y ..
J=1,¢=0 T j=1,e,=1 J
m m
B J'=1l§—[5j=0E[}7€1.“Ejfl]jzl;l_lzlE[l - }751"'51—1]
m ael g, 10 m aEI |

It

. + . + ’
Jj=1;¢,=0 asl e, 10 ael g, gl J=1;¢,=1 ael g, 10 ael"' g,-11

which defines @ on the elements of U, m,. But U, ,, generates the
measurable sets, so @ has a natural unique extension to the measurable sets.
Note that @ is also the distribution of each ®, because Pr[®, € B] =

E[Pr[@®, € B|Z]] = E[#(B)] = Q(B). Let Z be a measurable real-valued
function of ©.

THEOREM 1. If [|Z|dQ < », then [|Z|d P < » with probability 1, and
El(ZdZ] = [ZdQ.

ProoF. [ZdQ = E[Z] = E[E[Z|#]] = E[[ZdZ]. O
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2.2. Updating: predictive densities. We show how to compute the density
of ©,,,10,,...,0,, with respect to a suitable dominating probability measure
A, assuming for the moment that this density exists. Generically, we refer to
the distribution of @, ,|@,,..., 0, as a predictive distribution. We begin with
the predictive density of ®, and proceed stepwise, always finding the predic-
tive density of the next observation given all the previous ones. Because Polya
trees are conjugate, it suffices to find the predictive density of 0, given 0,.

To evaluate gq (6), the predictive density of @, at a point 6, let €1, Eg, ... bE
the infinite sequence of 0’s and 1’s such that § € B, . Jforallm=1,2,....

€

THEOREM 2.
. Pr[®,€B, .., ]
8o(0) = ’}llglm A(B.. )
(1) m
~ lim T A (- T - A 1)
m— oo A(B,, o) ’

where the first equality holds for A-almost all 6.

Proor. The second equality is by construction. The first follows from a
martingale argument which is given, for example, by Billingsley [(1986),
Theorem 35.8, page 494]. O

As will be clarified later in this section, Polya trees can be constructed so
that the limit in Theorem 2 exists and can be evaluated, and furthermore, so
that the corresponding limit will exist after the tree has been updated. We
assume for now that the limit exists.

Suppose that ®; = 6, has been observed. Let &, 8y, ... be the infinite
sequence of 0’s and 1’s such that 6, € B, 5 foralm=1,2 ..., andlet k
be such that B; .., = B, .., butthat B; ., + B, ...,. The predictive

density g¢,(616,) is the same as in (1), except that in the numerator of the
right-hand side of (1), a,, @ eprvo> & ..., are each incremented by 1. This
affects only the first £ + 1 terms of the numerator. Otherwise, the formula is
unchanged. Once gg (6) has been evaluated, an updated predictive density
after any arbitrary set of observations is easily calculated.

The predictive density after one observation is a piecewise rescaled version
of the original predictive density. There is a separate rescaling factor for each
B, containing 6,; this is how II plays a role in the Polya tree distribution.
Thus, although the predictive density exists, it can be discontinuous, with
infinitely many discontinuities in every neighborhood of 0.

For example, let & be a random distribution on the unit interval with
a Polya tree distribution for which =, consists of the diadic intervals
{G/2™,(j + 1/2™)} and for which a, .., = m? By symmetry, ®, ~ U(0, 1)
s0 gg(0) =1 for almost all 6 € (0,1). After ®, = 0.1 has been observed,
80,0(0/0.1) is evaluated using (1) to modify 8o(0). Initially, ay=a, =1
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and ay, = ag; = a9 = ay; = 4. After observing ©, = 0.1, «, becomes 2 and
agyo becomes 5. Thus, for 8 > 0.5, ¢; = 1, k = 0, the first term in the numera-
tor of the RHS of (1), which was initially 1/2, gets changed to 1/3, and
8o,0(010.1) = (2/3)ge(0) = 2/3. For 6 €(0.25,0.5), ¢, =0, g5 =1, k=1,
the first two terms in the numerator of the RHS of (1), which were initially
(1/2)(4/8), get changed to (2/3)(4/9), and ge,(010.1) = (4/3X8/9)ge(0) =
32/27. Similarly, g¢,0(0/0.1) can be calculated for any 6 # 0.1. It is piecewise
constant, has infinitely many discontinuities near 0.1, and is nonincreasing
away from 0.1. In contrast, for Dirichlet process priors, the predictive distribu-
tion after one observation is a rescaled version of the original predictive
distribution, plus a point mass at 6;.

