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OPTIMAL DESIGNS FOR A CLASS OF POLYNOMIALS
OF ODD OR EVEN DEGREE

By H. DETTE

Universitdt Gottingen

In the class of polynomials of odd (or even) degree up to the order
2r — 1 (2r) optimal designs are determined which minimize a product of
the variances of the estimates for the highest coefficients weighted with a
prior y = (y4,...,7,), where the numbers vy; correspond to the models of
degree 2j — 1 (2j) for j=1,...,r. For a special class of priors, optimal
designs of a very simple structure are calculated generalizing the D,-opti-
mal design for polynomial regression of degree 2r — 1 (2r). The support of
these designs splits up in three sets and the masses aof the optimal design at
the support points of every set are all equal.

The results are derived in a general context using the theory of canoni-
cal moments and continued fractions. Some applications are given to the
D-optimal design problem for polynomial regression with vanishing coeffi-
cients of odd (or even) powers.

1. Introduction. Consider a polynomial regression model of degree n € N
n .
gn(x) = Z an,ixt'
i=0

For each x € [—1, 1], a random variable Y(x) with mean g,(x) and variance
o2 > 0 can be observed. A design ¢ is a probability measure on [—1,1]. £ is
called an exact design consisting of N observations if ¢ puts only masses
£({x,}) at the points x;,i = 1,...,r, subject to the restriction that n; = N¢é({x,})
is an integer for all i =1,...,r. In this case the experimenter takes N
uncorrelated observations, n; at each x,, i =1,...,r, and the covariance
matrix of the least squares estimates for the unknown parameter vector
a™ = (a, ..., a,,) is given by (¢?/N)M, *({), where

(1.1) M (£) = f_ll(l,...,x")T(l,...,x") dé(x)

denotes the information matrix of the design ¢.

Almost all optimality criteria which can be used to discriminate between
competing designs depend on the information matrix M,(¢). In this paper we
consider some generalizations of the famous D- and D,-optimality criteria
which depend on the determinants det M,(¢), [ =1,...,n, and are given
below. The determinants det M,;(£) can be expressed in terms of the canonical

Received July 1990; revised May 1991.

AMS 1980 subject classifications. Primary 62K05; secondary 62J05.

Key words and phrases. Polynomial regression, D-optimal design, D;-optimal design, model
robust design, canonical moments, ultraspherical polynomials, Chebyshev polynomials.

238

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. MIKOIRE ®

WWWw.jstor.org



OPTIMAL DESIGNS FOR POLYNOMIALS 239

moments of the design ¢ and the optimal designs can be identified by its
canonical moments [see Studden (1980, 1982a, b, 1989), Lau (1983, 1988), Lau
and Studden (1985), Lim and Studden (1988) for more details]. In Section 2 we
give a short review of this theory and determine explicit representations of
designs corresponding to some special sequences of canonical moments.

In many practical experiments the form of the regression model (namely g,)
is not known by the experimenter. Classical optimal design theory is not
applicable because it is generally based on the assumption of a given model.
Léauter (1974) proposed a generalized D-optimality criterion under the as-
sumption that the (unknown) model belongs to a given set of regression
models and proved a Kiefer—-Wolfowitz-type equivalence theorem. The optimal
design with respect to Lauter’s criterion allows good estimates in every model
of the given set. A similar generalization of the integrated variance criterion
was considered by Cook and Nachtsheim (1982). It is the purpose of this paper
to determine explicit solutions of the design problem proposed by Lauter
(1974) in the case of polynomial regression which generalize some results
obtained by Dette (1990, 1991). To this end let

. ={gll=1,...,n}

denote the set of all polynomial regression models up to degree n € N. A
vector B = (By, ..., B,) of positive numbers with ©7_, 8, = 1 is called prior for
&,.. The quantity B, can be interpreted as a measure for the experimenter’s
belief about the adequacy of the model g;. For a given prior 8 we call a design
&5 optimal for the class &, with respect to the prior g if {; maximizes the
function

n
(1.2) Yp(€) = 121 T+ 1 log[det M,(¢)].
Dette (1990) determined the optimal design for .#, with respect to the prior 8
in terms of canonical moments and identified a class of priors depending on a
real parameter z € {0} U [1, ) which yields to optimal designs with a similar
structure as the classical D — (2= 1) and D; — (z = 0) optimal design for
polynomial regression of degree n € N. The support of the optimal design for
the class &, with respect to a prior B(2) is given by the zeros of an orthogonal
polynomial and all interior support points attain equal masses [see Hoel
(1958), Kiefer and Wolfowitz (1959) and Studden (1982b)].

Sometimes an experimenter has more information about the adequacy of
the models of #,. For example, it could be clear (from physical considerations)
that the degree of the polynomial model which has to be fitted is even (or odd)
and an upper bound say n = 2r (or n = 2r — 1) is given by the experimenter.
To get information about the exact degree, one could be interested in most
precise estimates of the highest coefficients @y, 5, (or @y, ; 9, ;) in the models
gy (or 8a +1). Because for a given design £, the variance of the estimate a,
for e, ; in the model g, is proportional to det M,_,(¢)/det M,(¢), a reasonable
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criterion to choose an experimental design is the maximization of

[ det M,,(¢) ]

(1.8) Z=: det My, _4(¢)

in the case of polynomial models of even degree and

[ det My,_(¢)

