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ON BOOTSTRAP CONFIDENCE INTERVALS IN
NONPARAMETRIC REGRESSION'

By PETER HALL

University of Glasgow and Australian National University

Several authors have developed bootstrap methods for constructing
confidence intervals in nonparametric regression. On each occasion a non-
pivotal approach has been employed. Nonpivotal methods are still the
overwhelmingly popular choice when statisticians use the bootstrap to
compute confidence intervals, but they are not necessarily the most appro-
priate. In this paper we point out some of the theoretical advantages of
pivoting. They include a reduction in the error of the bootstrap distribution
function estimate, from n~1/2 to n~1h~1/2 (where h denotes bandwidth);
and a reduction in coverage error of confidence intervals, from either
n~12p=1/2 or n=1/21/2 (depending on which nonpivotal method is used)
to n~!. Several comparisons are drawn with the case of nonparametric
density estimation, where a pivotal approach also reduces errors associated
with confidence intervals, but where the orders of magnitude of the respec-
tive errors are quite different from their counterparts for nonparametric
regression.

1. Introduction. Among users of the bootstrap for constructing confi-
dence intervals there has developed a debate over relative merits of pivotal and
nonpivotal methods. A statistic is (asymptotically) pivotal if its large-sample
distribution does not depend on unknowns. The discussion papers of DiCiccio
and Romano [3], Hall [10] and Hinkley [13] describe the main issues in the
debate. In simple problems, such as estimation of a mean, nonpivotal methods
usually require subsidiary corrections if they are to achieve the accuracy of
pivotal methods. However, it is still true that nonpivotal methods, devoid of
corrections, enjoy by far the greatest following among statisticians. Without
exception, published accounts of bootstrap methods for constructing confi-
dence intervals in nonparametric regression use nonpivotal techniques (Hérdle
and Bowman [7], Hardle [5], Hiardle and Marron [8]). In this paper we draw
attention to some of the theoretical advantages of a pivotal approach in the
context of nonparametric regression.

The confidence interval problem for nonparametric regression falls natu-
rally into two parts, the first being construction of a confidence interval for the
expected value of the estimator and the second involving bias correction. In
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particular, each of the papers [5, 7, 8] treats the confidence interval problem in
this dichotomous way. We shall discuss both parts of the problem. The effect of
bias depends very much on how bias is corrected and there are differing views
among statisticians as to how this should be done. We shall treat two different
approaches: explicit bias correction and undersmoothing.

To simplify exposition, we shall treat only the case of a single confidence
interval, although the properties which we shall relate apply without change to
any fixed number of confidence intervals. Thus, the advantages of pivotal
methods are available for simultaneous confidence intervals. However, tech-
nology for generalizing the results to simultaneous confidence bands is still in
its infancy and the level of detail provided in this paper is not yet available for
that context.

To enable further simplification, we shall assume that the errors are
homoscedastic. Identical results may be derived in the heteroscedastic case,
provided the variance function admits a parametric model. However, one
cannot obtain the same convergence rates if the error structure can only be
modelled nonparametrically. The wild bootstrap suggested by Hardle [5] was
developed to handle the latter case.

Before describing our results, it will be helpful to list, for the sake of
comparison, the main properties of bootstrap methods in classical finite-
parameter problems. There, the principal pivotal and nonpivotal methods are
percentile-t and percentile, respectively. The reader is referred to DiCiccio and
Romano [3], Hall [10] and Hinkley [13] for details. (i) The bootstrap estimates
the distribution of a pivotal statistic with accuracy n~! (in probability) and of
a nonpivotal statistic with accuracy n~'/2, where n is sample size. (ii) Use of
pivotal methods to construct confidence intervals results in coverage errors
of size n~1 for both one- and two-sided intervals. On the other hand, the
coverage errors are n~!/2 in the case of nonpivotal methods and one-sided
intervals.

The analogues of these properties in the case of kernel-type nonparametric
regression are as follows; we use k to denote bandwidth of the estimator.
(i) The bootstrap estimates the distribution of a pivotal statistic with accuracy
n~1h~=1/2 and of a nonpivotal statistic with accuracy n~1/2 + n~'h~1/2, When
h = n~1/5 as is typically the case in practice with second-order kernels, the
respective errors are n~ %" and n~1/%; the former, available from pivotal
methods, is smaller. (ii) Use of pivotal methods to construct confidence inter-
vals results in coverage errors of size n~! for both one- and two-sided
intervals. Coverage errors can be maintained at this level, even after bias
correction. On the other hand, the errors are at least (h/n)'/? in the case of
nonpivotal methods and one-sided intervals. When h = n~1/5  the respective
errors are of size n~! and n~3/% and so pivotal methods have an advantage
once again. Furthermore, the coverage error can be as poor as (nh)~!/2 in the

" case of some nonpivotal methods.

