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NONPARAMETRIC FUNCTION ESTIMATION INVOLVING

TIME SERIES

By YounG K. TRUONG AND CHARLES J. STONE!

University of North Carolina, Chapel Hill, and University of
California, Berkeley

Consider a stationary time series (X,,Y;), ¢ = 0, + 1,..., with X, being
R%valued and Y, real-valued. The conditional mean function is given by
0(X,) = E(YylX,). Under appropriate regularity conditions, a local average
estimator of this function based on a finite realization (X,,Y,),...,X,,Y,)
can be chosen to achieve the optimal rate of convergence n~1/+9 hoth
pointwise and in L, norms restricted to a compact; and it can also be
chosen to achieve the optimal rate of convergence (n~!log(n))'/@*® in
L., norm restricted to a compact. Similar results hold for local median
estimators of the conditional median function, which is given by 6(X,) =
med(Yole).

1. Statement of results. Let (X,,Y,), ¢ =0, + 1,..., denote a (strictly)
stationary time series with X, being R%valued and Y, being real-valued. Let
6(-) denote either the conditional mean (regression function) on R¢, which is
given by 8(X,) = E(Y,X,), or the conditional median function on R¢, which is
given by 0(X,) = med(Y,|X,). Here E(Y,|X,) and med(Y,|X,) denote the
' mean and median, respectively, of the conditional distribution of Y, given X,.

ExamPLE 1 (Univariate time-series). Let X,,t=0,+ 1, + 2,..., be a real-
valued stationary time series, let d be a positive integer and let m be an
integer. Set

X, = (X1 » Xppq) and Y, =X, 4.,

Then X,,Y)), ¢t =0, + 1,..., is a stationary time series,

and

E(YolX,) = E(XgimlX1s ..., Xg)

med(Yy|X,) = med(X,, .| X5, ..., X,)-

In the context of forecasting m units of time into the future, m is a positive

integer.

ExaMpLE 2 (Bivariate time-series). Let (X,,Z,), ¢t =0, + 1,..., be an R%
valued stationary time series, and let d be a positive integer and m a

Received September 1988; revised June 1990.

!Research partly supported by NSF Grant DMS-86-00409.

AMS 1980 subject classifications. Primary 62G05; secondary 62E20.

Key words and phrases. Stationarity, conditional mean function, local average, conditional
median function, local median, rate of convergence.

77

e]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

The Annals of Statistics. MIKOIRE ®
WWWw.jstor.org
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nonnegative integer. Set
X, =(X;11,---» Xs0q) and Y, =2, g0
Then (X,,Y), ¢ =0, £ 1,..., isa stationary time series,
E(Y,|X,) = E(ZyinlXy,. .., Xq)
and
med(Y0|X0) = med(zd+m'X1, vy Xd)'

ExampLE 3 (Bivariate time-series). Let (X,,Z,), ¢ =0, + 1,..., be an R
valued stationary time series, and let d, k¥ and m be positive integers such
that & < d. Set

X, = (X1 Xevwr Zihsrs- - Zevg) and Y, = Zirdgim-
Then (X,,Y,), t =0, + 1,..., is a stationary time series
E(Y0'XO) = E(Zd+m'X1’ ey Xk’ Zk+1, ey Zd)
and
med(YO|X0) = med(Zd+m|X1, ey Xk’ Zk+17 ey Zd)'

In this paper, we use local averages to estimate the conditional mean
function and local medians to estimate the conditional median function. These
estimators will be shown to possess optimal rates of convergence under various

conditions, which will now be listed.
Let U be a nonempty open subset of the origin of R?. The following
smoothness condition is imposed on the conditional mean function or the

conditional median function.

ConpiTioN 1. There is a positive constant M, such that
lo(x) — 8(x')| < Myllx — x'll forx,x" €U,

where ||x|| = (x2 + -+ +xD)V2 for x = (xy,...,x,) € R%

[Denote the conditional distribution function of Y, given X, = x by G(y|x)
and its density by g(y|x). Set 6(x) = med(Y,|X, = x) and let c,, ¢, and c; be
positive constants. Suppose g(ylx) > ¢, and |G(y|x) — G(ylx)| < cyllx — x|l
for |y — 8(x)| < c5 and x,x’ € U. Then Condition 1 holds for the conditional
median function 6(-).]

ConpiTION 2. The distribution of X, is absolutely continuous and its
density f(-) is bounded away from zero and infinity on U. That is, there is a
positive constant M, such that M;' <f(x) <M, forxe U.