(14) z=: det My, _,(¢)

in the case of polynomial models of odd degree. We call a design £, D;-optimal
for the class of polynomials of even (or odd) degree with respect to the prior
y = (yp...,7) if £ maximizes the function defined in (1.3) [or (1.4)]. It is
easy to see that (1. 3) and (1.4) are obtained from the function ¥ 5(£) for the
priors

(1.5) B=(-2y,,3yy,..., —2ry,,(2r + 1)v,)
and
(16) B = (2717 _3721' LK) —(27’ - 1)‘)’,.,27")’,.),

respectively. In order to determine D;-optimal designs for the class of polyno-
mials of even (or odd) degree, we also allow negative weights B; in the
optimality criterion (1.2) subject to the restriction

17 nl+1-—1i 0 1

. > = R (N
( ) iz 1+ 1 Bl ’ i ’ n
which guarantees the existence of an optimal design for the class %, with
respect to the prior 8 supported by n + 1 points (see Proposition 2.2.).

In Section 3 we will identify a class of priors which yield to D;-optimal
designs for the class of polynomials of even (or odd) degree with a very simple
structure. For example, in the case of equal weights y, = 1/r the D;-optimal
design for the class of polynomials of odd degree [i.e., the design maximizing
(1.4)] puts equal masses at the zeros of the polynomial

(1 — 22)[CE/D(Ty(x)) + CE/P(Ty(x))].

Here C{*(x), a > —1/2, denotes the lth ultraspherical polynomial which is
the I/th orthogonal polynomial with respect to the measure (1 — x2)*~/2dx
and T)(x) denotes the /th Chebyshev polynomial of the first kind orthogonal
with respect to the measure (1 — x2)~1/2dx [see Szegé (1959), page 81 or
Abramowitz and Stegun (1964) for more details concerning these polynomials].
In Section 4 similar results are obtained for polynomials with vanishing
coefficients of the odd (or even) powers. Among other things it is shown that
the D-optimal design for the model h,(x) =X/ e, ;x* on the interval
[—1,1] puts equal masses 1/(2(r + 1)) at the zeros of the polynomial (1 —
xHCE/D(Ty(x)) and mass 1/(r + 1) at the point 0.



OPTIMAL DESIGNS FOR POLYNOMIALS 241

2. Canonical moments. In order to determine designs maximizing the
function ¥; in (1.2), a short description of the theory of canonical moments is
needed. More details and applications (in optimal design theory) can be found
in the papers of Skibinsky (1967, 1968, 1969, 1986), Studden (1980, 1982a,
1982b, 1989) and Lau (1983, 1988). For an arbitrary design ¢ on [—1,1] let
¢, = /L,x* d&(x) denotes the kth moment (k = 0,1,...). The canonical mo-

ments are defined as follows. For a given set of moments ¢y, ¢y, ..., c;_;, let ¢}
denote the maximum value of the ith moment over the set of measures having
the given set of moments cy,...,c;_; and let ¢; denote the corresponding
minimum value. The canonical moments are defined by
¢; — ¢ .
.= , = 1, 2, cee o
b; ¢ ;-_ ci_

Note that 0 < p, <1 and that the canonical moments are left undefined
whenever c¢;'=c;. If i is the first index for which equality holds, then
0<p,<1, k=1,...,i—2, and p,_; must have the value 0 or 1 [see
Skibinsky (1986)]. The determinants of the information matrices M,(¢) can
easily be expressed in terms of canonical moments [see Skibinsky (1968),
Studden (1982b, 1988)].

ProposITION 2.1. Letq;:==1—-p,;(j=1),{, =p,and {;=q;_p;,(j = 2),
then we have for the determinant of M,(¢) defined by (1.1),

i .
det M,(¢) = 2/ V[T (Ly;-18e5) '™, 1=10,1,...,n.
Jj=1

The maximization of ¥, can now be carried out in terms of canonical
moments. Straightforward algebra yields the following [see Dette (1990)].

ProposiTION 2.2. The optimal design &, for the class %, with respect to
the prior B is uniquely determined by the canonical moments

1
p2i_1(§B)=§, l=1,...,n,

(2.1) ()= —2  i-1,...n-1
p2t(§B) ‘7'i+0i+1, l ’ n ’

p2n(§ﬁ) = 1’

where the numbers o; are defined in (1.7).

The support of the design £, corresponding to the canonical moments (2.1)
is given by the zeros of the polynomial (1 — x2)@, _(x, &), where Q,(x, £,),
k=0,1,..., are the polynomials of degree ¥ orthogonal with respect to the
measure (1 — x2) dgﬁ(x) [see Studden (1982b)]l. A recursive relation of the
polynomials @,(x, £;) and a representation of the weights at the support
points using an equivalence theorem of Kiefer—Wolfowitz-type are given in
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Dette (1990). It seems to be intractable to give analytic expressions of the
weights and the polynomials @,(x, ;) for arbitrary sequences of canonical
moments defined by (2.1). Nevertheless, Dette (1990) showed that the design
corresponding to the sequence |,

i ) '=1’~'~’ ’
P21 2 l n
(2.2) z+n-—1
YY) =17 ) _17
Pa= ¥ on-i) "
p2n=1

for z € {0} U[1,»), is supported by the zeros of the polynomial (1 —
x2)C{21?/P(x) and the masses at all interior support points are equal 1/(n +
z) while the masses at the points —1 and 1 are given by (z + 1)/(2(n + 2)).
Here C{*(x), @ > —1/2, denotes the /th ultraspherical polynomial which is
the Ith orthogonal polynomial with respect to the measure (1 — x2)*~1/2 dx.
The canonical moments of (2.2) correspond to optimal designs for %, with
respect to special priors B(z), where z € {0} U [1,»). The cases z = 0 and
z = 1 give the canonical moments of the D,- and D-optimal design and were
solved earlier by Studden (1982b). In the case z = 2 the sequence (2.2)
corresponds to the optimal design for the class %, with respect to a prior
which puts equal weight on all the models of &%, [see Dette (1990)]. For
z = q € N the sequence (2.2) also appears in the determination of D-optimal
product designs for multivariate polynomial regression on the g-cube [see Lim
and Studden (1988)].

