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COMPARISON OF EXPERIMENTS VIA DEPENDENCE OF
NORMAL VARIABLES WITH A COMMON
MARGINAL DISTRIBUTION

By MosHE SHAKED! aND Y. L. TonG?

University of Arizona and Georgia Institute of Technology

In this note we study comparison of experiments via the positive
dependence of normal variables with a common univariate marginal distri-
bution. We show that positive dependence has an adverse effect on the
information concerning the common mean 6, and give a partial ordering of
the information via a majorization ordering of the correlation matrices. In
the special case when the random variables are equally correlated, the main
theorem yields a result for the comparison of experiments for permutation
symmetric normal variables.

1. Introduction. For the motivation we first observe a standard defini-
tion and a known fact: Let X = (X,,...,X,) and Y = (Y},...,Y,) be two
n-dimensional random vectors with distributions F, and G,, respectively,
where § € ® c R* is the parameter of concern (n > 1 and % > 1).

DerFINITION 1. The experiment associated with Y is said to be at least as
informative as that associated with X for 6, in symbols X <;, Y or Fy <;;, G,,
if for every decision problem involving 6 and every prior distribution on ©, the
expected Bayes risk from F, is not less than that from G,.

ProposITION 2. X <, Y holds if there exists a function ¢: R**" > R" and
an r-dimensional random vector Z (r > 1), which is independent of Y and
having a distribution which does not depend on 0, such that X =; ¢(Y,Z) (=,

denotes equality in distribution).

In a recent paper, Shaked and Tong (1990) provided the following mono-
tonicity result: Let Y, and Y, be two n-dimensional normal random variables
with means 6, a common known variance o2 > 0, and common correlation
coefficients p,, p,, respectively; then

(1) Y, <, Y, forall0 <p; <p, <1.

From (1) it follows that if permutation symmetric normal variables are
more positively dependent, then the experiment is less informative. A question
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of interest is then what can be said for normal variables which are not
permutation symmetric. In this note we provide an answer to this question,
and show how a more general partial ordering of positive dependence yields a
monotonicity result for normal variables with a common marginal distribu-
tion. oo

Note that the statistical inference problems for the common mean of normal
random variables arise in various applicatioins. For example, an estimation
problem and a hypothesis-testing problem were considered previously by Brown
and Cohen (1974) and Cohen and Sacrowitz (1977), respectively.

2. The main result. To consider a partial ordering of positive depen-
dence of multivariate normal variables we first consider an n-dimensional
vector of nonnegative integers given by

\%

-
(2) k=(ky...,k,,0,...,0), ky >k, >1, Y k,=n

s=1
for some r < n. (The assumption of monotonicity of &, in s is not an essential
restriction. If it does not hold, then the random variables can always be
relabelled, yielding the assumed monotonicity.) For arbitrary but fixed 0 <
p1 < pg < 1, let us define a correlation matrix R(k) given by

1, fori=j,
m m+1
py, fori#jand Y k,+1<i,j< Y k,
pij(k) = s=0 s=0

forany m € {0,1,...,r — 1},
p1, otherwise,

where ., = 0. If X has a correlation matrix R(k), then its components belong

to r groups, with group sizes &,,..., k,, respectively, such that the correla-

tions within groups are p, and the correlations between groups are p,. For

references on the applications of such a correlation matrix in an agricultural

genetic selection problem see, for example, Tong [(1990), pages 129-130].
Now let k* be another vector of nonnegative integers such that

7’*
(3) k* = (k*,...,k%,0,...,0), k¥> - >2kh>1, Y k*=n
s=1

for some r* < n; and let R(k*) be defined similarly. Let X and Y have
multivariate normal distributions such that

(4) X ~ A4,(01,0°R(k)) and Y ~ .,(61,0°R(k*))
for some k and k* satisfying (2) and (3), respectively, where 6 € R is the
common mean, o2 > 0 is the common known variance and 1 =(1,...,1).

