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LOCAL ADMISSIBILITY AND LOCAL UNBIASEDNESS
IN HYPOTHESIS TESTING PROBLEMS

By LAWRENCE D. BROWN! AND JOHN I. MARDEN 2

Cornell University and University of Illinois, Urbana-Champaign

In this paper we give necessary conditions and sufficient conditions for
a test to be locally unbiased, we define local admissibility and we character-
ize local admissibility in hypothesis testing problems with simple null
hypotheses. Applications are presented involving same-sign alternatives,
ordered alternatives and independence testing of several variables.

1. Introduction. In most hypothesis testing problems, there is no uni-
formly most powerful test, even when restricting to unbiased tests or invariant
tests. In such cases the class of admissible tests one has to choose from can be
unwieldy, with many of the tests difficult to implement. One way to solve the
problem is always to use the generalized likelihood ratio test. In many applica-
tions, the likelihood ratio test has good properties. However, in other applica-
tions it can be difficult to calculate, fail to have an easily approximated null
distribution, or be inadmissible. These difficulties are especially evident when
the parameter space is restricted. An alternative approach evaluates testing
procedures on their power for alternatives very close to the null. A locally most
powerful test maximizes the local power among all tests of its level. Such tests
might exist, possibly after restriction to unbiased or invariant tests, when
there is no uniformly most powerful test. Examples of tests that are locally
most powerful among unbiased, or among locally unbiased, tests can be found
in Cohen, Sackrowitz and Strawderman (1985). It is more common, however,
that there are no uniformly best tests locally.

The search for locally optimal hypothesis testing procedures goes back to
Neyman and Pearson (1936, 1938). When the parameter space is one-dimen-
sional, they define Type A tests, which are the locally most powerful unbiased
tests. In two dimensions, they propose Type C tests, which maximize the local
power among unbiased tests whose local power is constant on ellipses with
given principal axes and ratio of lengths of principal axes. Issaacson (1951)
defined Type D tests which are applicable for arbitrary dimensions. A Type D
test is unbiased and maximizes the local curvature of the power function
among unbiased tests. That is, it maximizes the determinant of the second
derivative matrix of the power function evaluated at the null. Sen Gupta and
Vermeire (1986) defined locally most mean power unbiased tests as those
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which maximize the local power averaged over a sphere or, more generally,
over an ellipsoid of fixed orientation, among locally unbiased tests. A related
result is in Giri (1968), where he proved that Hotelling’s T'? test is locally
minimax.

Our purpose in this paper is to unify some of the above results in problems
with a simple null hypothesis. We give conditions for local unbiasedness,
present a definition of local admissibility, and obtain a characterization of local
admissibility. A similar approach to the problem of local optimality can be
found in Kudé (1961). He presented a definition of locally complete classes and
a characterization of the tests in such classes. Our definitions differ a bit from
Kudé’s, and our results are somewhat more explicit.

As it should be, a locally most powerful locally unbiased test is locally
admissible according to our definition. A locally most powerful unbiased test
need not be since it is possible that it can be dominated locally by a test that is
locally unbiased but not globally unbiased. In some cases, all tests have a
singular matrix of second derivatives, hence all unbiased tests are trivially
Type D [see Isaacson (1951)]. In such cases, Type D tests need not be locally
admissible. It is still open exactly when Type D, or Type C, tests are locally
admissible. In Section 4 we show that the locally most mean power unbiased
tests are locally admissible, and that if we extend the definition of such tests
slightly, the class of these tests coincides with the class of locally admissible
locally unbiased tests.

Our setup starts with a sample space X and a family of densities {fp(x):
6 € @} with respect to the sigma-finite measure » on X, where 0 is a subset of
R? that contains 0, and v is absolutely continuous with respect to f,. We test

(1.1) Hy,:0=0 versus H,:0€ 0, =0 - {0}.
A test is a measurable function
¢:X - [0,1]

with the interpretation that if x € X is observed, then ¢(x) is the probability
of rejecting H,,. A test is evaluated via its risk function:

Ey\(¢), if =0,

(1.2) ($) = \1_E,(¢), ifoec0,.
We next define terms associated with local admissibility. Let
0, ={6<0|l6ll <¢}.

We assume that ©, — {0} is nonempty for every ¢ > 0.

DEeFINITIONS 1.1. A test ¢ is locally dominated if for each sufficiently
small ¢ > 0 there exists a test ¢, depending on ¢, such that

(1'3) r0(¢) 2 rﬂ(lps) for all S ®£

and
ro(¢) > ro(¢,) for some 6 € O,.
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A test is locally inadmissible if it is locally dominated. Otherwise it is locally
admissible.

The notion of local dominance that we use is slightly different than that
used by Kudé. He demanded that a locally complete class have the property
that for any test ¢ not in the class, for each compact subset C of ® there
exists a test Y that dominates ¢ on C. Our definition only requires domi-
nance on sufficiently small neighborhoods of zero. Note that when O is
compact, Kud6’s approach requires a locally admissible test to be admissible in
the usual sense. This is not necessary with our definition. For example,
suppose © = [0, 1], the distribution when 6 < 1 obtains is the Normal(6, 1),
and the distribution when 6 = 1 is point mass 1 at x = 1. Then the test that
rejects when x > 1.645 is locally admissible, but not admissible in the usual
sense, or Kudd’s sense, since it is dominated by the test that rejects when
x> 1645 0r x = 1.

