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- TESTING EXPONENTIALITY AGAINST IDMRL
DISTRIBUTIONS WITH UNKNOWN CHANGE POINT

By D. L. Hawkins, SuBHASH KoCHAR AND CLIVE LOADER

University of Texas, Arlington, Indian Statistical Institute and
AT & T Bell Laboratories

Guess, Hollander and Proschan proposed tests for exponentiality ver-
sus IDMRL (increasing initially and then decreasing mean residual life)
distributions when the change point, or corresponding quantile, is known.
In this paper we propose two tests which do not require such knowledge of
the change point. The tests are based on estimates of functionals of the cdf
which discriminate between the exponential and IDMRL families.

1. Introduction and summary. Let % denote the set of absolutely
continuous cdf’s F on R such that F(0) = 0, [§ xF(x)dx < « and F(¢) > 0 for
all ¢t > 0, where F(x) = 1 — F(x). Distributions in % are called life distribu-
tions.

For each F € &, the mean residual life (MRL) function m p(¢) = Ep(X —
tX > t) = {F(#)} "' [ F(x) dx is defined and finite for each ¢ > 0. Each F € &
is uniquely determined by m g, via the relation

F(x) = mF(O){mF(x)}_lexp{—];x[mF(u)] _ldu}, x> 0.

Theoretical properties of the MRL function are given in Cox (1962), Kotz and
Shambhag (1980), Hall and Wellner (1981) and Bhattacharjee (1982). Applica-
tions of it are surveyed in Guess and Proschan (1988), where it is seen that
various families of life distributions defined in terms of the MRL (e.g., increas-
ing MRL, decreasing MRL) have been used as models for lifetimes for which
such prior information is available.

One such family of distributions is &= (F € %: there exists a unique
t* > 0 such that my(¢) is strictly increasing (decreasing) for ¢ < t*(¢t > ¢*)},
the so-called IDMRL (increasing initially then decreasing mean residual life)
family. ¢* is called the change point [see Guess, Hollander and Proschan
(1986), henceforth GHP]. IDMRL distributions model lifetimes in which, in
terms of residual life, aging initially is beneficial but eventually is detrimental.
Such lifetimes are exemplified by: (i) human lifetimes: High infant mortality
causes the initially increasing MRL and deterioration with advancing age
causes the subsequently decreasing MRL. (i) Employment time with a given
company: The remaining employment time (residual life) of an employee with
several years with a company is likely (due to time investment, career value,
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etc.) to exceed that of an employee with the company only several months.
This results in increasing MRL with years of employment up to a certain point
(¢*), after which, due to retirement, MRL decreases. See Guess and Proschan
(1988) and the references therein for further applications of the IDMRL
family. '

Let & denote the class of exponential distributions [i.e., F' € & means that
F'(x) = Ae *I(x > 0) for some A > 0]. Then & C % and m (¢) is constant for
all ¢ > 0 if and only if F € &. Due to this “no-aging’’ property of F € &, it is
of practical interest to know whether a given life distribution F is in &.
Alternatively, one may ask if F € £.

Therefore, in this paper we consider the problem of testing H,: F e &
versus H;: F € &, based on a random sample X,,..., X, from Fe & (F
unknown). This problem was considered by GHP, who obtained tests assuming
either (a) ¢* is known or (b) p = F(t*) is known. In practice, however, such
information is usually lacking, as was noted by GHP, who left as an open
problem that of devising a test not requiring (a) or (b). In this paper, we
address this open problem by devising two tests which do not require these
assumptions. (However, our tests require more restrictions on F than do
GHP’s tests, in particular that EpX? < ».) We propose two new tests for
purposes of power comparison, since presently we do not know how to go
about finding optimal tests for these hypotheses.