The striking aspect of these conclusions is that pivotal methods perform so
well, achieving coverage accuracy of order n~! even in the infinite-parameter
problem of nonparametric regression. The reason is that the standard devia-
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tion estimate used to pivot the estimated regression mean is Vn -consistent,
although the mean estimate itself typically converges at a much slower rate.
This disparity between the convergence rates of numerator and denomina-
tor of the pivotal statistic is also responsible for several other unusual proper-
ties. In particular, Edgeworth expansions of distributions of studentized and
nonstudentized versions of the regression mean agree to first order, that is, to
order (nh)~1/2. This property fails in most classical problems, for example, in
the case of estimating a mean. It also fails in the case of nonparametric density
estimation, where distributions of pivotal and nonpivotal statistics differ in
terms of order (nh)~ /2, For nonparametric regression, the first point of
difference between the distributions of pivotal and nonpivotal statistics is in
terms of (h/n)'/2, which is smaller than (nk)~1/2. However, the distributions
agree in terms of order (nh)~!, which is usually smaller than (h/n)!/2
Section 2 will describe the main arguments behind the conclusions drawn
above and Section 3 will treat the case of bias correction. As many technical
details as possible will be deferred to Sections 4 and 5, which will state formal
Edgeworth expansions and provide proofs, respectively. During Section 2 we
shall, where instructive, draw comparisons with the case of nonparametric
density estimation, which may be treated using somewhat similar methods.

2. Main ideas. We take the regression model to be
(2.1) Y, =g(x;) +te, 1<i<n,

where g is an unknown smooth function, x,, ..., x, are design points confined
to a given interval, and ey, ..., e, are independent and identically distributed
errors with zero mean and variance o2. OQur estimator of g, using kernel K
and bandwidth &, is

oo - [£ ne 2] | £ (5]

See Hardle [6] for an excellent account of the general properties of such
estimators.
The variance of 2(x) is

n —r 172
(2.2) y2 = var g(x) = 0'273[2 K{x hx’ }] = o282,

say, where

2
73=2K{x hxt}.

Estimation of y? demands that we estimate o2 and for that purpose we shall
employ the difference method described by Rice [17], Gasser, Sroka and
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Jennen-Steinmetz [4], Miiller and Stadtmiiller [15, 16] and Miiller [14]. Specif-
ically, let {d j} be a sequence of numbers with the properties

Yd;=0,)Yd}=1,d;=0forj< -mjorj>myd_,d, +0,

where m,, my, > 0. Put m = m, + m,. Assume that the sample 2" = {(x,, Y)),
1 <i < n} has been ordered such that x; < --- <x,. Then our variance
estimator is

1 n—m,

5 - L (T,

L T A

Our estimator of 2 is obtained by replacing o2 by.42 in formula (2.2):

‘Yx = UZBx

The “ordinary” and ‘“‘studentized’’ versions of g — Eg, both standardized
for scale, are

L BBz 1 x-x
(2.3) S=58(x)= > e ifzjleiK{ 7 }

e B -Fex) 1 -
(2.4) T=T(x) = 5 - E,leiK{ - }

respectively. Our conclusions about pivotal and nonpivotal forms of the boot-
strap hinge on differences between the distributions of S and T'. To describe
these differences, write u; = E{(e, /a)’} for the jth standardized moment of
the error distribution and let ® and ¢ denote the standard normal distribu-
tion and density functions, respectively. Then

P(S <u) =®(u) + (nh) " *up,(u)d(u)
(2.5) +(nh) " H(mq — 8)pa(u) + uips(u)}d(u)
+ O{n_1 + (nh)_3/2},

P(T <u) = ®(u) + (nh) ™ *pgpy(u)d(u)

(26) +(nh) (e = 3)Pa(u) + wipy(u)}d(x)
+(h/n)uspy(u)d(u) + Ofn=t + (nk) ™%},
where p,,..., p, are known polynomials whose coefficients are bounded and

depend only on the design points, not at all on the error distribution. (For-
‘mulae for the polynomials will be given in Section 3.)

The first conclusion to be drawn from (2.5) and (2.6) is that the distribu-
tions of S and T agree to first and third order, that is, in terms of sizes
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(nh)~'2 and (nh)~1, but differ to second order, that is, in terms of size
(h/n)'/2, Indeed, the distribution of S does not contain terms of order
(h/n)/2, whereas the distribution of T does. Interestingly, in the analogue of
(2.4) and (2.5) for a nonparametric density estimator, the terms of size
(nh)~1/2 differ. That is, the distributions of ordinary and studentized forms of
the estimator differ to first order (and also to second order). This property is
the norm in classical applications of the bootstrap [10] and establishing it for
density estimators is straightforward.