An alternative, and weaker, notion of local admissibility is to declare the
test ¢ locally inadmissible if there exists a test ¢ which dominates ¢ as in
(1.3) for all sufficiently small ¢ > 0. That is, (1.3) holds with #, not depending
on &. However, since our stronger definition leaves us with a nice class of tests,
we feel satisfied to use Definitions 1.1.

Now we define local unbiasedness.

DEFINITION 1.2. A test ¢ is locally unbiased if, for some & > 0,
Ey(¢) = Ey(¢) for6€0,.

A test is locally inadmissible among locally unbiased tests if it is locally
unbiased and for each sufficiently small £ > 0 there exists a locally unbiased
test ¢, for which (1.3) holds. Otherwise, a locally unbiased test is locally
admissible among locally unbiased tests. In Theorem 3.1 we show that a test
is locally admissible among locally unbiased tests if and only if it is locally
admissible and locally unbiased.

The exact assumptions that we use are given in Section 2. Here we
summarize some of the results. The local properties of tests rely heavily on the
behavior of f, for 6 near zero. The derivatives needed are given now. Let

_fe(x)
(14) - RO =20y
ad
(1.5) U(x) = {l(®)ien 1(x) =5 Rol®)|
and
(16) V() = V(@) o1 Vis(®) = 5555 Ro(®)

The assumptions are sufficient to prove that for any test ¢, as [|6]] = 0, the



LOCAL ADMISSIBILITY AND UNBIASEDNESS 835

power function can be written
(1.7) Ey(d) =a, + 01, + 30'V,0 + o(lI61I%),
where )

ay = Eo(9), 1y =Eo($(X)U(X))

and
V, = Eo(o(X)V(X)).

If one considers a Bayes test with respect to H, that has mass confined to an
e-neighborhood of zero, we see from (1.7) and (1.2) that the test is very close to
the test obtained by finding ¢ to maximize

(1.8) a,H,({0}) + H (O — {0})(1 — a,) + [Ex 0], + 5 tr([ Ex,00'|V,).

The possible limiting values for the pair of expectations in (1.8), suitably
normalized, as ¢ approaches zero are given by a set A, a subset of R? X S,
where S, is the set of p X p symmetric nonnegative definite matrices. See
Section 2. This set depends on the local structure of ®. The Neyman-Pearson
lemma can be used to find the test maximizing (1.8). The limits of such tests as
e — 0 are the ones of interest. To whit, we consider tests that essentially reject
H, when

(1.9) Xl(x) + 3tr(MV(x)) >c,

where (A, M) € A and c is a constant. Under these conditions, the class of all
such tests is exactly the class of all locally admissible tests. See Theorems 2.1
and 2.2.

Next consider local unbiasedness. When 0 is in the interior of ®, Sen Gupta
and Vermeire (1986) show that a necessary (sufficient) condition for a test to
be locally unbiased is that

l,=0 and V, is nonnegative (positive) definite.

In Theorem 3.2 we show that, in general, a necessary (sufficient) condition is
that

(1.10)  XI, + 2tr(MV,) = (>)0 forall (1, M) € A — {(0,0)}.

In Section 4 we show that when 0 is in the interior of ©, the class of locally
admissible among locally unbiased tests is equivalent to the locally most mean
power unbiased tests of Sen Gupta and Vermeire if we extend their definition a
little. '

Section 5 contains several examples. We exhibit some particular sets A and
make applications to problems with same-sign alternatives, ordered alterna-
tives and independence testing of several variables.

REMARK. One is rarely concerned with the power of tests at alternatives
arbitrarily close to the null, hence it might seem that it is not worthwhile
paying too much attention to these locally optimally tests. However, in a few
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examples, it appears that if the sample size is not too small, locally optimal
tests compare quite favorably to other tests such as the likelihood ratio test.
See Schatzoff (1966) for the multivariate analysis of variance problem, Marden
(1983) for the general multivariate analysis of variance problem and Marden
(1981) for the problem of testing that a bivariate normal correlation is zero
when the variances are known. These results are in contrast to asymptotically
(as 0 — =) optimal tests, which can perform very poorly over much of the
parameter space.

We note that the local tests often are easy to calculate, and, since they are
like sums or sums of squares, it is often easy to find an approximation to their
null distributions. See Sections 5 and 6.

2. Necessary and sufficient conditions for local admissibility. We
begin with the first two assumptions, parallel to the first two in Section 2 of
Brown and Marden (1989).

AssumpTiON 2.1. For some g, > 0, the function R,(x) in (1.4) can be
extended to a function on O, , the closure of ©, in R?, such that for each
x € X, R,(x) is continuous on O, , and .