Like the tests of GHP, our tests are based on estimates of functionals which
distinguish F € & from F € . These functionals are, for F € % and tests 1
and 2, respectively,

¢(F) = sup{yP(F): 0 <t <F7'(1 - ¢)},
$3(F) = sup(y®(F): t = 0},
where ¢ > 0 is a small fixed number,
YO(F) = mp(t) — mp(0),

l,,t(2>(F) = fot{mF(s)f(s) - F(s)}F(s) ds — ftm{mF(s)f(s) —F(s)}F(s) ds

and f(s) = F'(s). The functional ¢,(F) is clearly 0 for F € & and strictly
positive for F € . Although not so obviously, ¢,(F) has the same properties
and may also be written in terms of F only (see Theorem 1). The functional ¢,
is the more natural of the two, but requires the somewhat arbitrary choice of
e. The functional ¢, avoids this problem.

Our test statistics are appropriately normalized versions of ¢,(F,), where
F(x)=n"'L"  I(x; < x) is the empirical cdf. Using statistical differentials,
we show (Theorem 2) that these statistics have limit distributions which
coincide with the distributions of the suprema of certain Gaussian processes.
Using these limit results, critical values are obtained. Monte Carlo power
comparisons of our tests with those of GHP indicate that test 2 generally
dominates test 1 and compares well with the GHP tests when ¢* occurs below
the 75th quantile of F. When ¢* exceeds the 75th quantile, neither test 1 nor
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test 2 clearly dominates the other, and neither compares well with GHP’s
tests. Both our tests and GHP’s tests apparently lose power as t* increases
into the right tail of F.

The rest of the paper is organized as follows. In Section 2 the test statistics
and their limiting null distributions are given. Section 3 contains the power
comparisons. Section 4 contains the derivations of the asymptotic null distri-
butions of the statistics.

2. The test statistics and their limiting null distributions. We first
motivate the functional ¢,(F) via the following result, parts (i) and (ii) of
which show that ¢, distinguishes F € & from F € 4 like ¢, does.

THEOREM 1.

() IfF € &, then ¢,(F) = 0.
(i) If F € &, then y®(F) is strictly increasing (decreasing) for t <
t*(t > t*) and_¢4(F) = yP(F) > 0. _
Gil) y@(F) = [ F-2[3 F? - 2F@) [y F + 4" F~

ProoF. Since mp(t)F(¢) = [ F(x)dx, one may check that mg(¢) is dif-
ferentiable in ¢ where F(t) is in (0, ) with

mp(t) f(t) — F(t)
F(t)
Further, ¢{?(F) is differentiable in ¢ > 0 and

mp(t) = ) t>0.

d - = -
S VO(F) = 2{mp(t) f(t) - F()}F(t) = 2F*(t)m'p(2)

clearly has the same sign as does m/p(¢). Thus, since F' € & implies that
mp(t) > 0, mp=0or myp<0ast<t* t=1t*ort>t* the same holds for
¢ P(F). This gives (ii). Result (i) holds since m y(¢) is constant for F € &, so
that m/z(¢) = 0 for all £ > 0 and hence the integrand of y®?(F) is zero for all
t > 0. Result (iii) holds by a straightforward calculation. O

Now let X, denote the sample mean. Then our test statistics are
(2.1) IO = n'/2Xy(F,),
(2.2) T = n'/2X; $,(F,).
Since it may be shown that for F € %,
(23)  sup{|WP(F,) — yPO(F)|:0 <t < F7Y(1 - )} = O,(n""/%)
and

(2.4) sup{|¢@(F,) — v>(F)|: ¢t = 0} = O,(n~"?),
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each of T and T® will be near zero under H, and large positive under H,,

making large values of these statistics significant for testing H, versus H,.
The followmg computational formulae are eas1ly derived, where X(l) <

X < -+ <X, denote the order statistics (X5, £ 0)and D; = X ,;, — X:

_ n n—1
T® = n'/2X-1 max { Y (1— —-)D X}
O<k<n* | N _kj=k

T® = n'2X;! max ¢,
O<k<n

where

bur = n—z(l—g)nil( )D +4"21(1-%)2Dj,

Jj=k Jj=k

n-1 J J 2
A=—X(1)+ZC»D‘ C»=1—;—2(1——),

n njj» nj
J=1

n*=[n(l-¢)].