In the following we will give some generalizations of these results which can
be used to solve the design problems described in the introduction. To this end
let T,(x) denote the /th Chebyshev polynomial of the first kind and U,(x) the
{th Chebyshev polynomial of the second kind which are the orthogonal polyno-
mials with respect to the measures (1 — x2)~2/2dx and (1 — x%)!/2 dx, respec-
tively [see Szegd (1959) or Abramowitz and Stegun (1964)]. For k € N, r € N,
meN,=NU{0}, m <2k and z > —1, define the following sequences of
canonical moments:

r—j+z 1 1
p2kj—m_2(r_j)+z’ ]_ 7""r ’
(23) Popr-m = 1’
1
pi=3 otherwise (i < 2kr —m),
r—j
1 = . N > = 1" » ' = 1’
Porj-m 2(r—j) +2 J r
(24) Popr-m = 0’

1
D; = 3 otherwise (i < 2kr — m).

The following theorem gives the support of designs corresponding to sequences
of the form (2.3) or (2.4).
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THEOREM 2.3. Letk e N, reN, m e Ny, m <2kand z > —1.
(a) The design corresponding to the sequence of canonical moments given in
(2.3) is supported by the zeros of the polynomial

(1 = 2®)[Uy 1 () CETP/2(Ty (%)) + U, _o(2) CLEFP/ D (T ()]

ifm =2p (p € Ny, p < k) is an even number and supported by the zeros of the
polynomial

(1 = 2)[{Up_p(%) + Uy, _1(2)}JCET2/D(T(x))
+{U,-_1(x) + Up—2(x)}Cr('(—z;2)/2)(Tk(x))]

ifm=2p—1(peN,2p — 1< 2k) is odd.
(b) The design corresponding to the sequence of canonical moments given in
(2.4) is supported by the zeros of the polynomial :

Ty_p(2)CETP/P(Ty(2)) — T,(2)C52/2(T(x))
ifm = 2p (p € Ny, p < k) is even and supported by the zeros of the polynomial
1+ x)[{Uk~p(x) - Uk—p—l(x)}cr('(ffz)/z)(Tk(x))
—{U,_ (%) = U,_5(2)}CE52/2(Ty(2))]
ifm=2p—1(peN,2p —1<2k)isodd.
To prove Theorem 2.3, we need some results concerning the theory of
continued fractions [see Perron (1954) or Wall (1948)]. To this end let
a,l a,l al
— + — + —_— + ...
b, 16y 1bs

denote a continued fraction and its nth convergent by (A_; =B_; = 0,4, =
by, Bo=1)

a,l  ayl a,l A
_1_.+_2.+ e + n n_
|b]_ |b2 |bn Bn

It is known [see Perron (1952), page 4] that the numerator A, and denomina-
tor B, of the nth convergent are given by the determinants

b, -1
=Kl g, b, | = det ’
-1
an bn
b, -1
B ~ K a2 an ~ d a2 b2 _1
n= b]_ bn = det
-1
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In the proof of Theorem 2.3, continued fractions are involved which are of the
following form:

fol al al fal fol al al
Ll(x):=_+_+...+_+_1+_2 —_— e —
| lx ¢ | | | | |
S — e
(2.5) 1-2 k-2
fsl for_ol  al al
+_3_+...+ 2r-2 +_+...+_,
| o |2 |
- 7
k—2

and we have to find a suitable representation of the denominator of (2.5). By a
contraction of (2.5) in the way that the convergents of the transformed
continued fraction attain the values

Al—l Ak+l—1 A2k+l—1
b b 9.
Bl—l Bk+l—1 B2k+l—l

successively [see Perron (1954), pages 11-12], the following result can be
obtained by straightforward algebra.

LEmMMA 2.4. Let D_(x) =0, Dy(x) =1 and
-1

D(x) =k(, o).

For the continued fraction in (2.5) the representation L,(x) = M,(x)/N,(x)
holds, where

(~1*"1fyf3a* 72D, _y(x)
N, =K
1®) (D,_l(x)[ka_l(x) + feDy_o(x)] + f1D;_5(x) D), _y(x)
(2.6)
(—1)* 1 f, fsak 2 (—1)* o4 for_gak 2 )
xDy_1(%) + (fa+ f)Dp_o(x) -+ xDp_y(x) + (for—2 + far_2) Dp_2(%)
and
. Dia(%) Cqvi-1i-2p ¢ Droa(®)
M;(x) —fO—D_,__l(_x)Nl(x) +(=1)""a" "o f1 D, (%)
2.7 ‘
(27 ( (—1)* 1 f, fsak 2 (1) oy far_gat? )
xDy_1(%) + (f3 + f)Dp_o(x) -+ xDp_1(x) + (far_3 + far_2)Dp_2(%)

We are now able to give the proof of Theorem 2.3.