Next we examine bootstrap versions of S and T and of the formulae (2.5)
and (2.6). Observe from (2.3) and (2.4) that the mean function g does not
influence the distribution of S and enters the distribution of T' only through
&. It turns out that the effect of g and & is relatively minor; in particular, g
enters only the O(n~!) term on the right-hand side of (2.6). Therefore, when
using the bootstrap to approximate these distributions we shall, in effect, make
the fictitious assumption that g = O. To estimate the error distribution, first
compute the simple residuals

& =Y - 8(x), i€ S,

where 7 is an appropriate set of indices (e.g., the set of i’s such that x; is not
too close to the boundary of the interval on which inference is being con-
ducted; see Hardle and Bowman [7]). Define n’ to equal the number of
elements of .7, let L’; denote summation over i € .# and put

Oy

é=n’_lz,él‘, él=él— )
i

the latter being centered residuals. Conditional on the sample 2"= {(x;, Y}),

1 <i < n}, draw a resample {e},...,e*} at random, with replacement, from

{é,, i € #). Define

1 1 nom2 2
v2 _ A2 Ax2 _ *
o _n,Zei’ e, ) (Zdjei+j)’
i Jj=m;+1"\ j

The conditional distributions of S* and T*, given &, are good approxima-
tions to the distributions of S and T, respectively. Indeed, if we define

8, = E{(et/sy|2) =57n ™ L'e,
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then we have the following bootstrap analogues of (2.5) and (2.6):
P(S* <ul@) = ®(u) + (rh) " 2fspy(u)d(u)
(2.7) +(nh) (g — 3)Pa(u) + 23py(u)}é(n)
+0,{n"1 + (nh) ™%,
P(T* <ulZ) = ®(u) + (nh)*agpy(u)d(u)
(2.8) +(nh) (g — 3)Pa(u) + 23pa(u)}é(n)
+(h/n)"?ispy(u)d(u) + Oyfn~" + (nh) ™%},

The polynomials p,..., p, in (2.7) and (2.8) are exactly as they were in (2.5)
and (2.6).

In virtually all cases of interest, (nh)~3/2 is of smaller order than n~1;
consider, for example, the most common circumstance where h is of size
n~1/5, Therefore the remainders O{rn~! + (nh)~%/%} in (2.5)-(2.8) are, in
reality, O(n~"). Furthermore, it is usually the case that i; = u; + O,(n"1/?);
see Theorem 2.1 at the end of this section. We may therefore deduce from
(2.5)-(2.8) that

P(S*<ulZ)-P(S<u)= Op(n_lh_l/z),
P(T* <ul&Z') - P(T <u) = O,(n"*h™V/?).

These are precise rates of convergence, not simply upper bounds, because the
convergence rate of fi; to u; is precisely n~'/2. Thus, the exact rate of
convergence of bootstrap approximations to the distributions of S and T is
n~'h~1/2 which is slightly poorer than the rate n~! found in classical finite
- parameter problems, but slightly better than the corresponding rate (nh)~!
found in applications of the bootstrap to density estimation.

We are now in a position to explain why bootstrap methods for pivotal and
nonpivotal approaches admit the different properties announced in Section 1.
The pivotal percentile-t method approximates the distribution of T' by that of
T*, and as we have just shown, the resulting error is of size n~12~1/2, On the
other hand, nonpivotal techniques, such as the percentile method which
appears to be almost universally used in practice, approximate the distribution
of

U= - (8(x) - BR(e)) = ¥ ek )
=—{8(x) - X)) =—2 e
B. T i=1 h
by the conditional distribution of
: 1 X — X
* — * 4
(2.9) Ur=—% ¢ K{ : }

To appreciate the significant errors which arise in this approximation, observe
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from (2.5) and (2.7) that
P(U*<ulZ)-P(U=<u)=P(S*<u/5|1Z)—P(S<u/o)
=®(u/¥) -~ P(u/o) + 0,(n " 'h™1/2).

[Here we have used the fact that & — o = Op(n'l/ 2); see Theorem 2.1 below.]
Since & — o is of precise size n~'/2, then ®(u/F) — ®(u /o) is of precise size
n~1/2 1t therefore follows from (2.10) that the bootstrap approximation to the
distribution of U will have errors of at least n~'/%, as stated in Section 1.