(Here [s] denotes integer part of s.) The quantities &,, can be computed
recursively in k. A FORTRAN program for computation of these statistics is
available from the first author.

Both of these statistics are distribution-free over & since the maximands
are ratios of linear functions of order statistics. (This is the motivation for the
X, ! factor in the definition of each statistic.) Also, it is interesting to observe
that the statistic y@(F,)/X, is asymptotically equivalent to the celebrated
cumulative total-time-on-test statistic, which is asymptotically optimal for
testing F' € & versus F having the Makeham form

Fy(x) =exp{—[x+0(x +e™* - 1)[}I(x = 0), 6=>0;

see Klefsjo (1983), Kochar (1985), Hollander and Proschan (1984) and Barlow
and Doksum (1972).

The asymptotic null distributions of 7" and T® are given in Theorem 2,
which is proved in Section 4. In this direction, let Z,, = {Z,(p): 0 <p <1 — ¢}
denote a mean-zero Gaussian process with covariance E{Z,(p)Z,(q)} =p/
(1 -p) for p <q and let Z, = {Zy(p): 0 < p < 1} denote another mean-zero
Gaussian process with covariance E{Z,(p)Z,(q)} = (1/3) + 2(p — q) —
2(p% - q¢®» +2(p* - ¢®/3,p <q.

THEOREM 2. Under Hy: F € &
D TY >, Zf 2sup{Z,(p):0<p<1-—¢)
() T® - , Z§ 2 sup{Zy(p): 0 <p < 1}.

Asymptotic critical values based on the distribution of Z}. may be obtained
exactly, since the process Y(p) = (1 — p)Z,.(p), 0 < p < 1 — ¢, has covariance
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TaBLE 1
Exact quantiles of Z{, (¢ = 0.10) and estimated quantiles of Z}

o 0.90 0.95 0.99
Z# quantile 4.94 5.88 7.73
Z§ quantile 1.41 1.59 1.93

function p(1 — ¢) for p < ¢ and hence is a Brownian bridge. Thus,

[ Y(p)
:0<p<l-¢|>c
| (1 -p) P }
) 1-—¢

€

P{Z} > c} = P{sup

> }
(2.5)

P

P{sup-(l + u)Y(T%): O<ucx<
{sup

>c}
=2{1_¢(c 1;)}’

where W(-) is the Wiener process on [0, 1], ®(x) is the N(0, 1) cdf and the last
equality follows by the reflection principle for the Wiener process. Table 1
contains selected quantiles of the distribution of Z} for ¢ = 0.10, computed
from (2.5).

Asymptotic critical values based on the distribution of Z} may be obtained
from Durbin’s (1985) approximation [using his delete the indicator function
method with ¢ denoting the N(0, 1) pdf]

(2.6) P{Z§ >c} ={2V/3c + O(c™!)}$(V3¢c) asc - =.

Table 1 contains selected quantiles of the distribution of Z}, computed from
(2.6).

W(u):0<uc<

3. Power comparison. Since our tests do not require knowledge of ¢* or
of p = F(t*), which GHP’s tests do require, it is natural to compare the powers
of our tests with that of GHP’s tests. This was done for a parametric
subfamily & of &, whose typical member (indexed by & > 0,8 > 0,y > 0) is

Fop (%) - B [L+dp - |7
a,ﬁ,y(x) - {B + ,ye—ax(l _ e—ax)} [eax + d]2 —c2

R x>0

e +d—c1+d+c)/ b
e +d+cl+d—c

where d = (28/y)™ %, ¢® = [4(B/vy) + 11/[4(B /v)?]. This distribution has MRL
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TABLE 2
Monte Carlo power comparison (n = 100, g = 1)