ConpiTioN 8. For j > 1, the conditional distribution of X; given X, = x
has a density f;(-|x); there is a positive constant M, such that

M;' < f;(x'|x) <M, forx,x'€Uandj 2> 1.
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Each conclusion of Theorems 1-3 below i‘equires (i), (i) or (ii) of the
following condition.

ConpDITION 4. (i) There is a pogitive constant » > 2 such that

sup E(|Y, X, = x) <

xeU

(ii) There is a positive constant M; such that

(iii) The conditional distribution of Y, given X, = x is absolutely continu-
ous and its density g(y|x) is bounded away from zero and infinity over a
neighborhood of the median; that is, there are positive constants ¢, and M,
such that

M;'<g(ylx) <M,, ye(0(x)—¢0(x)+¢e) and xeU.

Let & and &* denote the o-fields generated, respectively, by (X;,Y;),
—wo <<t and (X;,Y;),t <i < . Given a positive integer %, set

a(k) = sup{|P(ANB) — P(A)P(B)|: A€ %, And B € F'**}.

The stationary sequence is said to be a-mixing or strongly mixing if a(k) — 0
as k — ». Each conclusion of Theorems 1-3 requires (i), (i) or (iii) of the
following condition. [Note that (i), (ii) and (iii) are increasingly strong forms of
a-mixing.]

ConbiTiON 5. () ;. ya(i) = O(N Y as N - .
() Z,, ya' " ®) =0(N"Das N - »(v>2).
(iii) a(N) = O(p") as N — = for some p with 0 <p < 1.

Given positive numbers a, and b,, n > 1, let a,, ~ b, mean that a,/b, is
bounded away from zero and infinity. Given random variables V,,, n > 1, let
V., = Op(b,) mean that the random variables b,'V,, n > 1, are bounded in
probability; that is, that

lim lim supP(lV,, | >cb,) = 0.
Let §,, n > 1, be positive numbers that tend to zero as n — «. For x € R¢
and n > 1, set
I(x)={i:1<i<nand|X; -xl<85,}

and let N,(x) = #I,(x) denote the number of points in I,. Correspondingly,
the local average estimator of the conditional mean function is given by

0,(x) = Y Y, x € RY;
(X) I(x)
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the local median estimator of the conditional median function is given by
0(x) = med(Y;: x € I(x)), xR

Set r=1/(2 + d). The local, (pointwise) rate of convergence of 9n(-) is
given in the following result.

THEOREM 1. Suppose that 8, ~ n~" and that Conditions 1-3 hold. Sup-
pose also that Conditions 4(i) and 5(ii) hold for estimation of the conditional
mean and that Conditions 4(ii) and 5(1) hold for estimation of the conditional
median. Then

|8,(x) - 0(x)| = Op(n™"), xeU.

Let C be a fixed compact subset of U having a flonempty interior. Given a
real-valued function & on C, set

1/q
bl = {[1pl ax} ", 1sq<w and Il - suplh(x)l

xeC

The L, rate of convergence is given in the following result.

THEOREM 2. Suppose that 8, ~ n~" and that Conditions 1-3 and 5(iii)
hold. Suppose also that Condition 4(i) holds and q = 2 for estimation of the
conditional mean and that Condition 4(iii) holds for estimation of the condi-
tional median. Then

[6.0) —0()le = 0p(n™),  12g<w.
The L, rate of convergence is given in the following result.

THEOREM 3. Suppose that 8, ~ (n~!log n)" and that Conditions 1-3 and
5(iii) hold. Suppose also that Condition 4(ii) holds for estimation of the
conditional mean and that Condition 4(iii) holds for estimation of the condi-
tional median. Then there is a positive constant c such that

lim P([8,() = 0]l = c[n " 1og(n)] ") = 0.

The proofs of Theorems 1-3 for estimation of the conditional mean will be
given in Section 2 and the proofs for estimation of the conditional median will
be given in Section 3.

Under the iid assumption, asymptotic results for the conditional mean
function estimation were established by Stone (1977, 1980, 1982). Some of
these results have been extended by Bierens (1983), Collomb (1984), Doukhan
and Ghindes (1980), Robinson (1983) and Yakowitz (1985, 1987) to time series
under various mixing conditions. In particular, Collomb (1984) and Bierens
(1983) considered the uniform consistency for kernel estimators based on local
averages under the ¢-mixing condition, which is considerably stronger than
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the a-mixing condition adopted in this paper. Also, the approach taken by
Collomb (1984) is only valid for bounded time series. Doukhan and Ghindes
(1980) and Yakowitz (1985, 1987) obtained similar (pointwise) results in the
context of density estimation and prediction for Markov sequences satisfying
the G, condition, which is basically equivalent to the ¢-mixing condition.
Robinson (1983) established pointwise consistency and a central limit theorem
under the a-mixing condition. In this paper, we address the problem on rates
of convergence of local means under the (weaker) a-mixing condition. Note
that the boundedness condition [Condition 4(ii)] is not required by Theorem 1
or 2. An interesting open problem is to verify the L, rate of convergence in
Theorem 3 when Condition 4(ii) is replaced by a weaker condition such as the
following:

sup E(exp(t|Y,])) < for some ¢ > 0.
xeU

In the problem of conditional median function estimation for iid observa-
tions, a consistency result was obtained in Stone (1977). Rates of convergence
were considered by Hirdle and Luckhaus (1984) and Truong (1989). In
particular, the former considered the L, rate of convergence for a class of
robust nonparametric estimators, while the latter considered the problem of
L,, 1 < q < =, rates of convergence for the local medians. In this paper, the
above results are generalized to the estimation based on local medians involv-
ing dependent observations. Robust estimation was addressed by Collomb and
Hardle (1986) on uniform consistency under ¢-mixing and by Boente and
Fraiman (1989, 1990) under a-mixing conditions. The class of estimators
considered there did not include local medians. Robinson (1984) established a
central limit theorem for the local M-estimators under the a-mixing condition.

REMARK 1. Since a sequence of independent random variables is also a
stationary sequence, the rates of convergence established in Theorems 1-3 are
in fact optimal; see Stone (1980, 1982).

REMARK 2. With a simple modification of Condition 4(iii), Theorems 1-3
are easily extended to yield rates of convergence for conditional quantile
estimators.

2. Estimation of the conditional mean. Throughout this section, 6(-)
is the conditional mean function and 8,(-) is the local average estimator of this
function.

The proofs start with some Holder-type inequalities for stationary se-
quences satisfying the a-mixing condition. Let u(-, - ) and v(:, - ) be real-val-
ued, measurable functions on R?*1. Set U = u(X;,Y)), V=v(X;,Y;) and a =
a(li — jl). Proofs of the following two results can be found on pages 277-278 of
Hall and Heyde (1980).



82 Y. K. TRUONG AND C. J. STONE
LEmMMA 1. Suppose that |u(-, - )| < B; and |v(-, - )| < B,. Then
|E(UV) — E(U)E(V)| < 4B,B,a.

LemMa 2. Suppose that E|UP < «, E|V|? < ©, where p,q > 1 and p~! +
q ! < 1. Then

|E(UV) - E(U)E(V)| < 8||U||p||V||qa1‘P—1‘q

-1
Givenx € C, set K; = K;(x) = Lx._4 <5, ¢ = 1,...,n. The next lemma is
easily established.

LeEMMA 3. Suppose that Conditions 2 and 3 hold. Then there is a positive
constant c, such that

0135‘1» forj > O’

E(K.K, .) <
(KiKi.)) {018;’, forj =0.

LEMMA 4. Suppose that Conditions 2, 3 and 5@1) hold. Then

var(zi Ki) = 0(nsg).

Proor. By Lemma 1, [cov(K; K, )| < 4a(j). Thus by Condition 5(i) and
Lemma 3,

var(Z Ki) =nvar(K;) + 2} Y cov(K;, K;,;)
i iJ

n
B O(n&;‘f +n), min(a(j),52%)| = 0(nd?),
1
as desired. O

The following result follows from Chebyshev’s inequality and Lemma 4.

LEMMA 5. Suppose that Conditions 2, 3 and 5() hold. If 6, ~ n™", then
there is a positive constant c, such that

limp(z K, < c2n8;‘f) - o.
n i

- LEMMA 6. Suppose that Conditions 2, 3, 4(i) and 5(ii) hold. Then

var(zi K,|Y, - B(X,)]) = 0(nd?).
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Proor. Set W, =Y, — 6(X,). Applying Hélder’s inequality twice,
E(K|W; |K; . ;|W.,;|)

v\1/v v\1/v - v
(2.1) =E[(K,~IW,~|) (BohWiis )7 (KK )V KKYY

< (E[KIW T} (B[ KK, )

By Lemma 2,
(22)  |B(EWK,,W.,)| < 8{E(KIW )} (i)} "
According to Condition 2,
E(K,|W; ') = E(K,E(|W;['|X;))
(2.3)
<M, sup Q(y)fKi(z) dz =0(82) forl<s<v,
llyll<s,

where Q(y) = E(IW,|°|IX; =y) is bounded in y € U by Condition 4. By
(2.1)-(2.3), Lemma 3 and Condition 5(ii) [note that E(W;|X;) = 0],

var|  KW,) = nvar(KW,) + 2L T cov(KW,, K. W,.;)
i i g

= 0(n8,‘f + n(5g)2/y Y min{a1—<2/v)(j), (53:1)1—(2/»)})
1

= O(nb‘;‘f),

which completes the proof of Lemma 6. O

LEMMA 7. Suppose that Conditions 2-4(i), 5(ii) and 5(iii) hold. If 6, ~ n™"
or 8, ~ (n"llog n)", then there is a positive constant ¢y such that

limP(N,(x) > cznd? for x € C) = 1.