Cleéarly the X,’s and Y;’s defined in (4) have a common univariate .#(8, o%)
distribution. In the special case k = (n,0,...,0) and k* = (1,1,...,1), both
X,...,X, and Y,,...,Y, are permutation symmetric normal variables with
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correlation coefficients p,, p,, respectively. However, they are not permutation
symmetric otherwise. A result of Tong (1989) states that if k > k*, where >
denotes the majorization ordering, then the X,’s tend to hang together more
than the Y;’s, hence are more positively dependent, in the sense that

(5) ETT#(X) = ET16(Y,) forall ¢: R — [0,%)
i=1 i=1

such that the expectations exist. The question of interest is whether this
partial ordering of positive dependence also provides a partial ordering for
information on # in the sense of Definition 1. This question is answered in the
following theorem.

THEOREM 3. Assume that X and Y satisfy (4) where 6 € R is the un-
known parameter, 02 > 0 is the common known variance and 0 < p; < py < 1
are arbitrary but fixed. If k > k*, then X <, Y.

Proor. (a) We first prove the special case in which p, = 0. If p, € (0, 1),
then, for fixed k, R(Kk) reduces to

A(k) 0 e 0
0 Ayk) - 0
(6) : : : : = Ak,
o 0 - A

where A (k) is a &, X k, correlation matrix with off-diagonal elements p,. Let
T(k) = (¢, ;(k)) and T, (k) = (¢{(k)) denotes the inverses of A(k) and A (k),
respectively (s = 1,...,r). Then it follows from Tong [(1990), pages 105-106]
and a simple calculation that ¥ %, % #9(k) = &,/[1 + (k, — 1p,]. Thus we
have

r

n n ks B
R A IO T

s=1

Applying Theorem 3.A.4 in Marshall and Olkin [(1979), page 57] it can be
shown that A(Kk) is a Schur-concave function of k for k € [0, ©)*. Thus k > k*
implies
1 1 1 1
= > = — .
1(A(k)) 'Y (k) T R(K*)  1(A(k*))T'T

Taking A =B =1 in Torgersen [(1984), page 14], we have X <, Y when
pr1=0.
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(b) We now use the result established in (a) to prove the general case
0 < p; <py < 1. Let Uand V be such that

where Ry = A(k), Ry = A(k*) and A(k) is defined as in (6). Form (a) we have
k > k* = U <, V. By the remark that follows Corollary 2.4 of Torgersen
(1984), there exist an n X n real matrix C = (c;;) and an n-dimensional
normal variable Z (which is independent of U and V and whose distribution
does not depend on ) such that

(N U=,Z+CV.
Since
6 (7]
—~———=1=EU=EZ+ CE\V =EZ + ———C1
vi-p 1-p

for every 6 € R, we must have EZ = 0 and
n

(8) Yoc;=1 fori=1,...,n.
j=1

On the other hand, by letting W be an .#(0, 02) random variable that is
independent of U, V and Z, we have

(99 X=,y1-p,U+p;W1 and Y=, /1-p,V+p W1,

where X and Y are given in (4). Combining (7), (8) and (9) we have
X =, /1-p,(Z+CV)+,p, W1
= V1=p1Z +C(/T=p,V+ p, W1)
= Y1 -p,Z + CY;

and the proof is complete by applying Proposition 2. O

REMARK 4. Note that if X and Y satisfy (4) with known o2, then by
Torgersen (1984), X <;, Y holds if and only if 1(R(k))~'1' < 1(R(k*))~'1' for
fixed 0 < p; < p, < 1. When p, > 0, we are unable to find a proof for Theorem
3 by a direct verification of this condition because in general the inverses of
R(k) and of R(k*) are quite complicated.

3. Some concluding remarks. We have given a result for the compari-
son of experiments for the multivariate normal distribution with a common
marginal distribution, and it depends on a partial ordering of the positive
dependence of normal variables via a majorization ordering. We observe that
when combining with existing results, other useful results can be obtained.
For example, if X ~ .#,(01, 02R(k)) and Z ~ .#,(01, X,) and if there exists a
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correlation matrix R(k*) such that (i) k > k* and (ii) 0 ?R(k*) — X, is either
positive definite or positive semidefinite, then X <;, Z holds. Furthermore, we
observe that when k = (n,0,...,0) and k* =(1,1,...,1), then Theorem 3
reduces to Theorem 4.1 of Shaked and Tong (1990).
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