p for y= y=0.5 y=1.0 y=2.0
«a 0.5 1.0 2.0 STAT Size=0.10 005 0.10 005 0.10 0.05

2.0 0.35 040 0.48 T, 0.084 0.049 0.143 0.070 0.652 0.419
T, 0.705 0558 0.990 0.967 1.000 1.000
GHP, 0.605 0475 0961 0912 1.000 1.000
GHP, 0.589 0.462 0.966 0.927 0.999 0.994
1.0 0.53 0.56 0.60 T 0.138 0.081 0.280 0.174 0.751 0.567
T, 0.449 0.312 0.874 0.791 1.000 0.998
GHP, 0.408 0.271 0.831 0.717 0.997 0.996
GHP, 0.521 0384 0.888 0.812 0.996 0.991
0.5 0.75 0.75 0.76 T, 0.184 0.117 0.éB4 0.251 0.779 0.684
T, 0.254 0.165 0576 0.425 0.951 0916
GHP, 0.215 0.116 0.512 0.361 0915 0.864
GHP, 0.383 0.259 0.701 0.592 0.969 0.943
025 093 092 0092 T, 0.174 0.112 0.330 0.236 0.687 0.567
T, 0.151 0.075 0.275 0.181 0.658 0.534
GHP, 0.112 0.042 0.245 0.146 0.595 0478
GHP, 0.265 0.187 0490 0.367 0.851 0.766
function

My p,(t)=B+ye ®(l—-e™®), t=0.

The motivation for choosing  is best seen through the MRL function, which
can represent F € & (let y | 0) and which, for any choice of (a, 8, y) has the
IDMRL structure with change point ¢* = @~* In 2. Of course, -, contains only
a curve in #, so our results should be interpreted accordingly.

Table 2 contains Monte Carlo estimated powers based on 1000 realizations
of samples of size n = 100 from F, ;, for B =1 and a selection of («,y).
Included are our tests (T, T,) (using ¢ = 0.10 for T),), the test (GHP,) based
on GHP’s T, [see GHP immediately following (2.2)], which requires knowledge
of t* and the test (GHP,) based on GHP’s V, [see GHP at (3.2)], which
requires knowledge of p = F(¢*). Asymptotic critical values are used for all
tests. The size in the table heading refers to nominal size.

The power results should be viewed in light of the sizes. Here Monte Carlo
size estimates (1000 replications) for nominal sizes (0.10,0.05,0.01) are
(0.070, 0.042, 0.008) for T,, (0.110,0.060,0.017) for T,, (0.070,0.033,0.007)
for GHP, and (0.109, 0.056, 0.013) for GHP,. Thus, T, and GHP, are slightly
conservative. However, the power estimates in Table 2 are indicative of those
to be obtained in practice if the asymptotic critical values are used.

Looking at Table 2, first note that GHP, generally dominates both our tests
(except when p < 0.5, where T, seems to dominate). This is generally to be
expected since our tests do not use information about ¢* required by GHP,.
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(GHP, dominates GHP, presumably because GHP,, with asymptotic critical
values, is conservative.) When p = F(¢*) < 0.75, T, dominates T; and com-
pares well with GHP’s tests. For p in the neighborhood of 0.90, T; apparently
dominates T, but both are consjderably dominated by GHP,. Of course, all of
these comments strictly apply only to the parametric family ..

Another feature of Table 2 is that, for fixed y, the powers of all the tests
decrease rapidly as « decreases. It is difficult, however, to tell whether this
decrease is related to the corresponding increase in t* or to the changes in
slope, shape and so on which occur when « decreases. Therefore, based on our
study of the family «, we cannot definitely say that the powers of these tests
will decrease as t* increases in general nonparametric IDMRL families, al-
though this behavior in -, is suggested by our results.

To gain some insight into why the natural T, is dominated by the less
intuitive T,, a referee suggested that we consider the nonnull distributions of
these statistics by computing standardized noncentrality parameters. This is
possible for T, (similar things are true for T',) since one may write, for any
Fe - &,

(31)  nY24A(F,) = n*HyP(F,) - 4@(F)} + /24O (F),

with the first term in (3.1) weakly converging (via the same proof as in Section
4) to a mean-zero Gaussian process 22(F) = {22( p; F): 0 <p <1} [with a
covariance structure different from that of Z} in Theorem 2(ii)] and the
second term nonzero (but of course unbounded as n — ). Insofar as the
supremum of the left side of (3.1) may be roughly approximated by that of
the second term on the right side, the noncentrality ¢/®(F), suitably standard-
ized, might explain the power properties of T, to some extent.