Under the assumption of independence, there are several known results
than can be used to prove the above lemma: Vapnik and Cervonenkis inequal-
ity [see Theorem 12.2 of Breiman, Friedman, Olsen and Stone (1984)];
Bernstein’s inequality [see Theorem 3 of Hoeffding (1963)]; Markov’s inequal-
ity applied to sufficient high order moments; and Lemma 1 of Stone (1982).
Collomb (1984) obtained a Bernstein-type inequality for dependent random
variables satisfying the ¢-mixing condition, which is stronger than a-mixing
and is too restrictive for many applications. In particular, this ¢-mixing
condition is equivalent to m-dependence for stationary Gaussian time series.
In what follows, we will present a proof of Lemma 7 under the a-mixing
condition based on an inequality establised by Philipp (1982). (We thank
Magda Peligrad for pointing out this result to us.)
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Lemma 8. Let {¢;, j = 1} be a strictly stationary sequence of real-valued
random variables, centered at expectations and unzformly bounded by 1.
Suppose that {¢;, j = 1} is a-mixing and that o* = E£} + 2% ; j22BEEE; < oo
Let c,, c5 and y denote positive constants such that 0 <y < 1/2. Then for any
R>0,

d

¢

j<n

> Rnl'/ 2)

- O(exp(—c,R?*/0?) + na([n?])(c™* + R™?)), ifR <o*n /n";
O(exp(—csna?/n®) + na([n"])(e™* + R™%)), ifR>o¥n /n".

Proor. See Theorem 4 and Proposition 5.1 of Philipp (1982). O

ProoF OF LEMMA 7. We assume C = [—1/2,1/2]¢. Write C as the disjoint
union of MZ cubes C,, with length of each side ~ §,, where M, ~ 6, and
a=1,...,M? Set K, 6 = lx,cc,p M =M, =EK,;,)~ 8¢ and N,, =

#i:1<i<n;X;€C,,}=L,K,, Suppose that §, ~n~" or (n"'logn).
Then

limP(N,, > ;M;'nég fora=1,..., M?) =

a = 2
Indeed, set V; =V, = K, — K and o® = EV? + 2% ;_ , EV,V,. Then, by Condi-
tion 5(11) and the argument given in the proof of Lemma 4,L;,,EVV, = 0(82).

Thus o2 ~ 89, According to the second inequality of Lemma 8 w1th R =
Vn /2 and Condltlon 5(iii), there is a positive constant a; such that

P( na—Zn/'l') P(ZV<——7LM)
d .2 n")((s2d) "1 2)"1
< O(exp(—alnﬁ,,/n ”) + npl 1((8,, )+ 4(nu?) ))
The conclusion of the lemma follows easily from this result. O

Proor oF THEOREM 1. According to Condition 1,
|0(X;) — 0(x)| <M,8, foriel,(x).
Set I, = I,(x) and N, = N,(x). Then

(24) N IZ [6(X,) — 6(x)]| = Op(8,).
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On the other hand, by Lemma 5,

P M| 13 - o) 2 ca,
I,

+ P(N, < c,nb?)

¥ ¥, - 0(X))]| > cd,i N, > egn
1,

sP(N,,‘1

< |

Y Y- B(Xi)]’ > czcné;‘f“) + o(1).
I,

Since n8%*! ~ 5, and né? ~ 5,2, it follows from Lemma 6 and Chebyshev’s
inequality that

(2.5)

N:UE (Y- 0%)]| - 0(5,).
I’l
The conclusion of Theorem 1 follows from (2.4) and (2.5) O

Proor oF THEOREM 2. According to Condition 1,
|0(X;) — 0(x)| < My||X; — x|| <M,8, foriel,(x)andxeC.

Thus there is a positive constant cg such that

> ¢gd, forsomex € C| = 0.

(2.6) limP(\Nn(x)‘l T [6(X,) - 6(x)]
n I1,(x)

Set Z,(x) = L;c,mlY; — 0X,)]. By Lemma 6,
E[Z%(x)] = O(n8Z) uniformly over x € C.