Despite the poor performance of nonpivotal methods, they do a little better
than their counterparts in the related problem of nonparametric density
estimation. There, bootstrap approximations to the distributions of pivotal and
nonpivotal statistics are in error by (nh)~! and (nh)~1/2, respectively. The
error of n~1/2 in the nonparametric regression case is'a little better than the
error (nh)~'/2 for density estimation and the improvement is due to the fact
that variance in nonparametric regression can be estimated Vn consistently.
(In some respects the case of density estimation may be viewed as a straight-
forward generalization of the classical case, with nh in the former replacing n
in the latter.)

It remains to explain the coverage accuracy properties announced in Section
1. We begin with the case of the pivotal percentile-t method. Given a probabil-
ity level a, define #,,¢,, z, to be the solutions of the equations

P(T*<t,|Z)=P(T<t,) = ¥(z,) =a.
If we knew the exact distribution of T, then we would compute ¢, and take
(2.11) T = (8(x) = Futar ®)
as an a-level confidence interval for Eg(x). Its coverage is precisely
P(T < t,) = a. Generally the distribution of T' is unknown, and in such cases
we might replace ¢, in (2.11) by its bootstrap estimate, £,. The resulting
interval 9, = (8(x) — 9,%,,®) covers Eg(x) with probability P(T <£,) and
has coverage error

(2.10)

8, = P(T <%,) - a.

To determine the size of this error, observe from (2.6), (2.8) and the fact
that 4; — u; = 0,(n~'/?), that

P(T*<ulZ)-P(T<u)
= (nh)"*(fg ~ ) p(w)$() + Oy(n~ + n~32h7Y),

It would always be the case in practice that A was of larger order than n~
and hence that n~3/2h2~! was of smaller order than n~!. Thus by (2.12),

(2.13) B, =ty = (nh) (s — ms) Pr(2,) + Op(nh).
Therefore the coverage error which we seek is

8, =P{T — (nh)™"*(f5 — ns)Ps(2,) <t} — P(T.<t,) +O(n™Y).

(2.12)

1/2
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(A rigorous proof of this result follows lines described in Section 4.) An
Edgeworth expansion of the distribution of T' — (nh)~Y/2(fi; — p3)p,(u) may
be developed in the same manner as was the expansion for T at (2.6) and it
will be found that the expansions-differ only in terms of order n~!. Therefore
8, = O(n~1). That is, the coverage errors of confidence intervals constructed
by the percentile-# method are of order n~!. (The argument above checks this
in the case of one-sided intervals and similarly it may be proved for two-sided
intervals.) Interestingly, the coverage error is larger, of order (nh)~!, in the
circumstance of nonparametric density estimation.

The case of nonpivotal methods, such as percentile, may be treated simi-
larly. But there, a significant contributor to coverage error of a one-sided
interval is the term of order (h/n)'/2 by which the expansions (2.5) and (2.6)
differ. This difference has a detrimental impact on coverage accuracy. In more
detail, define U* as at (2.9) and let &, u, be the solutions of

PU*<a |Z)=P(U<u,) =a.
A slight variant of the argument leading to (2.13) shows that
§7 M, ~ 0wy = (nh) (s ~ mg) Pi(22) + Op(n7Y).

One form of the percentile-method a-level confidence interval for Eg(x) is
(8(x) — B, ,, ), which has coverage probability

P(U<i,)=P(T<6'4,)
= P(T — (nk) (3 — ms)Pi(2,) <07 'u,} + O(n7?)
=P(T<o 'u,)+0(n™"

=a+ (h/n)*uspy(2,) +O(n7Y).

Therefore the coverage error of this percentile method confidence interval is of
order (h/n)'/2, which is generally larger than n~!.

There is a second percentile method, called the backwards method in [10],
and it may be checked that this alternative approach leads to even worse
errors—of size (nh)~'/2. In the case of nonparametric density estimation,
both of the percentile methods produce coverage errors of size (nh)~1/2. The
fact that they produce errors of different orders in the case of nonparametric
regression is due once again to the peculiar nature of the statistic 7', having a
numerator and denominator with different convergence rates.

We close this section by showing that fi; — u; = O,(n"'/?) for general
J = 3. We assume that K is bounded and compactly supported and that K, the
bandwidth % and the index set .# are chosen so that for some £ > 0,

(2.14) ma}E{é(xi) _ g(x,-)}zj = O(n~H/D*ey),

This condition is quite mild. For example, suppose K is a second order kernel,
that the bandwidth % is of size n~!/%, that g has two bounded derivatives,
that E(e?/) < o and that .# is chosen so that x; for i € #, is bounded away
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from either end of the interval of estimation, as proposed by Héirdle and
Bowman [7]. Then the left-hand side of (2.14) is of order n~%//® and so (2.14)
is certainly satisfied.