2.3. Constructing Polya trees. We give a canonical construction of a Polya
tree such that @, ~ @, where @ is specified in advance and is continuous.
Begin by choosing B, and B,; to satisfy @(B,) = Q(B;) = 1/2. Then, for
every ¢ € E*  choose B,, and B,; to satisfy Q(B,,|B,) = Q(B_|B,) = 1/2.
Any choice of o satisfying a,, = a,; will satisfy @, ~ Q. Of course other
Polya trees also satisfy @; ~ @; the preceding construction is suggested for
convenience and when there is no cogent reason for choosing Il otherwise. An
important example is when () = R and @ has cumulative distribution function
G, in which case the elements of m,, can be taken to be the intervals
(G Uk/2™),G"Y(k + 1)/2™)] for k = 0,...,2™ — 1, with the obvious inter-
pretations for G~(0) and G~ }(1).

One reason for choosing Il otherwise is convenience in updating with a
sample of censored observations. Suppose we know only 0, > 6,, 0, >
0y, ...,0, > 0,, but do not know the exact values of 0,,0,,...,0,, and where
we assume without loss of generality that 6, <8, < --- <6,. Let Il be
chosen so that B; = (6;,), By; = (0,,),..., Bj;..; = (0,,»), where there
are k 1’sin 11 - - - 1. Then the distribution of & given the data is PT(II, &/'*),
where of =a; +k, afj =a;; +k—-1,...,0f .. 1 =a;,...+1 and &* is
otherwise identical to &7. If we also have some uncensored observations, then
we still can choose II so that updating is convenient for the censored observa-
tions because II is irrelevant to the ease of updating for the exact observations.
When & initially has a Dirichlet process distribution, although the posterior
distribution is a single Polya tree, it is a mixture of Dirichlet processes.

There are three considerations in choosing the values of «,’s.

The first is that «, controls how quickly the updated predictive distribution
moves from the prior predictive distribution to the sample distribution. If the
a.’s are large, then the distribution of 0,,,/0,,0,,...,0, is close to Q.
However, if the «,’s are small, then the distribution of ©,_.,/0,,0,,...,0, is
close to the sample distribution function. For example, suppose that for each i,
a separate coin toss determines whether 0, is in B, or B;. If we have a strong
initial belief that the coin toss is fair, then we can choose «a, and «, very large,
making Pr[®, € B;] approximately independent of the event ®, € B;, for
i, j € {1, 2}. However, if we believe the coin is biased, but do not know whether
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heads or tails is favored, then we can let a, and @, be small. The choice
@y = a; = lyields Pr[®, € B;|®, € B;] = 2/3, for j € (1, 2}.

Choosing «, for small m typically involves judgments about sets which
have large initial probability. However, when m is large, «, is controlling the
conditional probabilities of small and initially unlikely sets, and it is unrealistic
to expect to elicit meaningful values. The next two considerations provide
guidance in choosing «, for large m.

The second consideration is that «, can express a belief about the smooth-
ness of &. Heuristically, if «a,, = «,; is large, then &[B,_,|B,] has a distribu-
tion tightly concentrated around 1/2, which makes & smooth because with
high probability #(B,,) and #(B,;) will be roughly equal. The same is true
for #[B,y0,,...,0,] and #[B,0,,...,0,], as long as n < «a,,. Ferguson
[(1974), page 621] remarks that for Polya trees on R, @, ..., = 1yields & that
is continuous singular with probability 1, that is, w1th0ut point masses yet
singular with respect to Lebesgue measure, and that «, .., = = m? yields 93
that is absolutely continuous with probability 1. For that reason X oy = =m?
would often be a sensible canonical choice. The following two theorems
support the belief that sufficiently large « for large m implies & is
smooth.

Let 7,, = sup{var(Y,): ¢ € E™}.

€1 €

THEOREM 3 [Kraft (1964)]. If E[Y.]1=1/2 for all ¢, and if *%,_,5, < ®
then, with probability 1, & is absolutely continuous with respect to Lebesgue
measure.

If E[Y.] =1/2, then «,, = a,; and the variance of Y, is 1/(4(2a,, + 1)).
Therefore, as long as the «,’s increase sufficiently rapidly with m, &2 will be
absolutely continuous.

THEOREM 4 (MSW). A sufficient condition for & to be continuous with
probability 1 is Pr[®, = 6|®; = 0] = 0 for every 6.

For 6 € Q) let &, ¢€,,... be the infinite sequence of 0’s and 1’s satisfying
6 €B, ., forevery m=1,2,... and note that
Pr[0, = 6|0, = 0] ﬁ eyomen * 1
T = = = T .
2 1 m=1 (ael e, 10 + ael RO + ]-)

Therefore, as long as the a,’s do not decrease too rapidly with m, & will be
continuous.