Proor oF THEOREM 2.3. Consider the case (b) and even m = 2p. The other
cases are treated similarly. Let G(x) denote the Stieltjes transform of the
measure correspondirg to the canonical moments in (2.4). It is known [see
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Wall (1948) or Perron (1954)] that G(x) has a continued fraction expansion of
the form
dé(t 1 44,4l
G(x) _ /'1 gf ) _ + _ _41{2
—1x—t  |x+1224  lx+1-2(L+ )

(2.8)
4§2kr—21.7—34‘;212,7'—2;;—2I

e +1— 2({2kr—2p—2 + dobr-2p-1) ’

where the number ¢ ; are defined in Proposition 2.1. Assume p <k — 1 and
k > 1(thecase p = £ — 1and %k = 1 are treated similarly), from (2.4) we have

49;_169; = —, otherwise (i < kr — p).

From (2.8) it follows that the design ¢ corresponding to the canonical mo-
ments in (2.4) is supported by the zeros of the denominator of G(x) which is
given by the polynomial (a = —1/4):

1 1
4{1{2=§, {2j+{2j+1=§’ i=1...,kr—p—-1,
1 r—j )
4lonj—2p-182mj-2p = 230 =)) +z = —fyi_1, J=1,...,r—1,
2.
(2.9) 1 r—j+z )
4ohj-2p+182kj-2p+2 = 22—y +z =foyy  J=1,...,r—1,
1
4

k—p-2 k-2 k-2
Q(x,¢) =xK| @~ afifsa afsfsa - afy,_3fer2a - a
x x x
1 k—p-—-2 k-2 k-2
_EK a--afifsa - afsfua afy_sfe_pa @

X X

1
= ka—p(x) - EQk—p—l(x)‘

The polynomials @,(x) are the polynomials in the denominator of the contin-
ued fraction given in (2.5) and we can apply Lemma 2.4. To this end, let
Fé(z+2)/2)(x) = 1’ Fl((z+2)/2)(x) = x and

Fl((z+2)/2)(x)

(2.10) B (-1 +2) B (I-2)(l+z-1) L 1

=K (z+20-2)(z+2l) (z2+20-4)(z+20-2) z+4
It can be shown that the polynomials F/**2/2(x) are proportional to the
ultraspherical polynomials C{**?/?(x) [see Abramowitz and Stegun (1964)],
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that is,
2L+ (z+2)/2) |
T+ NI((z +2)/2)

Moreover we have from (2.9) for the polynomials D,(x) defined by Lemma 2.4
[see Abramowitz and Stegun (1964), formula 22.5.7]

(2.11) F'l((’+2)/2)(x) = Cl((z+2)/2)(x).

ST 1
(2.12) Dl(x)=K(x ¢ T x)=§Ul(x),

1 1 k—1
Dy ()~ 3Pacsl®) = 5] [$Vhs®) =~ Vpoal®)]

(1) nee

Observing (2.9), (2.10), (2.12) and (2.13), the polynomials N,(x) in Lemma 2.4
can be calculated as follows (! =k —p,l =k —p — 1)

1 (r—1Xk-1)+U-1)
N - (3)

(2.13)

r—1+z r—2
X_
2+2r—2z+ 2r —

U2 B2/ 2(Ty(0))

r—1+z
o e 0, +()
~1
2 -l—r2r -2 U,_2(x)Uk_1(x)}Fr«_z;2)/2)(Tk(x))]

1 (r—=1k-1+U-1)
- (5] [0 @RS @)

r—1
ORI,
where the last row results from (2.13), a recursive relation of the polynomials
F{=+2/2)(x) and the fact
(2.14) U,_y(2)U,_a(x) — Up_ap(2)Up—o(%) = Up-1-1(%)

[see Abramowitz and Stegun (1964), page 782]. Using similar arguments (2.9),
(2.10), (2.12), (2.13), (2.14) and the representation of Ny(x) it can be shown
that the function M,(x) defined by (2.7) is a polynomial, that is, (f, = 1)

1 )(r—l)(k—l)+(l—2)[

M -3 Up_o(2) B/ (Ty(x)

(2.15)

- (2+2)/2)
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Because the polynomial @,(x) is the denominator of the continued fraction
(2.5), we obtain from Lemma 2.4, (2.14) and (2.15) that the design ¢ corre-
sponding to the canonical moments in (2.4) is supported by zeros of the
polynomial .

1 1
Q(x’ é:) =ka—p(x) - EQk—p—I(x) =xNk~p(x) - ENk—p—I(x)

1 (k—Dr-p
- (5) [{"Uk—p—1<x> — Uy o)) FCT /(T (x))
r—1
oo =3 B i(®) = Up o) ES2/A(Ty(2)) .