THEOREM 2.1. If E(e) < and (2.14) holds and if the index set &
contains at least en elements for some ¢ > 0 and all large n, then i; — p; =
Op(n‘l/ 2).

Proor. It suffices to show that the stated conditions imply

(2.15) nTt Y8 = E(ef) + Op(n”V?)
for j>2. Put &=n""'Tie;, n,=8x) - glx,) - 2 TIE 8 (xy) — gxy),
A, = n'"'T'(e; — ) "*(—n,)*. Since é; = e; — & — n,, then
. j /
(2.16) Y e/ = Y (J )Ak.
i k=0 \k

It is easily proved that A, — E(e{) = O,(n~'/?). For k > 2,

|Agl < [{n'_l Z ,(ei - é)z(j_k)}n'_l )» '77;'%]
i i

= 0,(n~®/2A/D*y = O (n~F/D72),

1/2

where we have used the fact that

ma E(n1*) = 0| max E(g(x0) ~ s(=))"

- 0| max B{g(x;) - g(x))| " = O(n~H0/2*
= 0| max E(& () ~ &(x))”| " = O(n )

It may be proved after a little algebra that E(A%) = o(n~"). The desired result
(2.15) follows on combining the estimates from (2.16) down. O

3. The effect of bias. Let 7, denote the solution of the equation P(T* <
£ )2) = a and define I, = (8(x) — 9,£,,%). As noted in Section 2, J, may be
regarded as a confidence interval for Eg(x), with coverage error O(n™"). If a
confidence interval for g(x) is to be based on 7, then a bias correction may be
required, or it may be necessary to choose the bandwidth % so that bias is not
excessive. In the present section, we shall apply the work in Section 2 to the
problem of bias-corrected confidence intervals. We shall address two distinct
points—the influence of bias correction on the position of interval endpoint
and the effect on coverage accuracy.

Bias may be defined by b(x) = Eg(x) — g(x). In order to be specific about
properties of bias, let us initially take the kernel K to be a known symmetric
density function, such as Epanechnikov’s kernel (Hérdle [6], Section 3.1). For
such kernels it may be proved that if, for example, the design points are
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regularly spaced and if g has four continuous derivatives, then
(3.1) b(x) = tkyh?%g"(x) + O{h* + (nh) ™}

as h - 0 and n - o, where k.= = [u?K(u) du. If b(x) denotes an estimator of
b(x), then I = (g(x) 8, — b(x),) is a bias-corrected version of J,.

One approach to bias correction is to estimate the dominant term on the
right-hand side of (3.1) by constructing an estimator §"(x) of g”(x). If, in the
notation of Hirdle ([6], Section 4.5), we use a kernel estimator of order
(k, p) = (2,r + 2); and if the bandwidth of the estimator is chosen appropri-
ately and g has r + 2 derivatives; then &"(x) — g"(x) = 0,(n""/®"*9) (6],
Section 4.5). Taking &(x) = 1k,h%8"(x) as our bias estlmator we see from
(3.1) that

(38.2) b(x) — b(x) = O,{h* + (nk)™" “2'/<2r+5>}.

The terms of order A* + (nh)~! in this formula are genuinely of that size,
not of smaller order, as may be shown by a longer argument. This implies
that the error in the bias correction discussed above is at least of the same
size [viz., (nh)~1] as the skewness correction term provided by the bootstrap.
To appreciate why, note that ¥, ~ const.(nh)~'/? and, by (2.8), £, =2, —
(nh)"Y24,p(2,) + 0 A(nh)~ 172} where z, = @~ Xa). Therefore,

(3.3) $.8, = — (nh)"Y?3,83p,(2,) +0,{(nh) 7'}

The term ¥, z, on the right-hand side of (3.3) represents the quantity which we
would use instead of 9,Z, to construct the confidence intervals g, and 97, if
we employed the normal approximation rather than the bootstrap. The second
term on the right-hand side of (3.3) denotes the skewness correction provided
by the bootstrap and is of size (nh)~1.

An alternative approach to bias correction is to simply ignore the effect of
bias and interpret 9; as a confidence interval for g(x) rather than Eg(x).
This is tantamount to taklng b(x) = 0 in the definition of 9’ Since bias is of
size h% and 9,f, is of size (nh)~/2, then ignoring bias will not affect the
asymptotic level of the confidence interval if and only if A2 is of smaller order
than (nh)~'/2. For this to happen, 2~ must be of smaller order than n~1/5
that is, the regression estimator must be undersmoothed by an order of
magnitude relative to the optimal amount of smoothing for point estimation of
g. If we follow this route, then formula (3.3) should be replaced by

b(x) — b(x) = —b(x) = O(h?).