(2.1) 0 <Ry(x) <w forallge®,,.
AssumpTION 2.2. For each x € X, R, (x) has all first and second derivatives

with respect to 8 at 6 = 0 given by (1.5) and (1.6). Also, E(lI(X)I) < o,
E (VXD < o,

(2.2) RP(x) = Ry(x) — 1 — 0'l(x) — 20V(x)0 = o(l161I*)
for each x, and for some ¢, > 0,
| RP(2)]
2.3 sup ———fo(x)v(dx) < .
(2.3) fe e g fal ()

We can take the same ¢, in the two assumptions. Now for (, V) and (A, M)
in R? X 8, define

(2.9) p(A, M;1,V) =Xl + 3tr MV.
Let G, denote the set of nonnegative finite measures G on R? such that
f 0G(d0)‘ + [llel*G(do) = 1.
Let
A, = {()«, M) € RP x 8,|there exists G € G,, support(G) c O,
(2.5)

and (A, M) = (joG(de),foe'G(do))},
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and

A= NA,.
>0
Note that ||All + tr M = 1 for all (A,.M) € A_, hence A is compact, and 0 & A.
Note also that since each O, is nonempty, so is each A,, and since A is an
intersection of nested, closed, bounded, nonempty sets, it too is nonempty. For
any test function ¢ and (A, M) € R? X S, define

(2.6) p(A, M;) = Eo(p(r, M;1(X),V(X))d(X)) =p(r, M;1,,V,),

where I(-), V(-), I, and V, are defined in (1.5), (1.6) and (1.7).
The main theorem follows. Its proof echoes some of the elements of Brown
and Marden (1989).

TuEOREM 2.1. Under Assumptions 2.1 and 2.2, a test ¢ of size 2,0 < a <1,
is locally admissible level a only if there is a (A4, M) € A and a constant c,
—® < ¢ < o, such that

1, if p(Ag, My; l(x),V(x)) >,

0, if p(Ao, Mo; I(x),V(x)) <c, = [v].

(2.7) é(x) =

Proor. By Definitions 1.1, there exists a sequence of positive numbers
€; | 0 such that ¢ is admissible on 0O, , . A standard decision-theo-
retlc result [e.g., Brown (1986), Theorem 4A 10] ylelds the existence of a test
¢; with r(¢,) = ry(¢) for 6 € @, , and a sequence of priors G;; supported on
G) , having Bayes procedures ¢;; ‘such that ¢;; = ¢, in the weak topology on

.. [This topology is defined so that b, > d; lf and only if

J(#:(x) = $:(x))g(x)v(dx) - 0

for all g satisfying [|g(x)l»(dx) < ®.] A minor corollary to this result shows
that the sequence G; j can also be chosen so that Ey(¢,;(X)) = Ey(4(X)) =
Ey(¢(X)) = a for all i, j.

Because ¢;; — ¢;, and because E,([lI(X)I) < « and E(|[V(X)ID < e, there
is a J(i) < « such that j > J(i) implies

1
(28) | Bo[(6:(X) = s X)UX)]| < 5
and
1
| Eo[(6:(X) - s X)V(D)]| < <.

Choose a subsequence, if necessary, so that ¢; — ¢, say. Then a routine
diagonalization argument yields a sequence {¢: iy} with j(@) > J(7) such that
¢z j(i) ¢’

ff a = 0 or 1, then (2.7) holds with ¢ = © or —x, respectively. Now assume
0 <a <1. Then 0 <G, ;;{0) <1 for all i sufﬁclently large; say for all i
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with no loss of generality. Define
H - Gi o
118G i (d0) || + [161°G; ;i (d6)

The denominator of this expression is positive since G; ;;,{0}) < 1, so that H,
is well defined, H; € G,.
Let
m. = Gi,j(i)({o}) - Gi,j(i)(@)s,» - {0})
© 8G: ja(d6) || + [161°G; j(d6)

Choose a further subsequence, if necessary, so that

A, = [6H,(d®) > r,, M, = [60H,(d0) > M
29) JoH (d8) - A, [e0'H(do) - M,

and m; > ¢, —© <¢ < =,

By (2.5), (Ag, M) € A since H; € G,, and each H, is supported on (a subset
of) @, . Note that

1, if —m; + p(r;, M3 1(x), V(%))
+ [RP(x) H/(d6) >0,

(2.10) b, ji (%) = 0, if —m;+p(A;, M;;1(x),V(x))

+ [RP(x) H(d6) <0,
a.e. [v]. Now, [RP(x)H,(d8) — 0 by (2.2). Hence (2.9), (2.10) and b iy = ¢

imply that ¢’ satisfies (2.7) and that —© < ¢ < © since 0 < a < 1.
It remains to show that ¢ also satisfies (2.7). Note that

f("e(d’) — 1o($:, jy) ) Hi(d6) = f("o(d’i) — ro(b:, jy) ) Hi(d0)
= //[d},(x) - ¢i,j(i)(x)]

X[-m +p(6,00'; 1(x),V(x)) + RP(x)]
Xfo(x)v(dx)H,(d9)

(2.11)

-0
since f((i’i,j(i)(x) - ¢,(x))f0(x)v(dx) = 0,

JEo[(¢:, j(X) = :(X))p(6,86'; 1 X), V(X))| H,(d6)

= EO[(d’i,j(i)(X) - ¢i(X))P()‘ia M;; l(X)’V(X))] -0
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by (2.8) and the fact that [|A,|| + tr(M,) = 1 < »,and [E(|IRP(X))H(d6) - 0
by (2.3), (2.2) and the dominated convergence theorem.
Since ¢; ;;, — ¢', it follows as above that

f("o(‘ﬁ) — 1o( i, jiy) ) Hi(d0)
(2.12) = /[d’i,j(i)(x) - ¢i(x)][—mi + P(/\i» M;; l(x),V(x))] fo(x)v(dx)

= [[#/(x) = d(x)][ ¢ + p(Ao, Mo; 1(%), V(%))] fo(x)v(dx).