At the referee’s suggestion, we compare the standardized noncentralities [in
the notation implied by (3.1)] y(F) £ yX(F)/ \/var(Z-i( F(t*);F)),i=1,2
for F=F, ; ., € &,. The comparison is made at the change point ¢* since the
supremum in each of the functionals ¢, and ¢, is attained at ¢*. [For T, this
is true only if ¢* < F~1(1 — ¢).] Since the variance expressions are extremely
complicated for Z,, the details are omitted here but are available from the first
author, who has written a FORTRAN program to compute “(F) for any
Fe #

The results of such computations appear in Table 3 for the same choices of
(a, B, y) as in Table 2. [In Table 3, the column headed S.D. gives the standard
deviation in the denominator of ®(F).] Generally the values of ¢® and ¢®
corroborate the power results in Table 2. However, the severe domination of
T, by T, for « = 2 does not seem to be reflected by the noncentralities, nor
does the apparent domination of T, by T, for p near 0.90 (« = 0.25 in Table
3). The general (though apparently nonuniform) domination of 7, by T,
seems, from Table 3, to derive from fact that the standard deviation of
Z (F(t%), F) increases faster relative to the value of ¢’(F') then occurs for the
corresponding quantities for T,. Of course, all of these comments are subject
to the rather crude approximation being used here.
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TaBLE 3
Standardized noncentralities for alternative F, ; ,,

Functional ¢, Functional ¢,
« Y Aty SD, . v P SD, @
2.0 0.5 0.125 0.790 0.158 0.114 0.593 0.193
1.0 0.250 0.926 0.270 0.211 0.600 0.352
2.0 0.500 1.172 0.427 0.365 0.618 0.591
1.0 0.5 0.125 1.144 0.109 0.087 0.588 0.147
1.0 0.250 1.286 0.194 0.161 0.598 0.269
2.0 0.500 1.560 0.321 0.283 0.636 0.445
0.5 0.5 0.125 1.901 0.066 0.063 0.585 0.108
1.0 0.250 2.072 0.121 0.120 0.599 0.210
2.0 0.500 2414 0.207 0.214 0.644 0.332
0.25 0.5 0.125 4.062 0.031 0.043 0.592 0.072
1.0 0.250 4.263 0.059 0.082 0.612 0.133

2.0 0.500 4.689 0.107 0.151 0.666 0.226

4. Proof of Theorem 2. The method of proof is the same for both (i) and
(ii). For brevity, only the proof of (ii) is given here. [The proof of (i) may be
found in the technical report by Hawkins, Kochar and Loader (1991).] Letting
¥(F) denote either ¢{"(F) or ¢*(F), define the Gateaux differential, for each
t> 0, by

$(F +e(G-F)) —§(F)

€

(4.1) Dy,(F)(G -~ F) £ lim

for each F,G € % for which the limit exists. We shall use a statistical
differential approximation to show, for F € % and ¢ > 0, that

(4.2) ¥(F,) = ¢(F) = Dy,(F)(F, - F) + R (F,¢),
where R, (F,t?) is a remainder term satisfying

(4.3) n'’?sup| R, (F,t)| -, 0.
£20

This implies that the asymptotic distribution of n'/? times the left side of (4.2)
is the same as that of n!/? times the first term on the right side, which can be
obtained by standard methods since it is a linear functional of F, — F. We use
the notion of functional differentiation only formally to suggest the approxima-
tion (4.2) to ¢,(F,). The usefulness of the approximation (4.2) derives from
(4.3), which can be shown by standard methods without functional analysis. In
what follows, we have written m (F) rather than mg(t) to emphasize our
present view of the MRL as a functional of F for fixed ¢. This should cause no
confusion.
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Proor or THEOREM 2(ii). We require the following result, proved at the
end of the section.