Since the skewness correction term provided by the bootstrap is of size (nh)~!
[see (3.3)], then the skewness correction dominates the bias correction if and
only if A2 is of smaller order than (nk)~!, that is, 2 is of smaller order than
n~1/3,

The influence of bias correction on coverage accuracy is more subtle and is
perhaps best treated by considering a more general context where the kernel
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K is of order s:

1, if j=0,
fuJ'K(u)du= 0, ifl<j<s-—1,
ky+0, ifj=s.
See Hardle ([6], Section 4.5); the symmetric-density kernel considered earlier is
an example of the case s = 2. Using an sth order kernel K and assuming that
m has s continuous derivatives, formula (3.1) should be replaced by

(3.4) b(x) = (s!) 'k, (—h) g®(x) + o(k*) + O{(nh) "}

To estimate b(x), suppose we first estimate g¢)(x) as accurately as possible,
assuming that g has r + s derivates in all. This can be done using a kernel of
order (k,p) = (s,r + s), in the notation of Héardle ([6], Section 4.5), and
produces an estimator §(x) with error of size § = n~"/@"+25+*D_ Therefore
the bias estimator b(x) = (s))~ % ,(~k)°4®)(x) is in error by terms of at least
h®5. [The figure h°56 does not take into account additional errors arising from
failure to estimate the o(h°®) + O{(nh}~!} terms on the right-hand side of (3.4),
and so the actual error may be larger.] Using this estimator of bias, we see that
the confidence interval 9;’ covers g(x) with probability

a; = P{g(x) — 9%, - b(x) <g(x)} =P(T <i,+R,),

where R, = {6(x) — b(x)}/¥,. Since R, is at least of size (nh)'/2h°5, then
a, = P(T <{,) + A,, where, to a conservative approximation, A, = (nh)'/2h*5.

A second approach, based on the undersmoothing method described two
paragraphs earlier, is to take K to be an (r + s)th order kernel, thereby
utilizing at the first opportunity all the smoothness assumptions made about
f, and to put b(x) = 0. In this case, the bias-corrected interval 9;’ is identical
to 9;, with coverage probability

a, = P{g(x) — 9, < g(x)} + P(T <, + R,),

where R, = —b(x)/9,. Now, R, is of size (nh)'/?h"*° and so a, =
P(T <t,) + A,, where A, = (nh)/?h"**.

The final step in this argument is to determine the appropriate 2 for both
these approaches. We know from Section 2 that P(T <?,) =a + O(n™%).
Hence, the total coverage error is of size at least B, = n~! + (nh)'/2h°5 when
K is an sth order kernel and bias is corrected explicitly; and of size
By, =n"1+ (nh)/2h"** when K is an (r + s)th order kernel and no bias
correction is made. Bearing in mind that s = n=7/@"*2*D  we gee that

=n"! + (hnl/@r+2stD)s+(1/2) Therefore, h should be of order at least
n~(+A/D)7=@r+25+ D7 if the coverage accuracy of the interval I is to be at
most O(n~!) and if bias is corrected explicitly. A similar argument shows
that A should be of order at most n~1/@"+2s*D if bias is corrected by under-
smoothing.
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4. Edgeworth expansions. In this section we provide explicit regularity
conditions under which the expansions (2.5)-(2.8) are available. Section 5 will
outline proofs of those results.

Throughout we assume the regression model (2.1) and use notation intro-
duced in Section 2. Note in particular the definitions of 7,, S and T. We begin
by defining the polynomials p,,..., p, appearing in (2.5)-(2.8). Put

om OB () s ),

T" Tx =1

1 n X —Xx;
b -t R[22,
2oy, 2K\

i 4
pi(u) = —gay(u® - 1), pa(u) = —zgazu(u’ - 3),
ps(u) = —%a%u(u* — 10u? + 15),  p,(u) = —bu?.

Note that p,,...,p, depend on neither the regression mean g nor the
difference sequence {d ;}. Assume that (a) the design points x; are confined to a
given compact interval I and are either regularly spaced on I or represent the
first n random observations of a distribution whose density is bounded away
from zero on I (in the former case we should really notate x; as x,,;, indicating
a double array, but we suppress the additional subscript), (b) the kernel K is
bounded, compactly supported and nondegenerate, (c) the bandwidth A satis-
fies n‘”f <h=h(n) <n" ¢ for some £ > 0 and all large n, (d) the error
distribution is nonsingular and satisfies E(e,) = 0 and E(le,|°) < » for some
finite but sufficiently large C > 0 [whose choice depends on the value of ¢ in
()], (e) x is an interior point of the interval I.