The integrand in the right-hand expression above is nonnegative, a.e. [v], since
¢’ satisfies (2.7). Furthermore, it is positive with positive v-probability unless
¢ also satisfies (2.7), a.e. [v]. Combining the result of (2.11) with (2.12) thus
yields that ¢ satisfies (2.7), a.e. [v], which is the desired result. O

Now we give an extra condition that is sufficient for local admissibility.

THEOREM 2.2. Let ¢ be defined by (2.7) for some (Ay, M) € A. If
(2.13) v({xlp(Ao, My; U(x),V(x)) =c}) = 0,

then ¢ is locally admissible.

Proor. By virtue of (2.13) and the Neyman—Pearson lemma, we have that
there does not exist a size-a test ¢’ essentially different than ¢ such that
p(A, M; ¢') < p(A, M; ¢) for all (A, M) € A c A,. Thus for any & > 0 there is
no size-a test ¢’ # ¢ such that p(A, M; @) < p(A, M; ¢) for all 6 € ©,. This
implies that ¢ is locally admissible. O

A question that arises is whether (2.7) alone, without (2.13), implies that ¢
is locally admissible. It is possible to construct examples that show that such
an implication is logically false.

In some cases, [(x) = 0 [e.g., in testing for sphericity of a normal covariance
matrix as in Cohen and Marden (1988) or in our Examples 5.5 and 5.7]. In
such cases, (2.7) provides no information since any test can be so represented
by taking M, = 0. We handle this situation as follows. Let G} denote the set
of nonnegative finite measures G on G? such that []16]2G(d6) = 1. Also, let

At = {M € 8,|there exists G € G},
(2.14)
support(G) € ©, and M = joo’G(do)},

(2.15) A* = ) A%,

>0
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The following theorem can be proven by dropping the ‘“A”’-terms in the proofs
of Theorems 2.1 and 2.2.

THEOREM 2.3. Suppose l(x) = 0, a.e. [v]. Under Assumptions 2.1 and 2.2,
a test ¢ of size a, 0 < a < 1is locally admissible only if there is a M, € A* and
constant ¢, 0 < ¢ < », such that

1, if tr MV(x) > c,

(2.16) o(x) = 0, if tr MyV(x) <c, a.e.[v].
In addition, if
(2.17) v({xltr MyV(x) = ¢}) = 0,

then ¢ is locally admissible.

ReEMARK. The statements of the theorems in this section and in Section 3
remain true if we replace A or A* with A — {(0,0)} or A* — {0}, respectively,
where

(2.18) A = Cone(A) = {BA|B = 0} and A* = Cone(A*).
In Sections 4 and 5, we find it easier to present A and A*, which also conforms
to the notation in Brown and Marden (1989).

3. Local unbiasedness. We first prove the following.

THEOREM 3.1. Suppose Assumptions 2.1, 2.2, and (2.13) [(2.17)] hold.
Then the class of tests that are locally admissible among locally unbiased tests
consists exactly of those tests of the form (2.7) [(2.16)] that are locally unbiased.

Proor. Clearly, if ¢ is locally admissible and locally unbiased, it is locally
admissible among locally unbiased tests. On the other hand, suppose ¢ is
locally unbiased, but locally inadmissible among all tests. Then for each
sufficiently small ¢ (1.3) holds for some .. Now by (1.3) and Definition 1.2, it
must be that ¢, is also locally unbiased. Hence ¢ is locally inadmissible among
locally unbiased tests. O

Now we look more closely at local unbiasedness. We have the following.

THEOREM 3.2. Suppose (1.7) holds for all tests ¢. A necessary condition for
a test ¢ to be locally unbiased is that

(31) p(A,M;¢) =0 forall (A\,M) €A,
and a sufficient condition is that

(3.2) p(A, M;$) >0 forall (A, M) €A.
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Proor. Suppose (8.1) is violated, so that
(3.3) p(A,M;¢) < —n for some (A,M) € Aandn > 0.

Hence, by (2.3), for each ¢ > 0 there is a (A, M) € A, such that (3.3) holds.
This implies that there exists § € @, for which

(3.4) p(0,00;¢) < —|0l1>n /2.

Hence (1.7) implies that for all ¢ sufficiently small there is a § € @, such that
ry(¢#) < a. Thus ¢ is locally biased.

Conversely, suppose that (8.2) is satisfied. Then p(A, M;¢) > n > 0 for all
(A, M) € A since A is compact. Consequently there is an & > 0 such that
p(A, M;¢) > n/2 for all (A, M) € A,. It then follows that there is an ¢ <&
such that r,(¢) > a for all § € A,.. Thus ¢ is locally unbiased. O

The necessary condition (3.1) cannot be improved upon in that the test
¢(x) = a is locally unbiased and achieves equality in (3.1) for all (A, M). The
sufficient condition (3.2), however, can be improved. For example, if A = R? X
S, [see (2.18)], then, by taking (1,0) € R? X 8, for various values of A, we see
that we need /, = 0. Assuming [, = 0, then, for local unbiasedness we need
only that (3.2) holds for all (A, M) € R? X §, with M + 0. For another
example, take the problem of testing H, based on a p-variate N(6,I) for
p = 2. If ® = R?, then the test that rejects H, when |X;| > 1.96 is unbiased,
hence locally unbiased, but violates (3.2) for any M with zero as the upper left
element.