From (2.11) and (2.13), we have
T(r)T((z +2)/2) ( 1 )”’-P-I
I'(r+(2/2)) 2
X{T_p(2)CETP/P(Ty (%)) — T,(x)CLE32/2(T())}

which proves the assertion of the theorem. O

Q(x,§) =

The weights at the support points x; of the design corresponding to the
sequences of canonical moments (2.3) and (2.4) can be calculated using a
partial fraction expansion of the Stieltjes transform G(x). For the sequence
(2.4), the denominator of the Stieltjes transform (2.8) is given by the polyno-
mial N, _,(x) and this yields

Nk—p(xj)
f({xj}) G(x)(x xj)|x=xj (d/dx)Q(x,§)|x=xJ

IOy, ()OI () + U, _y(5)CET (T, ()
©(d/dx)[ Ty p (%) CEFD/D(Ty(x)) — Tp(x)CE3 D/ D(Ty(x))]].o,

The expression (2.16) can be reduced essentially in the cases m = 0 and
m = k. For example, in the case k2 = 2p = m, the denominator of (2.16) is

given by [note (d/dx)C{*N(x) = 2aC{* (%))

%Q(x,«f) = %[Tp(x){cﬁ(ff D/2(Ty,(x)) — CE32/2(Ty,(x)))]
(2.17) = pU,_y(2){CCTP/D(Ty,(x)) — CE32/D(Tyy(x))}
+2p(2z + 2)T, (%) Uy, ()
X {CL239/D(Ty,(x)) — CE34/D(Ty, ()}

From Theorem 2.3, the support points x. are given by the zeros of the
polynomial Q(x, £) = T, (xNC 12/ (T, (x)) — CL32/ (T, (). If Ty(x;) =
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0, it follows that T,,(x;) = —1 and we obtain from (2.16) and C{**?/2(-1) =
(=D"I'(n +z + 2)/(T'(n + DI'(z + 2)) [see Abramowitz and Stegun (1964),
page 777] by straightforward algebra that

cz+1 .
é({x}) = sz () =0

Now consider the case C{*1?/2(T, (x,)) = C{*32/?(T,,(x,)). Observing for-
mula 22.7.21 in Abramowitz and Stegun (1964), the recurrence rela-
tion of the ultraspherical polynomials and the equation T,(x)U,,_(x) —
U,_{x)Ty,(x) = U,_y(x) it follows from (2.17) and straightforward calcula-
tions that

d
2. 2%, €)
_ 2pr(xj)U2p—l(xj)
1- T3 (x;)
X[(2 + r)CLe3»/D(Ty,(2;)) = (r = 1) Tap(x,) CET2/P(Top(x;))
—(z2 + 1= 1)CEFVD(Ty,(x;)) + (r — 2)Tpp(x,)CEF2/D(Ty,(x;))]
= 2PUp—1(xj)[(" - 1)Cr«—zf2)/2)(T2p(xj)) +(z+ ")Cf(—zgz)/z)(sz(xj))]
= 2pU,_(x;)CE32/2(Ty,(x;))[2 + 2r — 1].
From (2.16), we have (k = 2p):

€(e)) = Sy O (Tap(x))) - CFE3 2 (Tap(x))) = 0.

In other cases a similar reasoning holds. The results are stated in the following
theorems [we have proved Theorem 2.6(b1) here].

THEOREM 2.5. Letm = 0 and k,r € N.
(a) The design ¢ corresponding to the canonical moments given in (2.3) is
supported by the zeros of the polynomial

(1 = 2®)U,_ (%) CEP/P(Ty (%))
and the weights at the support points are given by
1
k(z+r)’
z+1 1
£({x}) = 2 k(z+r)’

i CETP(Ty(x)) = 0,

(z + 1) if Uy,_y(,) = 0.

k(z+r)’
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(b) The design ¢ corresponding to the canonical moments given in (2.4) is
supported by the zeros of the polynomial

r
Ty(x)CET/A(Ty(x)) — CIC32/D(Ty(x)) = ;Cﬁzﬂ)(Tk(x))
and puts equal masses at all support points.

THEOREM 2.6. Let m = k and k,r € N.
(al) In the case of even k = 2p, the design corresponding to the canonical
moments given in (2.3) is supported by the zeros of the polynomial

(1 = 2T, ((2){CEHP/D(Typ(2)) + C&5 2P (T, ()
and the weights at the support points are

1 .
P e 1)’ FOR A Tapl1))
+CEED/D(T, (%)) = 0,

E({x;})={2+1 1
2 p(z+2r-1)’

(z + 1) ifU,_i(x;) = 0.

p(z +2r-1)°

(a2) In the case of odd k = 2p — 1, the design corresponding to the canoni-
cal moments given in (2.3) is supported by the zeros of the polynomial

1- x)[Up—l(x) + Up—2(x)] [Cf(—zfz)ﬂ)(sz—l(x)) + 05(352)/2)(712;;—1(35))]
and the weights at the support points are

2

i C(z+2)/2) .
(Z + 2r — 1)(2p _ 1) ’ "fCr—l (T2p—1(xj))

+C3/D(Ty,_((x;)) =0,
£(x}) = z+1 Sy
z+ror—Dep-1n’ 1u=L
2(z+1)
(z+2r-1)(2p-1)°

ifU,_4(x;) + U,_o(x;) = 0.

(bl) In the case of even k = 2p, the design corresponding to the canonical
moments given in (2.4) is supported by the zeros of the polynomial

T, (2)[CLT2/2(Tap (%)) — L3/ (Top(x))]



250 H. DETTE

and the weights at the support points are

z+1 o 0
p(z+2r-1)° lf‘ »(%) =0,
perarony O (Ta(x) = CIEF/2(Top(x)) = 0.

(b2) In the case of odd k = 2p — 1, the design corresponding to the canoni-
cal moments given in (2.4) is supported by the zeros of the polynomial

(1 +2)[Up_s(x) = U, o(0)][CET/2(Ty, _o(x)) = CE5P/D(Ty,—o(%))]
and the weights at the support points are

2

if C(z+2)/2) .
(Z + 9r — 1)(2p _ 1) ’ LfCr—l (T2p—1(xj))

_Cf(—zgz)/z)(sz—l(xj)) =0,
£({x;}) = z+1 e
Grar—DaEp-1 1%L
2(z+1)
(z+2r-1)(2p-1)’

ifU,_y(x;) — U,_o(x;) = 0.