THEOREM 4.1. Under conditions (a)-(e) and for the above definitions of
D1s- - - » D4, €xpansions (2.5) and (2.6) obtain uniformly in —o < u < . If, in
addition, (2.14) holds and # contains at least sn elements for some & > 0,
then expansions (2.7) and (2.8) obtain uniformly in u.

The coefficients a,, a, and b appearing in the polynomials are bounded as
n — o, Indeed, if condition (a) holds with I =[0,1] and if we take f to be
either the design density (if the design is obtained randomly) or the constant
function 1 (if the design points are regularly spaced), then

w~f K2 K, ey (fR) fRS
-1/2
b~ ~ ()" [&?)

5. Proofs. Derivation of an expansion for S is relatively straightforward,
since S is a sum of independent random variables. There are some complicat-
ing features in the case of T, due to the fact that (a) the random variable &

o
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used to standardize T is a sum of (2m + 1)-dependent variables, not a sum of
independent variables, and (b) the numerator and denominator of T have
different convergence rates. We shall concentrate our attention on 7 and
derive (2.6). Following that proof we shall outline the modifications necessary
to obtain (2.8).

It may be assumed without loss of generality that o2 = 1. We begin by
describing an argument which identifies the form of the Edgeworth expansion,
up to terms of order n~!. Following that, we shall make the details mathemat-
ically rigorous.

Define m = m, + m, and 72 = © ;K{(x — x,)/h}?, extend the sequence {e;}
tofe - 5€00espim,) and put

1 n—mgy 2 1 2
52 — de,..|, = — d ) .
7 n_mi="§+1(§ Jelﬂ) n g (Z iCiti

Then 6> - %= 0,(n"") (see Lemma 5.3) and clearly 6% — ¢ = 0,(n™ 1),
whence it follows that T' = T, + O,(n '), where

e 2Er S £ (mae) )

Te Li=1
Hence, Edgeworth expansions of T' and T, agree up to terms of order n
To evaluate the expansions of T,, put a'| = pusa,, @’ = (u, — 3)a, and
b = pugb. We claim that, if sufficiently many moments of e; are finite,

E(T,) = (k/n)"?p',  var(T)) =1+ 0(n"Y),
E(T, - ET,)’ = (nh)"'?a, + (h/n)"%6b' + O(n™Y),
E(T, — ET,)* — 3(var T,)* = (nh) " 'd, + O(n™Y),

and fifth and higher cumulants of T, are of order n~! + (nh)~3/2, These
results follow from Lemma 5.1 below, whose proof is straightforward. There-
fore the characteristic function of T, equals

e t2/2 exp[(nh) 17210 (it)® + (h/n)l/zb’{zt + (it) }

-1

+(nh) " ay(it)t + Ofn =1 + (nk) ™|
e=#/2[1+ (nh) T2 3ay(it)® + (h/n)"*bit + (it)®)
+(nh) (i) + H(@)Ni0)%) + O(n~ + (nh) ],

Inverting this Fourier-Stieltjes transform, we deduce the claimed form of the
expansmn of T, (and hence of T).

LemMma 5.1. If r > 1 is an integer and E(e}") < «, then
E(T, — ET,)" = E(T) + r(r — 1)E(T) E(T;7') + O(n™1).
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Next we prove rigorously that the Edgeworth expansion of the distribution
of T exists and that it must have the form claimed earlier up to terms or order
n~1+ (nh)=372,

Lemma 5.2 below shows that if we replace 62 by 2 in the formula for 7,
we commit an error of only O(n~5/%) in the Edgeworth expansion. Therefore,
it suffices to prove the theorem for T' replaced by

1 = X —X;
T = Ze,.K{ h'}

(5.1) 7.0 (1
_ 1/2_—1 -1/2 -1/2
= (nk) 27 1+ (n —m) VAW, W,
where
1 n X —x
- o)
1 (nh)1/2 J§1 J h

1 n—msy 2
W = T /2 > {(Z dkej+k) - 1}~
k

(n—m) Jj=m;+1

The first of these two random variables is a sum of independent components,
the second is a sum of (2m + 1)-dependent, identically distributed compo-
nents. The vector (W, ,, W,,) is asymptotically distributed as (W, W,), a nor-
mal vector with the same mean and variance as (W,;, W,,). We shall extend
this result by establishing an Edgeworth expansion for the distribution of
(W,,, W,5), in which the first term is the distribution of (W;, W,) and the
remainder is of size (nh)~"*V/2 where r > 0 is an arbitrarily large integer.
The terms in the expansions are all polynomials multiplied by the density of
(W,,W,) and the coefficients of the polynomials are of orders (nh)~i/2h/,
where 1 <i <r and 0 <j < r. The existence of the desired expansion of the
distribution of 7" now follows from formula (5.1), expressing T' as a function
of (W,,, W,,), and elementary Taylor expansion as in Bhattacharya and Ghosh
((1], page 444). That the Edgeworth expansion must agree with the one
identified earlier is a consequence of the usual relationship between cumulants
of a function of two variables W,,, W,, and cumulants of W,;, W,, them-
selves, as deduced by Taylor expansion (e.g., [1], page 444f).