The third consideration is that «, controls how closely the distribution of &
is concentrated about its mean. The next theorem shows that a Polya tree for
Q) = R can be constructed that concentrates arbitrarily closely around any
desired mean. Dalal and Hall (1980) show that Dirichlet process priors can be
constructed that concentrate arbitrarily closely around any desired mean, in
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the sense of weak convergence. Our criterion for closeness is different. Let F
be the cumulative distribution function of &, let G be the cumulative distri-
" bution function of @ = E[Z], let £(6, 6) be the event |F(8) — G(9)) < & and
let & be the complement of &.

THEOREM 5. Let Q = R. For every § > 0 and n €(0,1), there exists a
Polya tree such that Pr[N, &(6,5)] > 7.

Proor. The proof is by construction and begins with the case where G is
continuous and G~ ! is well defined on (0,1). For m =1,2,... and %k =
,2,...,2" -1, let 6,, =G (k/2™), 0, = —®, O, == and let
M1, Mg, --- be a sequence of numbers in (0, 1) satisfying Ii;n; > n. Let the
partitions of the Polya tree be defined by m, = {6, ,,0,,] ...,
(6gm_1, 1y Ogm )} and let the Beta parameters satisfy a,, = a.;, so that E[Y,] =
0.5 for ¢ € E*, where a,, and «a,, are chosen to satisfy conditions given later.
Because {6, ,,} is dense in R, it suffices to show

Pr[ N N &0

m=1k=1,2,..., o2m_1

>n.

However,

Pr[ N N Go(ek,m’a)]
m=1k=1,2,...,2"—1

[

A N lef(ok,m,a)]

| m=1%=1,3,..., om_

2m -1
> Pr n n f(@k’m,z—mﬁ)]
i , om_1
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Finally, Pr{¢’(6, ,,8/2)] = Pr{|Y, — 0.5]] < 8/2 can be made larger than n, by
choosing «, and «, sufficiently large and, for £ {1,3,...,2™ — 1},

_ 2m —1 2i — 1
Pr e”(@k’m,—2m 6) ﬂ ﬂ £\, P b
i

m_

B 2m~1 -1
< Pr|& Gk,m,z—mé & e(k_l)/z,m—l’ gm-1 4
2m—1 _ 1
n‘@o 0(k+1)/2,m~17 gm-1 9

_ 2m -1
< Pr| & 04,0 0]

2m

1

F(0u-1/2,m-1) = G(0k-1y/2,m-1) * —omo1 0
2m-1_ 1

F(041)/2,m-1) = G(0h+1y2,m-1) + om 1 5

8
< PI‘[|Y8 — 05| > E’Z]

for some ¢ € E™" 1. So, by choosing a,, and a,, sufficiently large, each
summand in (2) can be made arbitrarily small, and the mth factor in the
infinite product in (2) can be made larger than 7,,.

For G not invertible on (0, 1), that is, not strictly increasing, let I C R be a
G null set with G strictly increasing on R — I. Then construct a Polya tree
with By =1, By =R -1, ay = 0 and {B,,: ¢ € E*} and {a,,: ¢ € E*} chosen
as for invertible G. If G is not continuous, let 6,,...,0, be a collection of
atoms of G with masses w,,...,w,, and J be the collection of all the
remaining atoms of G, divided so that G assigns mass less than §/(n + 2) to
J. Then construct a Polya tree such that the following hold:

(1) B,=4J and Pr[Yd, < §/(n + 2)] is large.
(i) Byy=1{04,...,0,}.
(iii) Y; is close to ¥ w; with high probability.
(iv) {B;,,} and {a;,,} are constructed as for continuous G.
(v) {B,.} and {a;,,} are constructed so that the jumps of F match the
jumps of G, for example, By, = 6; and Y;, is close to w,/X w; with high
probability. O

2.4. Mixtures of Polya trees. The distribution of a random probability
measure & is said to be a mixture of Polya trees if there is a random variable
U, called the index variable, with distribution H, called the mixing distribu-
tion, and Polya tree parameters {II,,, &7} such that [Z|U = u] ~ PT(I1,,, &,).
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For any measurable set S of probability measures on Q, Pr{&%e S]=
JPr[# € Slu]H(du). A single Polya tree is a mixture of Polya trees where H
is degenerate. When 0, is an observation from a mixture of Polya trees, then
each ©/, must be updated, exactly as for a single Polya tree, and the mixing
distribution H must be updated as well. Using the usual notation for densi-
ties, h(u|®, = 6,) is proportional to h(u)ge s (0,lu), where go ;(6,]u) is the
predictive density from the Polya tree with parameter (II,, o7,). Updating the
mixture and calculating the distribution of ©,|®, = 8, are easily handled by a
computer.