4. Local admissibility and locally most mean power unbiased tests.
In this section we assume that Assumptions 2.1 and 2.2 and (2.13) or (2.17)
hold, and that 0 is in the interior of ®. From Brown and Marden (1989),
Example 4.4, we have that A=R? XS, and A*=8,. Sen Gupta and
Vermeire (1986) define a test ¢ to be locally most mean power unbiased
(LMMPU) of level «a if it is locally unbiased and, for any other essentially
different level « locally unbiased test ¢, there exists an ¢, > 0 such that for
M=1I,

(4.1) | E($)do> [ Ey(y)do foralle < e,
V(M) v.(M)

where, for M € S, ¥, (M) is the ellipsoid
(M) = {0]6'M0 < ¢}.

As in Sen Gupta and Vermeire, we can use (1.7) to show that a sufficient
condition for a test to be LMMPU level a is that it be locally unbiased and be
the essentially unique test that maximizes tr(V,) among locally unbiased level
a tests. In their Theorem 2 they use the Neyman-Pearson lemma to show
that'a LMMPU test satisfies (2.7) with M, = I,, where A € R? and c are
chosen to make the level be « and [, = 0. Clearly this test is locally admissible
by either Theorem 2.2 or 2.3. In their Remark 2.f, Sen Gupta and Vermeire
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note that one could change parametrizations using a smooth transformation
with invertible Jacobian JJ at 8 = 0, and then find the LMMPU test under the
new parametrization. In general, this test will be different than the original
unless JJ’ = I. In fact, the new test will maximize tr((JJ ')'lVd,) among the
level a locally unbiased tests, and will be as in (2.7) or (2.16) with M = (JJ')" .
Equivalently, this new test is the one for which (4.1) holds with M = (JJ")~ ..
If when M in (4.1) is of rank ¢, ¢ < p, we interpret d6 to be g-dimensional
Lebesgue measure on the g-dimensional space in which ¥,(M) lies, then we
obtain the following.

THEOREM 4.1. The class of tests in Theorem 3.1 consists of those tests that
are LMMPU (4.1) for some M € S,.

5. Examples. Section 4 of Brown and Marden (1989) contains a discus-
sion of the set A in (2.18), from which it is easy to find A, for different
parameter spaces ©®. As mentioned in the previous section, if 0 is in the
interior of ©, then A = R? X §,. Other results are referred to below. Unless
otherwise stated, we assume that Assumptions 2.1 and 2.2 hold, as well as
(2.13) or (2.17) as appropriate.

ExaMPLE 5.1 (One-parameter families). When 0 is a subset of the real line,
I(x) = [3f,(x)/80],_0/fo(x) and V(x) = [3%f,(x)/36%y_o/fo(x). In one-sided
cases, for example, ® C [0, »), it can be shown that A = {(1, 0)}, hence the only
locally admissible level « test is the locally most powerful (LMP) test that has
rejection region of the form {x|I(x) > ¢}. If ® c (-, 0], then the LMP test has
rejection region {x[I(x) < c}. Interestingly, it can be the case that the test for
the two-sided situation [0 € Interior(®)] created by combining the two one-
sided LMP tests into a rejection region of the form R = {x[l(x) <c_}U
{x|l(x) > c.} is locally inadmissible. One can imagine this eventuality by
noting that in the two-sided case, any locally admissible test rejects H, when

(5.1) al(x) +bV(x) >c,

for some a, b, ¢ with b > 0, (a, b) # (0, 0), and realizing that the set R cannot
in general be put in the form (5.1). Thus, choosing ¢_ and c, so that R is
locally unbiased does not necessarily yield a LMP locally unbiased test. One
example of this phenomenon can be found in Section 6.1 of Brown and Marden
(1989). As another example, consider the curved exponential family with
two-dimensional statistic

fo(x) = exp{0x, + (02/2)x, — ¢(0, x6%/2)}.

If the family is normalized so that E,(X) = 0 and Vary(X) = 1, then « is the
statistical curvature. Now I(x) = x; and V(x) = x? + kx, — 1. We have that
R¢ is an interval depending only on x,, while the test in (5.1) has a rejection
region with parabolic boundary in X unless « = 0 or b = 0. If b = 0, then we
revert to a one-sided test, hence in particular when k # 0 no unbiased test of
the form R can be LMP among locally unbiased tests (unless the sample space



LOCAL ADMISSIBILITY AND UNBIASEDNESS 843

and measure v are taken in a very special way). If k = 0, then the tests of the
form R will be locally admissible.

ExampLE 5.2 (Exponential families). Suppose we have an exponential fam-
ily of densities with respect to Lebesgue measure on R? with natural parame-
ter @ and with 0 in the interior of the natural parameter space. We then have

fo( %) = a(x)e”* 0.
It is not difficult to verify the assumptions. Also,
I(x) =x—po and V(x) = (x — po)(x — po) + o,

where p, and 3, are the mean and covariance, respectively, of X when 6 = 0.
Thus the statistics in the tests in Theorem 2.1 are (possibly degenerate)
ellipsoids in x. Which ellipsoids yield locally admissible tests then depends on
the set A.