Before writing down the Edgeworth expansion of the distribution of
(W,, W,;) we need a little notation. Given 2-vectors z = (2,,2,) and v =
(v,,v,), where v, and v, are nonnegative integers, define z* = z}1232, ||zl =
(2} + 222 (the latter for real z;,2,), v!=v,!v,! and |v| = v, + v, For
1<k <s,let I, ;, denote summation over k-vectors j = (j,, ..., j;) of posi-
tive integers such that j, + --- +j, = s and let L{; ;, denote summation over
k-sequences of 2-vectors {v; = (v;;,v,5): 1 <1 < k} such that |v)| =j, + 2,1 <
l <k. Let t = (¢,,t,) denote a 2-vector with real components and define the
differential operator D* = (8/d¢,)"(d /dt,)"2. Write B, B, for the characteristic
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functions of (W, W,), (W, ,, W, ,), respectively Put

Q,(2) = B(~iz) ): (e) LY "H [(z"/v,!) D" log B,(t) e—o] -
G, k) G, B!
Let g, denote the density on R? of the signed measure whose Fourier—Stieltjes
transform is @,(it). [Then g, = p ¢, where ¢ is the density of (W;, W,) and p,
is a polynomial of degree 3s in two variables, even for even s and odd for odd
s. In particular, g, = ¢.] Let &/ denote the class of all convex sets A c R2.

LEMMA 5.2. Let r > 0 be an integer, assume that E(e¥"*) < « and that

the distribution of e, is nonsingular, and assume the conditions of Theorem
3.1 on the kernel K, on the design and on the bandwidth h. Then

— O{( nh) —(r+1)/2}.

sup |P((W,;,W,;) €A} - [ T g,(x) dx
Acg/ As—0

Since we assumed that for some £ > 0, & > n~1*¢, then (nh)~"*Y/2 may
be made less than n~C for any given C > 0 simply by choosing r sufficiently
large. Therefore Lemma 5.2 provides an Edgeworth expansion with a remain-
der of order n~C for any C which we care to select, at the expense of a
moment condition which depends on choice of C.

Lemma 5.2 may be established in the usual way, via a ‘“‘smoothing” or
kernel function (e.g., [1, page 208 ff], but without the necessity for any
truncation since we are not striving to be economical about moment assump-
tions), using arguments of Heinrich [12]). In this work, the role of Cramer’s
condition is filled by the property that for each & > 0 there exists a C =
C(g) > 0 such that

sup |E

(5:2) | hity>e
= Ofexp(—Cnh)}.

exp

itlzn: e; K{ ;Lx } + ity ”‘Z’"2 (Zk; dkej+k)2”

Jj=1 Jj=m;+1

This completes the proof of (2.6). The proof of (2.8) is similar, the main
point of difference being that the error distribution is now the discrete
distribution which places mass n'~! at each of the points é;, j € #. This
distribution does not enjoy the nonsingularity property, but that assumption
was used only during the proof of (5.2). The analogue of (5.2) does not hold,
although the key step in the proof of that result does have a valid counterpart:

|

n—mgy

" X=X 2
itIZeJ’?‘K{ h1}+it2 ¥ (§d,,e;f+k)
j=1

Jj=m;+1

E

exp

A(dl,t2)

iy
El;iln(tl’tZ)l =< E{
i=1
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where {(uy, u,) = Elexp(iu et + iu,et?)| 2},

X —Xx jl+ml

d,=t1K{ hj}+2t2 y djl_j(k): dke;."+k).

J=ji—mg #ji1—J

The trick now is to substitute this result directly into analytical estimates
involving the smoothing or kernel function and argue as in ([9], pages
1442-1443), to establish the bootstrap version of Lemma 5.1. Note that, while
the bootstrap counterpart of (5.2) is not valid, it is true that for each ¢ > 0,
there exists ¢ > 0 such that with probability 1, for all sufficiently large n,

sup |R(up,u)| <1—¢
e<|ujl+lugl<n’2/logn

(compare Csoérgé [18], page 130) and that for any A > 0,

sup P{|R(uy, us) — x(uy,uz)| >n~2logn} = 0(n™?).

U, uy
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