With mixtures of Polya trees the problem of dependence on the partitions is
not as critical. Roughly speaking, if the partition elements are different in each
IT, and if H(u) = 0 for all u, then the partition effects get smoothed out and
updated predictive densities can be continuous. More specifically, suppose O,
a sample of size 1 from a mixture of Polya trees has been observed. The
question is, for which values of 6 is the predictive density 8o,0(016,) continu-
ous?

THEOREM 6. Suppose that the following hold:

(i) The conditional c.d.f. Ge v(0lu) is a measurable function of u for each
0 in (a,b).

(i) For u € A, where H(A) =1, Gg ;(6lu) has in (a,b) a derivative
8o, u(0lu) with respect to 6.

diii) 8o, w0lu) < r(u) for u € A and 6 € (a, b), where r is integrable.

(v) ge,0, (010, u) is H-almost everywhere continuous in 9 at 6,

(v) There exists a positive number M such that for H-almost every u, for
every nonnegative integer m and for every ¢ € E™,
a +1

£1 € ~11 u,eq1 €
J J
<M.

£,10 + au,sl g, q1+1

g,10 + au,

Ay ey,

a

u,eq

Jj=1

Then g¢,0(010,) exists and is continuous at 6.

Condition 5 relates to the RHS of (1) and says that observing ®, can change
the conditional predictive density at 6 given u by no more than a factor of M.

Proor oF THEOREM 6. The theorem follows from Theorem 16.8 of
Billingsley [(1986), page 215]. O

Mixtures of Polya trees can be useful when a standard parametric Bayesian
analysis is suspect because the family of sampling densities is not known
exactly. The standard Bayesian analysis requires specification of a family of
sampling densities g(6|x) and a prior density ~(x) for the parameter u. There
is a substantial body of work studying sensitivity to and modelling uncertainty
about the prior. In contrast, although the issue is more critical, the state of the
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art is less advanced in modelling uncertainty about the family of sampling
densities. Such uncertainty can be modelled with a mixture of Polya trees
where U ~ h(u), L|u ~ PT(11,, &,) and 0,|u ~ g(0lu).

In the parametric analysis, the data are modelled as though u is chosen
according to h(u); then 6,,6,,... are chosen according to g(6lu). In the
mixture of Polya trees the data are modelled as though u is chosen according
to A(u); then P is chosen according to PT(II,, &7, ); then 6, 0,, ... are chosen
according to P. Uncertainty about g(6lu) is quantified by &7; large values of
a, give & a distribution that is tightly concentrated around g(6lu), small
values of a, give & a more diffuse distribution.

3. Examples.

3.1. Estimation of a distribution function. Let & have cumulative distri-
bution function F and G = E[F].

An artificial example was constructed that illustrates how predictive densi-
ties evolve as more data are accumulated and illustrates the effect of different
choices for a,. Two Polya trees were created, each having predictive density
g(0) = exp(—0). The partitions were chosen by the canonical method of Sec-
tion 2.3. In the first tree, @, .., = 2m; in the second tree, a, .., = 2. The
first tree gives more smoothness, the second tree gives closer adherence to the
data. A sample of size 100 was generated from the density 2 exp(—26). For
each tree, predictive densities were calculated after 5, 25, and 100 observa-
tions.

Figure 1 shows the densities as solid lines. The top row shows
fogo,,...,0L0101, ..., 05), the middle row shows fo o 6,000, ...,0,5) and
the bottom row shows fg 1o . 6,(0101,...,010). Densities from the first
tree are on the left; densities from the second tree are on the right. In each
plot the initial predictive density exp(—6) is shown as a dotted line and the
true sampling density 2 exp(— 26) is shown as a dashed line. Going from top to
bottom shows how the predictive density moves away from exp(—#0) toward
2 exp(—20). Going from left to right shows that the predictive density is
smoother when «, is larger.