Lemva.  IfF € F, then [5|F(x) — F(x)ldx >, 0 as n — w.
By straightforward calculation, for F € % we have the Gateaux differential

DYP(F)(F, = F) = [(F,~F) +4['F(F-F,) - [ "F(F - F)
0 t
(4.4) . .
- 2F(t) [ (F, - F) + 2{F(¢) - Fn}[ F,

whence
R(F,t) £ yP(F,) — ¢P(F) — DY@ (F)(F, - F)
(4.5)

oo

—zjo‘(ﬁ,, ~F) + z/t“’(ﬁn ~F) + 2(F(t) - Fn(t)}ft (F, - F).

Thus, for any ¢ > 0 and F € &,

n'| RO(F, )] < 4n'/2 [*(F, - F)* + 2012\ F(1) - Fy(0)| [ F, - P|
(4.6) ’ } °
< 6n'/2 sup| F(s) — F(s)| [ |F, - F| = 0,(1)
§>0 0

by the lemma and the classical weak convergence of the empirical process.
Now define for each n > 1 and F € & the stochastic process Z(F)=
{Z,(p; F):0<p <1}by

Z,(p; F) =n'"Dy@\(F)(F, - F),  t(p) =F(p).

Observe that Z,(F) € D([0, 1)) for each n and that {#( p):0<p<1}=][0,)
since F € ¥ is continuous. By (4.5) and Theorem 1(Gii), we have for F € &
that

n G F) = Z(p; F) + n'2RO(F,t(p)), 0<p=<1,
so in view of (4.6) the result follows if we show that for F < &,
(4.7 X2 (F) -, Z, asn — o.
In this direction, we have by (4.4), for F € %,

e o]

12z (p;F) = [ (F, - F FPRF-F) - F(F-F
(;; ; Z,(p; F) fO(Fn F) +4j0 F(F-F,) 4/F_1(p) (F-F,)
8

-2(1 —p)[m (F. - F) + 2{F,(F(p)) _p}[;l(p)ﬁ.

F~Yp)
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Making the transformation u = F(x) and defining W,(u) = n'/¥F(F~Y(u)) —
u}, 0 < u < 1, we have, since (d/du)F~Y(u) = A1 — u) lfor Fe &,

AZ (p; F )——j 1"( )du+4jW(u)du—4[W(u)du

4.9
(4.9) Wi(w)

+2(1—p)j —du+2(1-p)W,(p), Feé.

Expression (4.7) follows from (4.9), the fact that X, —,, A~! and the fact that
the functional of W, in (4.9) converges weakly to the same functional of the
Brownian bridge process, whose distribution is that of Z,. O

PROOF OF THE LEMMA.

[ 1P (x) = Fiz) = [

Fi(x) - F(x)|dx + j: |0 - F(x)|dx

(4.10) < {supnl/zlfn(x) - F(x)|}{n‘l/2X(n)}+fm F(x) dx.

Since F(x) > 0 for all x > 0, X(ny =p ®, 80 the second term in (4. 10) is 0,(1).
For the first term in (4.10), the first factor is O,(1) by the classical weak
convergence of the empirical process. The second factor is 0,(1) since each
Fe % hasa ﬁmte second moment. O

REMARKs. A finite second moment is critical in the proof of this lemma
[and hence for Theorem 2(ii)]. To see this let Xl, .., X, have pdf f;(x) =
(6 + 1)x~27°I(x > 1), where 0 < 8 < 1. Then EX}+? < o, but nl\2X -,
as n — », However, EX? = . A finite second moment is also critical for
Theorem 2(i) since it is required by Yang’s (1978) Theorem 1 (used in the
proof not presented here). Of course, any F € & has a finite second moment.
However, the proofs of (2.3) and (2.4), which justify the proposed tests and
involve F € & — &, require finite second moments, explaining this specifica-
tion in our definition of #.
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