ExampLE 5.3 (Locally pointed alternatives). Suppose that @ is locally a
pointed closed convex cone, that is, there exists a closed convex cone C in R?
with vertex 0 such that for some y € R? and 8 <0,

v'0
T <pB foralloeC,
and
Cn{6sR?||oll<e} =0,.

Examples of such spaces include the nonnegative orthant, and the ordered
parameter space in Example 5.6. In this case

A ={(Ar,0)|r €C}.

Then Theorem 2.1 shows that a necessary condition for a test to be locally
admissible is that it essentially rejects H,, if

(5.2) Xl(x)>c

for some (A,c) € C X R. Test (5.2) is locally most powerful along the ray
{rAlr > 0}). Theorem 3.2 shows that a necessary (sufficient) condition for a test
to be locally unbiased is that

Xly=(>)0 forallar eC.
ExampLE 5.4 (Half-, quarter-, etc., alternatives). For a given ¢, 1 <t <p,
define
(5.3) C,={0€RPl9;>0fori=1,...,¢}.
Thus when p = 2 and ¢ = 1, C, is the right half-plane. If, for some ¢ > 0,
(5.4) c,n {8 R?|lol <2} = O,
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then, by Example 4.6 in Brown and Marden (1989),
(5-5) A={(A,M) €RP X S, €C, and M® = 0},

where M® is the upper left ¢ X ¢ submatrix of M. Let M® be the lower
(p — t) X (p — t) submatrix, let AV (A®) be the upper ¢ X 1 [lower (p — ¢) X 1]
subvector of A and partition /, and V, similarly. Then by Theorem 3.2, a
necessary (sufficient) condition for a test to be locally unbiased is that [ ff) =0
and

AP + L tr(MPVD) > (>)0
for all
(A, M®) € R* x 82~ — {(0,0)}.

ExamPLE 5.5 (Same-sign alternatives). In problem (1.1), one might have
a priori information that all the parameters have the same sign, so that

(5.6) ®=C,, ={0]6, > 0forall i, or 6, < 0 forall i}.

It can be shown that
A= {(A, M) e RP X Splall elements of M are nonnegative}.

As in the case A =R” X S,, a necessary condition for a test to be locally
unbiased is that /, = 0. However, because of the restriction on the M’s it is
not in general necessary for V, to be nonnegative definite. It is sufficient,
for example, if [, = 0, the diagonal elements of V, are positive and the off-
diagonal elements are nonnegative.

We apply this result to a normal linear model, that is,

(5.7 Y=Z(Bl)+r,

B2
where Y and r are n X 1 vectors, Z is a known n X (p + ¢) matrix of full
rank, p >0 and p +q <n, B; and B, are p X 1 and g X 1 vectors, respec-
tively, and

r ~N,(0,0°I,)
for o2 > 0. We want to test
Hy:B, =0 versus H,:B, € C,, — {0},

where B, and o? are unspecified. For example, B, might represent compar-
isons of p treatments to the same control, where all treatment effects are
known to go in the same direction as compared to the control.

The null is not simple, so we first reduce the problem by invariance and
sufficiency. A sufficient statistic consists of the least-squares estimates of B,
anid B, and the sum of squared residuals,

(5.8) (B, B2 S)
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so that

(Ifl) ~ N((ﬁl),az(X’X)_l), independent of S ~ o2x2_,_,.
B, Bz o

The problem is invariant under the affine group G = [R — {0}] X RY, which
acts via

(a’b) . (éla BAZ’ S) - (aﬁl, aBAZ +b, aZS).

If we restrict consideration to the subgroup G* of G that requires that a > 0,
we have that the maximal invariant statistic and parameter are, respectively,

X=p,/VS and 0=p,/0.

The problem is then (1.1) with ® as in (5.6). The density of X can be easily
derived by first conditioning on S and then integrating:

f3#(x) = (constant)exp(— 30'H~9)

(5.9) xfws["‘“”/zl‘lexp(—%s[l +x'H 'x])exp(Vs 0 H 'x) ds
. 0

n— > ¢
— (constant)(1 + x’H x)' q)/zexp(—%G’H_lo) Y ﬁ(\/fo’u)k,
k=1 %!

where
(5.10) Y H o = I'((n—q+k)/2)
' Vi+xH %’ k r((n-q)/2) ’

and H is the upper left p X p submatrix of (Z’Z)~!. The density required
when considering invariance under the full group G is then

fof(x) + ff(—x)
2

fo(x) =

- - c ; .
" = (constant)(1 + ’H %)™ ""% exp(~ 10 H10) ¥ ( 2§)| (2(6w)?)".
i=0 :
Assumptions 2.1 and 2.2 can be verified in a straightforward manner, and it is
easy to see that I/(x) = 0 and

(5.11) V(x) = 3[(n - @)uw’ — HY].

Equation (2.17) holds since when M =+ 0, the function tr MV(x) is convex in u
and strictly convex in at least one u;, and the distribution of u is absolutely
continuous with respect to Lebesgue measure on R”. Thus (5.11) and Theo-
rem 2.3 show that the locally admissible tests are those that essentially reject
H, when

(5.12) u'Mu > c
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for (M, ¢) € A* X R, where
A = {M € Splall elements of M are nonnegative}.

In Section 6 we consider the null distribution of the statistic «'Mu. In
general, the distribution can be given as a linear combination of nonindepen-
dent beta variables. We derive the first two moments. When M = H, the
distribution is a simple beta.