Theorem 2.5 and 2.6 can roughly be summarized in the following way. The
support of a design ¢ corresponding to the sequences (2.3) and (2.4) in the case
m = 0 and m = k splits up in three different sets A,, Ay, A;. The first set A,
is the set of the zeros of a polynomial in T,(x). A, is the set of the zeros of a
linear combination of Chebyshev polynomials of the first or second kind (note
that A, can be empty) and A, is a subset of the boundary {—1, 1} (A, can be
empty). The design ¢ puts equal masses at all support points of A;. If there
are any support points in A, and A, their masses are z + 1 times and
(z + 1)/2 times bigger than the masses of the points in A;.

3. Optimal designs for the class of polynomials of odd or even
degree. Using the results of Section 2, it is possible to identify the optimal
design for the class %,, with respect to special priors [i.e., the design which
maximizes Wz(¢)]. To this end, let 2> —1, k €N, r € N and define g =

By, ..., B, by
o r'(r'(z +r —j)
Bri(2) = ~Re T TG A )
(3.1) i I(r)I'(z+r-j) .
Bri(2) : (kJ+1)zF(r—j+1)F(z+r)’ j=1,...,r,

Bi(z) =0 ifie{kji—1klj=1,...,r}, 1<i<kr
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if 2 > 2 and let

oy B r(r)f(z+r—-j-1)
(3.2) Bi(2) =+ D2 = DF D r - (r+ 22— 1)

j=1,...,r,

in the case k = 1. Straightforward calculations show ):j’; 1Bj(2) = 1 [see Dette
(1990), Lemma 4.1]. The canonical moments of the optimal design for the class
&,, with respect to an arbitrary prior B are given in Proposition 2.2.
Observing the equation

FT(g+l+1—i)T(r+z-1-1) T(g+1) T(z-1)
Tl+1-i) TI(r+1-1) T(z+q) T(r+1-4)

I=i
XI(r+z+q—1i)

[see Dette (1990), Lemma 4.1}, it is easy to show that the canonical moments of
the optimal design for the class %,, with respect to the prior B(2) are given in
(2.3). By an application of Theorem 2.5(a), we have proved:

THEOREM 3.1. The optimal design &g ,, for the class %, with respect to
the prior B(z) given in (8.1) and (3.2) is supported by the zeros of the
polynomial

(1- x2)Uk_1(x)C£(ff2)/2)(Tk(x)).

The weights of the support points are given by

1
e+r)’ if CYe12/P(Ty(x)) = 0,
z+1 1 . _
fﬂ({x}) = Tm, ifx=+F1,
1
(z + 1)m, if Up_y(x) = 0.

Note that the case £ = 1, z € {0} U [1,») was already considered by Dette
(1990). We have now proved that his results hold for all z > —1. Theorem 3.1
has only practical interest in the case k = 1 because the priors B; should
reflect the experimenters belief about the adequacy of the models g; € %,.
Nevertheless it is an important tool to determine D,-optimal designs for the
class of polynomials of even degree with respect to special priors y;(2),



252 H. DETTE

THEOREM 3.2. Letz > —1 and
F(r)T(r—j+2)
e = Ty DTG v )
The D -optimal design for the class of polynomials of even degree (up to the

order 2r) with respect to the prior y(z) == (y(2),...,7,(2)) li.e., the design
which maximizes (1.3)] is supported by the zeros of the polynomial

(1 — x?)xCEF2/D(2x2 - 1)

and the masses at the support points are given by

Jj=1,...,r.

_2—(;—'1'—7‘—)" ifC,«_’fz)/z)(2x2 - 1) = O,
z+1
£o({x)) = Gz’ ifx=+1,
z+1 .
m, zfx = 0.

If z = 0, it can be shown by simple calculations that the corresponding prior
is given by y(0) = (0,...,0,1). Thus Theorem 3.2 gives the solution of the
usual D,-optimality criterion for polynomial regression of degree 2r [see
Kiefer and Wolfowitz (1959)]. For z = 1 the prior y(1) puts equal weight 1/r
on all the polynomial models of even degree lower than 2r. This design could
be used if it is assumed that the unknown regression model is a polynomial of
even degree up to the order 2r. For z = 2, the corresponding prior is given by

7(2) = m(r,r— 1,...,2,1),

while for z = 3 it is

v(3) FCA D+ D) (r(r+1),(r-1)r,...,6,2).

If z is increasing the prior y(z) puts less weight at the models of higher degree
[note that lim, ., y(z) = (1,0,...,0)]. Therefore the experimenter could use
priors y(2) for increasing z if he wants to fit a quadratic polynomial with some
protection against polynomials of higher (even) degree. Note that a similar
reasoning holds also for the priors considered in Theorem 3.1. Especially the
cage z = 0 gives the D;-optimal design for polynomial regression of kr while
the prior B(1) could be used if polynomials of degree %, 2%k, ..., rk are consid-
ered and no model is preferred. Examples for the applications of the theorems
are given in Section 5.
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The following theorem states an analogous result for polynomials of odd
degree up to the order 2r — 1. The proof follows directly from Proposition 2.2
and Theorem 2.6 and is omitted.