€

3.2. Estimation of the mean. Let Z(0) be a measurable real-valued func-
tion. We investigate conditions under which the mean, E[[Zd %] = [ZdQ,
can be evaluated. Let r(e) = sup,cp Z(8) — inf,c 5 Z(6), t(m) =
max, . gpn r(e) and v(B,) = Z(6) for some ¢ € B,. If lim,, ,, t(m) = 0, then
[ZdQ =lim,, ¥, . z=v(B,)Q(B,), which can be evaluated to arbitrary ac-
curacy by taking m sufficiently large. Also, (Zd@Q|©,,...,0, is computable,
but if lim,, _,, t(m) # 0, then even when [Zd@ exists it cannot be evaluated
by this method.

Often the Polya tree is constructed so that [Zd@ is computable. For
example, when Z(0) = 0 then [ZdQ = E[0,], which may be known if the
Polya tree was constructed to have a given predictive distribution. However,
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p(x)
p(x)

P(x)
P(x)

20

P(x)
p(x)
1.5

10

—
00 05 10 15 00 05 10 15

even assuming [ZdQ is known, we still want to evaluate [ZdQ[©,,...,0,. If
there is a set C C ) such that each of the first £ observations falls in C, C is
the union of finitely many B,’s and lim, _,, ¢t(m) = 0 for the restriction of Z
to C, then the method in the previous paragraph can be used to evaluate
E[/ZdQIO,,...,0,; ® € C]. If we assume further that E[[ZdQ|0,,...,0,;
® & C] = E[[ZdQ|O & C] is evaluable then, because Pr[® € C[|0,,...,0,] is
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computable from the updated Polya tree, the mean of Z|@®,, ..., ®, can still be
estimated.

For example, suppose that a Polya tree is constructed on (0,») with
canonical partitions, with @, = 1 for every ¢, and so that the initial predictive
density is g(6,) = exp(—6,). After ®, = 0.5 has been observed the method of
the preceding paragraphs, with m = 2, can be used to bound the predictive
mean E[0,|®; = 0.5]. Note that B, = (0,1n(4/3)], B,; = (In(4/3),In(2)] and
B, = (In(2), ). The posterior probabilities are Q[B,,|®, = 0.5] = 2/9,
Q[By;10; = 0.5] = 4/9 and Q[B,|®; = 0.5] = 3/9. The predictive density is
80,0(010.5) = (8/9exp(—6) on By, and ge e(010.5) = (2/3)exp(—6) on B;.
Therefore :

E[0,0, = 0.5] fB 086, 0,610.5) d6 + fB 686,0,610.5) d6
00 01

+ fBleg(_)Z,@l(olo.:S) de

In2 i
$["P0e0d0 + [ 0g0,0(010.5)d0 + 2 [ 0e " do
0 In(4/3) In2

= 0595 + [0 0ge,0(610.5)do
In(4/3)

€ (0.595 + ¢1n5,0.595 + §In2)
= (0.723,0.903).

3.3. Lifetimes of spherical pressure vessels. This example illustrates the
use of mixtures of Polya trees and also shows the influence of the value of «,
on the predictive density. The data are time-to-failure of Kevlar 49 /epoxy
spherical vessels under pressure and come from [Andrews and Herzberg
(1985), page 185], they have been divided by 300 for this example. According to
Andrews and Herzberg (1985), “The NASA space shuttle uses Kevlar /epoxy
spherical pressure vessels in a sustained pressure mode throughout the usage
life of the vessel, and several commercial applications, such as fire-fighters’
air-breathing apparatus, are also subject to this service condition. The study
was done to generate baseline data on vessel life under pressure and to predict
vessel life and design reliability.”

Four mixtures of Polya trees were created as models for the data. Each
mixture was created with A(u) = exp(—u), g(0lu) = u exp(—u6) and the
canonical partitions. The value of «, .., depends only on m and on the
mixture, not on u. In the first mixture, a, .. =20 in the second mixture,
Qp e, =25 6in the third mixture, «, .., =2™; in the fourth mixture,
a, ., =10°

"There are 39 observations; the quartiles are 0.03, 0.18 and 1.32. The data
are plotted as points on the horizontal axis in Figure 2. For each mixture of
Polya trees, the predictive density ge 0, . 0,(001,---,03) is plotted in

€
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predictive density after 39 observations

o | X
® (O —— prior predictive density
[\ e alpha = 20
-+ ----- alpha =2
A e X ——— alpha =2*m
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o |
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o |
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-~ [
+
S -
tQ — \\
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0.0 0.5 1.0 15 20 25 3.0
Fic. 2.
Figure 2. When «a, ... = 108, each Polya tree in the mixture changes very

little after only 39 observations, so this mixture mimics the usual parametric
Bayesian analysis. The other Polya trees are flexible enough to model the data

more closely, allowing for different degrees of smoothness and compromise
between the data and the original predictive distribution.
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