If the matrix (Z'Z)~! happens to be permutation-invariant, then we can
perform further reductions. Let P be the group of p X p permutation matri-
ces, and consider the group G X P which acts on (5.8) via

(a,b,7) - (Bl,ﬁz, S) - (awﬁl,aﬁz + b,a2S).

The class of locally admissible invariant tests under G X P are those in (2.17)
but with V replaced by

1
(5.13) Vi(x) = 2 L V(7a).

Thus V/(x) has all diagonal elements equal [to v,(x), say] and all off-diagonal
elements equal [to v,(x), say]. Then, for M € A*,

p
(5.14) tr(MV’(x)) =vy(%x) Y M+ v(x) Y M;; = movo(x) + myuy(x).
i=1 i#j
Thus we can use (5.11), (5.13), and (5.14) to show that the locally admissible
tests for the G X P-reduced problem have statistics

(5.15) mollull® + m, Y uu;,
i#j

where my > m,; > 0.

ExampLE 5.6 (Ordered alternatives). Suppose we have p + 1 means, and
we wish to test the null hypothesis that they are all equal versus the alterna-
tive that they are in nonincreasing order with respect to their indices. See
Barlow, Bartholomew, Bremner and Brunk (1972). For the ith mean p;, we
have a set of independent N(u,;,o?) observations, with the p + 1 sets of
observations independent. We assume o2 > 0 is unknown. This is a special
case of the model (5.7). Let Y denote the (p + 1) X 1 vector of sample means
from the sets, and let S denote the pooled sum of squares about the means.
Thus Y and S are independent with

Y~N(p,0?D) and S~x2_, ,,

where p is the vector of means, D is a diagonal matrix with diagonal elements
inverses of the individual sample sizes and n is the total sample size. We test

s

Hyipy=pg= """ =ppy;  versus

Hy:py2pp> 00 2p,40 not all equal.
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We again use invariance, noting that the problem is invariant under the affine
group G = {(a, b)la > 0 and b € R} which acts via

(a,b) - (y,8) = (ay + bl,a%),

where 1 is the vector of 1’s. The maximal invariant statistic and parameter
are, respectively,

Y1 7 Yp+1 K1~ Hp+1
1 | Y2~ Yp+1 1 | M2 7 Hp+1
x=— . and 6 =—
Vs : : 4 :
yp_yp+1 Kp — Hpi1

The density of X can be found to be f;* in the previous example, where H is
now the covariance matrix of VS X, and g = 1. Also,

@={0cRr9,>0,> -~ 26,20}
Since O is a pointed closed convex cone as in Example 5.3, we know that

A ={(1,0) e R? X S| € ). We only need I(x), which can be found from
(5.9) to be

I(x) =c,V2u.

Thus by Theorems 2.1 and 2.2, the locally admissible tests are those that
essentially reject H, if and only if

(5.16) Nu>c

for some (A,c) € ® X R.
In Section 6 we derive the null distribution of XU. Without loss of general-
ity take XH~!A = 1. Then, when 6 = 0,

Vn —2XU ,
Vi-auy? T
We also show that for test (5.16),
(5.18) Xol 4 has the same sign as Xo H™'A.
Thus by Theorem 3.2 and (5.6), a necessary (sufficient) condition for the test to
be locally unbiased is that

XoH A > (>)0 forall A, € ® — {0}.

For example, if X = (1,0,...,0), then, since H is positive definite and Ay; > 0,
the test is locally unbiased.

(5.17)

ExampLE 5.7 (Testing independence of p variables). We are given n inde-
pendent observations from a p-variate normal distribution with mean zero
and nonsingular covariance matrix 3, and wish to test the independence of the
p variables. That is, we test

(5.19) H,: 3 > 0is diagonal versus H,: 3 > 0, arbitrary.
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By sufficiency, we can base the tests on the sample sum of squares and
cross-products S, so that S has a p-variate Wishart distribution with n
degrees of freedom and mean n3. The first step is again to invoke invariance.
Let G be the group of p X p diagonal matrices with nonzero diagonal ele-
ments which acts on S via

A-S=ASA.
The maximal invariant statistic is R, the sample correlation matrix arising
from S. We take the maximal invariant parameter to be

{Oij}lsi<j5p’
the off-diagonal elements of () (= Q,) that has elements

g i '

wij:_a,‘/—iﬁ 1Sl,]$p,

where the o’/’s are the elements of 3~!. A straightforward application of

Wijsman’s theorem (1967) yields the function R, of (1.4) for the reduced
problem to be

R,(R) = K|Q,|""* [G(abslAI)"_lexp[—%tr(QOARA)] dA,

where abs|A| is the absolute value of the determinant of A, and

e[l

Since both R and (), have all diagonal elements 1 and A is diagonal, we can
write
)(n—l)/Z

) P 1 P
R,(R) = KIQe)'n/ [(}(Fl_ll(a?) exp(—g Ela%)

Xexp( Y aa &';’Uru)da1 o da,.

i>j

The second exponential in the integral above equals

1- Y a;a;0,;r;+ = Z a;a;0;;r; + o(llell?).
i>j i>j
Since
[} aua?)" ™" exp(~ 4a?) da; = 0
and

® (n-1)/2 n n
[ at(ad) " exp(~ 4a?) da, = 20205 + 1),
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we have that

2

i>j

(5.20) R,(R) =0, |"/2[1 + =X 05rE + o(ll6l?)|.