THEOREM 3.3. Letz > —1 and
I(r)I'(r—j+2)
(&) = T DTG v )
The D,-optimal design for the class of polynomials of odd degree (up to the

order 2r — 1) with respect to the prior y(2) = (y,(2),...,v,(2)) [i.e., the design
which maximizes (1.4)] is supported by the zeros of the polynomial

(1 - 2*)[CerP/2(22% - 1) + C232/P(22% - 1)]

and the masses at the support points are given by

j=1,...,r.

1
z+or-1’ if C{1?/2(2x% - 1)
Eo{x}) = +CCFD/D(242 — 1) = 0,
z+1 1 ) -1
5 zrar—1 Yr-FL

ExampLES. (i) Suppose r = 3 and z = 1. The D,-optimal design for the
linear, cubic and polynomial of fifth degree with respect to the prior y(1) =
(1/8,1/3,1/3) is supported by the points

. \/4+\/§ 4-6 \/4—\/5 \/4+\/§1
’ 10 10 10 ° 10 °

and the weights at all support points are equal.

(ii) Let =3 and z = 6, the corresponding prior is given by 7y(6) =
(8/4,3/14,1/28) and puts the most weight on the linear model. The D,-opti-
mal design for the polynomial of odd degree up to the order 5 is supported by
the points

. [9+ V11 \/9—\/H ‘/9—fﬁ \/9+¢Hl
a 20 20 20 20

and the masses at the support points are proportional 7:2:2:2:2:7.

4. Optimal design for polynomials with vanishing coefficients. Let
hofx) = Ti_oa, ;2% and hy ((x) = Ti_,8, ;x* " denote a polyromial with
vanishing coefficients of the odd and even powers, respectively. All models up
to degree 2r or 2r — 1 are collected in the sets

' FE = (hy(2)l=1,...,7},

FV={hy (2|l =1,...,1}.
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The information matrices of a design ¢ for the models h,,(x) and hy,_,(x) are
given by

Qco Co Co;
. (&) Cy Cor+2
MZI(g) = : : . . ’
Co; Coitg Cy
Cqy Cy Cay
v Cy Ce Cor+2
M2l—1(§) = : : - : ’
Coyp Coiva "7 Cy—2

where ¢; = [1,x/ d&(x) are the ordinary moments of £ In order to find
optimal des1gns for the class #F (and #VY) [ie., designs which maximize
Tr_wv/(+ Ddet ME(¢) for a given prior y = (y4,...,7,)], we have to find
representations of the determinants MZ(¢) [and MY _,(¢)] in terms of the
canonical moments of £. A result similar to that given in Proposition 2.1 can
be obtained for symmetric designs on [—1, 1].

LEMMA 4.1. Let £ denote a symmetric design on [—1, 1] with canonical
moments p, py... and {; = q,_1p; (qo = 1), then the following representa-
tions hold:

l+1—j

det le(f) = 22’““’1_1 (541 384 —284j— 1541)

-1 .
det MJ_,(¢) = 2212(5152)1}:[1(§4j—1§4j§4j+1§4j+2)l_j~

Proor. The polynomials orthogonal with respect to the measure dé&(x)
satisfy the recursive relation [see Studden (1982b)] Py(x) = 1, Pi(x) = x,

Ppoy(x) = (x+1=2(Ly + §ae1)) Pr(x) + 405 1La1 P o(%)
=xP)(x) — qg_sPs P y(%),
where the last equation follows from the symmetry of ¢ which implies that all

canonical moments of odd order are 1/2. The L,-norm of P,(x) with respect
to d£(x) is given by [see Lau (1983) or Studden (1989)]

(4.1) f_llpzz(x) dé(x) = 221{152 N CYRPTER
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Because of the symmetry of ¢ P,(x) is a polynomial in x2. This yields
1, x%..., 2207 = A(Py(x), Py(x), ..., Py(x))T, where A is an upper triangu-
lar matrix with elements in the diagonal equal 1. From (4.1) it follows that

l+1—j

det Mzbz(f) Hf sz(x) dg(x) _221(”1)1—[((41 3(4, 284j— 1541)

The representation of the determinant MJ]_(¢) is derived in the same way.

Note that the symmetry of the design ¢ is an essential assumption of
Lemma 4.1. For example, the determinant of M () of an arbitrary design n
on [—1, 1] is given by

det MU(n) =cy =44y(& + &) — 44 + 1

and this expression corresponds only for a symmetric design (£, = 1/2) with
the result of Lemma 4.1. Because the underlying interval is [—1, 1] and the
functions

DE(£) = Z

757 losldet ME ()]
=1

and

r

dYU(§) = Z‘, l;-log[det Mg _y(¢)]

are concave for nonnegative priors y,, we may assume that there exist sym-
metric optimal designs for the classes #F and %Y. By straightforward
algebra we obtain from Lemma 4.1 and Theorem 2.5:

THEOREM 4.2. The canonical moments of the optimal design on [—1,1] for
the class FF with respect to a nonnegative prior (y,,...,7,) li.e., the design
which maximizes ®7(£)] are given by

E
g
p4i=——E+;0——, i=1,...,r—1, Py =1, pj=—2-otherwzse,

where the numbers o;F are defined by ;¥ = L7_((I + 1 —1)/( + 1)y;. The
canonical moments of the symmetric D-optzmal design (on [—1,1]) for the
class FU with respect to the nonnegative prior (yy,...,7,) li.e., the design
which maximizes ®Y(£)] are given by

0'~U

1
: i=1,...,r—1, DPar_g =1, pj = 3 otherwise,

Pgs-2= —o . U >
o+ o

where the numbers oV are defined by oV = L]_(1 + 1 —i)/Dy,.
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THEOREM 4.3. The D-optimal design (on [—1,1]) for the polynomial
ho(x) = 7_oa,x% is supported by the zeros of the polynomial

x(1 - x2)CE/D(222 — 1)

The symmetric D-optimal design (on [—1,1]) for the polynomial h,,_(x) =
Tr_.8,x%"1 is supported by the zeros of the polynomial

(1 — x?)[CE/P(2x% - 1) + C&/P(2x% — 1)]
and puts equal masses at all support points.