Consequently,
2.7 E|[|z 2d]=EZ ?| dx = O(ns8?).
@) |21 ax| - [ E[|z,(0 ] ax = 0(na?)
By Lemma 7,
(2.8) imP(Q,) =1,

n

where Q, = {N, (%) > c3n8Z for x € C}. By (2.7) and (2.8),

J.
(2.9) < P(Q°) +P(fC|Zn(x) |2dx202c§n8,‘f)

0(1)ns?

c2né?

Pl{[|INx" X [¥-0(X)]

. 172
e—ay1/2
dx) =2c(n715,9) /
I(x

=P(Q%) + =o0(l) asn,c—> .
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It follows from (2.6) and (2.9) that
lim lim P ([, = 0], = ¢(5, + (n"18;¢)"*)) = .

The conclusion of Theorem 2 now follows by choosing 6, so that §, =
(n~16;%)'/2, or equivalently, 5, =n~". O

PrOOF OF THEOREM 3. We can assume C = [—1/2,1/2]° c U. Let s be a
positive constant such that 0 < s < 1 and set L, = [5,®*® log n]. Let W, be
the collection of (2L, + 1)? points in C each of whose coordinates is of the
form j/(2L,) for some integer j such that |j| < L,. Then C can be written as
the union of (2L, )? subcubes, each having length (of each side) 2A,, = @L,)™!
and all of its vertices in W,. For each x € C, there is a subcube @, with center
w such that x € Q,,. Let C, denote the collection of centers of these subcubes.
Then

P( sup |6,(x) — 0(x)| = c¢(n""log n)r)
xeC

= P(mazé sup |6,(x) — 8(x)| = ¢(n"'log n)r)

we erw

It follows from A, ~ 82*°/log n = 0(5,) and Condition 1 that (for n suffi-
ciently large)

lo(x) — 6(w)| < Myllx — wll <My, forxe@Q,,weCl,.
Therefore, to prove the theorem, it is sufficient to show that there is a positive
constant ¢ such that
(2.10) limP( max sup |§n(x) - B(W)I > c(n"'log n)r) =0.
n WEC,l XEQW

Set [, =T (w={i:1<i<nandl|X;,-wl<s,+ AVd}, N, = N(w) =
#I (w) and 8,(w) = ave{Y;: i € I (w)}, w € C,. Then (2.10) follows from

(2.11) limP( max sup Ién(x) - En(w)l >c(n"'log n)r/Z) =0

wel, erw

and
(2.12) limP( max |7, (w) — 6(w)| = e(n~* 1ogn)’/2) 0.

To verify (2.11) and (2.12), set N, = N,(w) = #{i: |X; — wl <5, — A Vd}.
By Conditions 2-5 and Lemma 8 there are positive constants ¢, and cg such
that

©(2.13) limP(¥,) =1,
n

where ¥, = {N(w) — N, (W) < ¢;8,'** and N,(w) > cgnd? for allw € C,}.
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Indeed, note that N, — N, = #{i: 6, —A,vd <X, —wl <5, + A, /d}isa
sum of n Bernoulli random variables with probability of success 7, = P(5, —
A Vd < |IX; — wll < 8, + A,Vd). By Condition 2,

m, ~ (8, + A,,\/E)d - (8, - An{/(?)d ~ 821\ for n sufficiently large.

It follows from n82*% ~ logn and A, ~ 62*°/log n that nm, ~ 6,1 -
as n — », Thus by Condition 5(ii) and the second inequality of Lemma 8

(with 0% ~ 7,, R? ~ n72), there is a positive constant ¢, such that
n n 9

P(N,(w) — N,(w) > 2nm, for somew € C,)

= [2Ln]d0(exp(—c9’:;:) + na([n’])‘(% + #))

=0(l) asn -
for y < (1 — s)r/2. Similarly,
lim P(N,(w) < 3np,(w) for somew € C,) = 0,

where p,(w) = P(IX; — wll < 8, + A,Vd) ~ 8%. Thus (2.13) is proven.
It follows from the boundedness of Y; and the first inequality of Lemma 8
(with y <r, 02 ~ 8¢ and R? = c%2n§2?*2) that there is a positive constant

¢y such that
P (

Note that there is a positive constant « such that #C, < n*. According to
(2.13),

S (3= 00%)]| 2 ceuns |
I(w)

1 1
= O(l)exp(—cloc2n6,‘f+2) + 0(1)[774)[" ](W + W)]

Nw) ™ T [Y-6X,)]

> c$n)
I(w)

P( max
we(C

n

2 (3= 0] 2 cegnsi |
I(w)

< P(¥) + P( max
weC,
= o(1) + O(1)n" exp(—c?c;,nd5*?%) + 2n°+20(p").