The first derivatives of [Q,| at § = 0 are all 0, and the second derivative matrix
at 0 = 0is 21,,_,, . Thus we obtain from (5 20) that

I(R)=0 and V(R)—[n diag({r2}, ciip) + Mpco- 1)/2]

We apply Theorem 2.3. The requisite assumptions can be verified as in
previous examples. The only task left is to find A*. The restriction on 0 € 0O is
that Q, be positive definite. Since for any 6 with [|0]|> small enough, Q, is
positive definite, ®, for small enough & > 0 is the &-ball about 0. Hence
A* = 8,1_py/2- The theorem then gives that a test is locally admissible if and
only if it essentially rejects when

Y mri>e,

i>j
where m;; > 0 for all i, j.

Although the exact null distribution of the above statistic is difficult to find,

the first two moments can be calculated easily since the R ’s are pairwise
independent Beta(1/2,(n — 1)/2) variables. Thus

(5.21) E, Z min?j = —‘Z
| i>) l>.l
and
2(n—-1)
Var| ) m;;R?| = =—— ) m?%;.
LE>J 2(” + 2) i>j

We note that the reduced problem is invariant under the group of p X p
permutation matrices P which acts via 7 - R » wR7’'. As in (5.13), we can
find the V! for the permutation invariant problem to be

(p—l)(gj )

Therefore, the only locally admissible tests are those based on X ;. ;r j 2. It is
interesting that this statistic is analogous to the one minimized in factor
analysis when using the MINRES criterion [see Harman (1976)].

p(l -p)/2°

1
VI(R) = o Y V(wRw')=n

‘' wreP

APPENDIX

Consider the statistic U defined in (5.10). Working back to (5.8), we see that
under H,, U has the same distribution as
H- 1?2y

6.1 W= ———,
61 S oY
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where
(6.2) Y ~N(0,1,) independent of S ~ x2,

and m = n — p — q. Now take M € A* — {0} and look at W' MW. By taking an
appropriate orthogonal transformation of Y to Y*, we can obtain

P d,Yr?
(6.3) WMW= Y —
i=1

p
§vvere - X 4B

where Y* has the same properties as Y in (6.2), and d,,...,d, are the
eigenvalues of H-'/2MH~1/2, Each B, is a Beta(1/2,(m + p — 1)/2) vari-
able, but the B,’s are clearly not independent. When H~'/2MH~'/? is the

identity, then (6.3) is a Beta(p /2, m /2) variable.
The first two moments of (6.3) are now derived. We know that

2(m+p-—-1)
(m+p)2(m+p+2)'

1
(64) E[B;]= ;'LTp and Varo[B;] =

We will show below that
21 1
(m+p)(m+p—2) (m+p)®

From (6.4) and (6.5) we obtain that

(6.5) Covy[ B;, B;] =

1 P
and
P 2(m+p—1
Var[WMW] = | ¥ a2 (m+p—1)
i=1 J(m+p)(m+p+2)
27 1
+2 dld - M
igj ’]((m+p)(m+p—2) (m +p)®

We can reexpress the variance in terms of H and M by noting that
p ,
Y d?=tr([MH')’) and 2Y d.d, = [tr(MH™)]* - tr([MH'T).
i=1 i>j

Now to (6.5). For z > 0,

T ks
E[YF2¥32vy? + Y32 = 2| = 22 sin(w)cos*(w) dow = vl
0

since, conditionally, (Y;¥, Y;¥) is uniformly distributed on the circle of radius Vz.
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Thus
Y1*2Y2*2 Y1*2Y2*2
(S + Y*Y*)? “E\E (S + Y*Y*)? Yr*+ Y5 YS,.. Y and S
_ _E- Y2 + Yy? 2
L S+ Y2+ Y2+ Lp yr?
WE-Bta 1 m+p—2 2
= 4 e , 2
2

(m+p)(m+p-2)°

which with (6.4) verifies (6.5).

Go back to W in (6.1). We want to find the distribution of the statistic in
(5.16), which is the same as that for XW. Suppose XH™!A =1, and let
vy = H™1/2), so that |ly|l = 1 and

Y'Y
VWS +Y'Y "
Again, with an appropriate orthogonal transformation, we obtain Y* as above
so that

AW =

Y¥
From this equation it is a short calculation to show that
mIp 1AW
proving (5.17).

Finally, we show that for A and A, in R”, (5.18) holds. For the test ¢ as in
(5.16) with A, we have that

XW =

Xoly = V2 X
0% 1 0‘/(./\'u>
where f, is given in (5.9). Set v = H™Y2u, y = H" A, and y, = H ', and
suppose without loss of generality that [|y|l = |ly,ll = 1. Then
YoV
Xol4 = (constant) ——— dv.
f(v’wc) @ + ll?) "

)ufo( u)du,

Next, let T be any p X p orthogonal matrix whose first row is yj, and put
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v* = T'v to obtain

v

XNol, = (constant)
0%¢ .j(igy'l"v*>c} (1 + ”v*"2)
Since the integral over v with v3,..., v} fixed is symmetric about v} = 0, it
has the same sign as the first component of I'y. Thus the integral over all of
v* has the same sign as

*
(n—q)/2 dv*.

Ty = yoy = XoH ™A,
which completes the proof of (5.18).
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