The optimal designs for the classes %% and %V can be transformed to
other intervals of the form [—a, a] (a > 0) [see Fedorov (1972), page 80]. A
transformation to arbitrary intervals is not possible in general. Note that
similar results caa be obtained for priors y(z) defined in Theorem 3.2 which
are not given here.

5. Applications of the results. In this section we will apply the results
of Section 3 and 4 to derive optimal designs for certain situations in polyno-
mial regression. The procedure is as follows. The experimenter has to fix a
suitable class of models (e.g., polynomials of odd degree). A prior is put on
every model and the optimality criterion (1.2), (1.3) or (1.4) is used to deter-
mine designs for the discrimination between the competing models. We will
demonstrate this procedure in two examples.

ExamPLE 1 (Polynomial regression of degree 3 or 6). Assume that an
experimenter wants to fit a cubic polynomial having some protection against a
polynomial of degree 6. In this case we can use Theorem 3.1 (k= 3,r = 2)
with z = 1 and obtain that the optimal design for the cubic polynomial and the
polynomial of degree 6 is supported at the points

/3 1 1 3
_1’_ Z’_E’O’Ey Z’]-

with masses proportional to 1:1:2:1:2:1:1. It may be of some interest to
calculate the efficiency of this design for the two models. The usual D-
efficiency for the polynomial of degree % is defined by

det Mk(f) 1/(k+1)
ko sup, det M,(n)

(Note that the designs are constructed to select an adequate model in a given
class of models but after the decision for one model all parameters of this
model have to be estimated. For this reason we use the D-efficiency criterion.)
From Proposition 2.1 we see that the above design has efficiency E; = 0.8445
for the cubic model and E; = 0.7375 for the model of degree 6. If the
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experimenter wants to increase the efficiency of the design for the cubic model,
he has to chose larger values for the parameter z. For example, for z = 7 the
optimal design is supported at the same points as in the case z = 1 with
masses proportional to 4:1:1:8:1:1:4. The efficiencies for this design are
given by E; = 0.9074 and E, = 0.6844.

ExampLE 2 (Polynomials of even degree up to the order 6). Assume that an
experimenter wants to fit one of the models

ay+ax +ayx?,  ay+ax+ayx?+agxd+anxt
ay+ax+ - +agx,

because he knows (for example, from physical considerations) that the degree
of the (unknown) model must be even. If he has no preference for any of the
models a suitable prior (to decide which of the models is adequate) would be
y(1) = (1/3,1/3,1/3) which corresponds to z = 1. From Theorem 3.2, we
now obtain that the D, optimal design for the three models is supported at the
seven points

. ‘/1+1/\/§ \/1—1/\/5 \/1—1/\/5 \/1+1/\/51
- - _—_2__1_ T101 9 ) 9 y Ly

2

with masses proportional to 1:1:1:2:1:1:1. The efficiencies of this design
for the different models are given by E, = 0.7969, E, = 0.8786 and Eg; =
0.9482, respectively. If the experimenter prefers the quadratic model and
wants to have some protection against the other models, a suitable choice
would be z = 3 which corresponds to the prior y(3) = (3/5,3,/10,1/10) and
yields to a design supported at the points

. \/1+1/ﬁ ‘/1—1/ﬁ 0\/1-1/\/7 ‘/1+1/ﬁ .
-4 = ——2_—1_ 9 y» YUy 9 ] 9 s 4y

with masses proportional to 2:1:1:4:1:1:2. The efficiencies of this design
are given by E, = 0.8485, E, = 0.8843 and Eg = 0.8280.

Note that an important advantage of the above designs is the simple form of
the weights which can easily be realized in practice (nearly without rounding
procedures). The results of Section 4 allow the determination of D- (D;-)
optimal designs for polynomials with vanishing coefficients of the powers of
odd (or even) order. These models are obtained from some symmetry assump-
tion of the experimenter on the underlying model.

. ExampLE 3 (Polynomials with vanishing coefficients). From Theorem 4.3
we have that the D-optimal design for the polynomial h,(x) =a,+ a,x®
(x € [-1,1)) is supported at the points —1,0,1 with masses proportional to
1:2:1 [note that this design is also the D,-optimal design for the polynomial
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8o(x) = ay + ayx + ayx?]. The D-optimal design for the model A (x) =a, +
a,x2 + a,x* puts masses proportional to 1:1:2:1:1 at the points

-1,-1/vY2,0,1/V2,1.

Theorem 4.3 also shows that the symmetric D-optimal design for the model
hy(x) = 8,x + 8,x° is supported at the points —1,1/v3,1/vV3,1 and all
masses at the support points are equal.

Acknowledgments. The author is grateful to an Associate Editor and
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