Since n89+2 ~ log n, we conclude that for ¢ sufficiently large,

N,(w)™" L [¥ - 0(X,)]

> cb‘n)
I(w)

P| max
weC,

< O(1)n* exp(—c?logn) + o(1).
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Consequently, for c2 > «,

Nw™ L [v.-6X)]
. I(w)

> c‘o‘n) =0.
weC,

(2.14) limP( max

Observe that (2.12) follows from (2.6) and (2.14).
Givenx € C, set N, = N, (x) and I, = I,(x) and choose w such that x € Q,,.
Then N, <N, <N, and

£.Y, I.% NI Y%-(N,-N).Y

Nn Nn NnNn
Thus
Z_Y; r Y: _n__n _n_ n
Dot 2 s( — )max|Y,~|+( _—)max|Y,|
Nn Nn n in\In Nn n
and hence
Efyvi EIYL (Nn _Nn)
= — 2 2 —— Y. |.
N, N, | = N, “}fxl /|

Consequently, (2.11) follows from (2.13) and the boundedness of {Y;}. O

3. Estimation of the conditional median. Throughout this section,
6(-) is the conditional median function and 6,(-) is the local median estimator
of this function.

ProOF OF THEOREM 1. By symmetry, it suffices to show that
(3.1) lim lim sup (6,(0) > 6(0) + cn™") = 0.

c— o n

Set I, =1,(0). It follows from Condition 1 that 8(X,) < 6(0) + M,3, for
i €1I,. Thus
1= P(Y; 2 6(0) +¢8,|X;) 2 P(0 <Y, - 0(X;) < (c - Mp)3,X;), iel,.
Hence by Condition 4(iii), there is a positive constant ¢, such that if ¢ > M,,

then

(3.2) 3 —P(Y;26(0) +c5,[X;) = (¢ —My)ced,, n>landi€l,.

2

Set
Z; = Ly, 2 o0+cspy — P(Yi 2 6(0) +¢5,[X;).

. Then

E[;z] —0
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and, by an argument analogous to that given in the proof of Lemma 6 (see also
Lemma 4),

var( % Zi) = 0(ndg).

Let ¢ > M,. Then by (3.2),
3 —N;1Y P(Y; 2 6(0) + c5,[X;) = (¢ — My)ced,, n>1
I,

It now follows from (3.2) and Lemma 5 that, for some ¢; > 0 and n > 1,

P(0,(0) = 6(0) +¢3,) < P(Nn_l L Ly o o@resn = %)
I, ;

p(N,,—1 Y 2 >1-N'Y P(Y, > 6(0) + cBn|X,~))
1, 1,
< P(Nn_1 YZ > (c- Mo)coén)
In

< P(Nn‘1 Y Z;>(c — My)cyd,; N, = clné,‘f)
In

+ P(N, <c¢;nédg)
< P(Z Z; > (c- Mo)coclnB,‘f”) +0(1).
1,

Since n82*2 ~ 1, (3.1) now follows from Chebyshev’s inequality. This com-
pletes the proof of Theorem 1. O

The proof of Theorem 2 depends on Theorem 3, which will be considered
next.

ProoF oF THEOREM 3. We can assume that C =[—1/2,1/2]% c U. Set
L, =[n?]. Let W, be the collection of (2L, + 1)* points in C each of whose
coordinates is of the form j/(2L,) for some integer j such that |j| < L,.
Then C can be written as the union of (2L,)? subcubes, each having length
21, = (2L,)! and all of its vertices in W,. For each x € C, there is a subcube
Q,, with center w such that x € @,,. Let C, denote the collection of the
centers of these subcubes. Then

P( sup |6,(x) — 0(x)| = ¢(n" ' log n)r)
xeC

= P( max sup |0,(x) — 6(x)| = c(n!log n)r)

wel, xEQw
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It follows from A, ~ n~%" and Condition 1 that (for n sufficiently large)
[0(x) —0(W)| < Myllx — wll < My5, forxe@,,weC,.

Therefore, to prove the theorem, it is sufficient to show that there is a positive
constant ¢ such that

(3.3) hmP( max sup |6,(x) — 6(w)| = ¢(n"'logn) )
weC, x€Q,

Given x € Q,,, set N, = N.(w) = #{i: IIX; — wl <8, — A,Vd ). It follows
from N, = N,(x) = #: IIX - xII <6, =N, for x € Q,, that

{én(x) —0(w) = Cén} < {Nn_l 2 Ly swytosn 2 %}
I,

1
c {Z 1{Y,~20(w)+c$,,} = 'Z_N }

1,

where I, =I(w)={i: 1 <i <n and [X; — wll <8, + A,Vd ). Thus

(34) U {én(x) - G(W) = can} c {; 1(Y,»20(w)+c$,,) 2 N }

w

Set N, = N(w) = #I (w). By Conditions 2, 3 and 5(iii) and Lemma 8, there
are positive constants c, and c; such that

(3.5) mP(¥,) = 1,
where ¥, = {N,(w) — N,(w) < c,n827 A, and N, (W) > c5n8¢ forallw € C,}.

Note that n69 A, N, ! =0(1,/8,) = 0(8,) on ¥,. It follows from (3.4)
that there is a positive constant ¢, such that

P( max sup [0 (x) — 0(W)] >cd )

Cn XG

<PlU U {én(x) - 6(w) > c6n})
LA
(3.6) <P U {Z Ly, > owy+cs,) = %Z_Vn})
<P U { Ly, » ocwy+c8,) = >1iN, - 2c2n8,‘f‘1)tn} N \I'n) + P(¥7)
C.
<P {ang (¥; > 0(w)+e8,) = %_c46n}) + P(Y,).

n n
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According to Condition 1, 6(X;) < 6(w) + M8, + A,Vd) whenever
IX; - wll < 8, + A,Vd . Thus

3 - P(Y, 2 0(w) +c5,X,)
2P0 <Y, - 6(X,) < (; -My)s, - Myr,Vd (X)), iel,.
By Condition 4(iii), there is a positive constant c; such that for ¢ > 2M,,
(87 3 -P(Y;26(wW) +c8,X;)2ccsd,, n>1landiel,.
Thus, (3.7) implies
(3.8) 3 = N1 Y P(Y; 2 0(w) +¢5,|X,) > ccsd,, n>1.

n

Set Z; = 1y . gwy+es,) — P(Y; = 0(w) + ¢8,[X,). It now follows from (3.8) that
there are positive constants ¢4 and k such that for cc; > 2¢, and n > 1,

P( U {Nn_l Z_: Ly, > owy+cs,) = 3 - C45n})
I,

C.

- P( U {N Y Z 24— N;' L P(Y; > 0(w) + 05,/K,) - c48n})
(3.9) c. I, I

< n"r%axP(ITfn‘1 Y. Z; > ccsd, — c48n)
n in

n

< n"maxP(an‘1 Y Z, > ccsﬁn).
I,

Set p, = p,(w) = P(IIX; — wll < 8, + A,/d) (which, by stationarity, does not
depend on 7). Then p, ~ 6%. Note that E Z,=Y,K,Z; and E(K,Z,) = 0. By
Lemma 6, var(X ,K;Z,) = O(n‘o‘d) It follows from a(n) = O(p”) and a double
application of Lemma 8 (with y<r, e2~8% R?=M;'né?* and R?=
M c%c2n829+2 respectively) that there are positive constants ¢, and cg such
that

P(Nn‘1 Y Z > ccsén) <P(N, < 3np,) + P(N Z Z,>ccgd,; N, > inp,
I,

< exp(—c;né;/n®) + exp(—c csnﬁ,‘f"z)

1 1
+ 0(1)| npt —_— .
o( )[np (82d 6,‘flogn)] forweC,

Now it follows from n§2*2 ~ log(n) that there is & positive constant ¢ such
that

(3.10) n"rréaxP( -1 Z Z; > ccghb, ) -0 asn —> .

n
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Hence by (3.5), (3.6), (3.9) and (3.10),
(3.11) llmP(néax sup [Gn(x) - 0(W)] >cé ) =0 forc>0.

an
]

Similarly,

(3.12) hmP(max sup [0 (x) - 0(W)] —c&n) =0 forc>0.
n XE

It follows from (3.11) and (3.12) that (3.3) is valid. This completes the proof of

Theorem 3. O

The proof of Theorem 2 depends on the following result on bounds for the
moments of sum of weakly dependent random variables. Let {v,} be a sequence
of positive numbers such that v, ~ n~” for some y € (0, 1).

LEMMA 9. Let V,,,.. ,V,m be uniformly bounded random variables such
that V,; has mean zero and is a function of X,. Suppose that E|V,,| < v, and
E\V,V,;| <v? for 1 <i<j<n. Suppose a(N) =0(p"), N=1,2,... and

let k be a positive integer. Then
k
E[(Z Vm.) ] = 0((nvn)k/2) asn — o,

Proor. In the following discussion, write V, for V,;. We may assume that
|Vl < 1. Observe that

(3.13) E[(Z V,.)k] <kHY'Y”

where the indices in the first sum L’ on the right side of (3.13) are on values of
¢ 74,...,7, constrained by 7,,...,7,> 0 and 7, + - - +7, = k and the indices
in the second sum X" are on values of i,,...,i, constrained by i,,...,i,> 0
and i; + --- +i, <n.Let N be a positive integer less than than n. Partition
the second sum in (3.13) into a finite number of sums such that the indices in
each of these sums are constrained by: certain of the indices are larger than N
and all others are less than equal to N. More precisely, let ¢, = (¢4,..., ¢,) be
a t-tuple of 0’s and 1’s and let X, |E(V,]* --- V4, ;)| mean that (a) if
¢, = 1, then the index i, in the sum ranges over N + 1,...,n; (b) if ¢, =0,

BV Vi)

then the index i; in the sum ranges over 1,..., N. Thus
(318) VB - Vo) = T T B )]
ally, ¢,

Let ¢, be fixed. By induction on m, where m =+, + -+ +7,,
(3.15) L IEWVD - Vitow)| = O((w) ™).
U

Indeed, (3.15) is valid for m = 1,2. [T, IE(V;V))| = O(nE,;min(a(i), v?)) =
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O(nv,).] Suppose m > 2 and assume that (3.15) holds for 7,,...,7, with
7.+ +1,<m—1. Set N=[my Xy + Dlogv,/(2log p)l. Suppose that
¢;=0for 2 <j <t Then,since m >2and|V]| <1fori=1,...,n,

|V V)| <Nt
2

= 0((log n)")nv,

= o((nvn)(m/Z)_l)nVn = o((nvn)m/z).

Suppose instead ¢; = 1 for some j such that 2 <j < ¢. Set b = min{j: 2 <j <
¢, ¢; = 1}. Since the V’s are bounded by 1, it follows from Lemma 1 that
[ BV Vit Vit sy Vit o)

12

Tl oo Tb— T oo T
<|EVD - Vit BV oy o Vi o)

+ 4a( l b) .
Consequently, by the inductive hypothesis,

ZIE(VH-‘- Ty Vi e, Vi )|
S DB Vit B i V)| £ 4T (i)
2
=o«n%f“‘“”%Wﬂoun%y“+“+mﬂ)+4m-l2:40

i>N
= 0((nvn)m/2),
for it follows from N =[my~ Xy + Dlogv,/(2log p)] and L, ya(i) ~pV
that (with ¢t < m)
Y a(i) <nm Y a(i) ~ nmw V2~ (ny )2,
i>N i>N

This completes the proof of (3.15). The conclusion of the lemma follows from
(3.13)-(3.15). O

Proor oF THEOREM 2. By Condition 1, 6(-) is bounded on C (compact).
Thus it follows from Theorem 3 that there is a positive constant T > 1 such
that [10(-)ll < T and

(3.16) lmP(®,) = 1,
where @, == {18,()l. < T}. For i = 1,...,n, set

-T, Y, <-T;

Y= Y, if|V,|<T;

T, ifY,>T.

Set 8,(x) = med{Y;: i € I,(x)}. Then 6,(x) = 6,(x) for x € C except on ®.
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Together with (3.16), it is sufficient to prove the theorem by showing
(3.17) lim lim P(|8, — 6]|, = cn™") = 0.
c—>® n
To verify (3.17), we may assume that C = [—1/2,1/2]¢ c U. According to

a(n) = O(p™) and Lemma 8 (see also the argument given in Lemma 7), there
is a positive constant c¢q such that

(3.18) imP(Q,) = 1

where Q, = {N(x) > cyné¢ for x € C}.

Write PQ( )=P(:;Q,)=P(-nQ,) and Eq (W) = E(W1, ), where W is
a real-valued random varlable By (3 18), there is a sequence of positive
numbers ¢, — 0 such that

P(fclén(x) —o(x)| dx > (cn-')")
(3.19) = P(fclan(x) - 0(x)|" dx = (en™)"; Qn) te

- q
Eo, [ Jeltx) - 09" ax| |
< (on-7)° €,.
By Condition 1, |6,(x) — 6(x)| is bounded by 2T for x € C. Thus there is a
positive constant ¢, such that

Eo,[ 18,20 = 0" = [Fat11Pq (5,20 - 0(x)| > t) a

- [ 2Moapa=1p, (|8,(x) — 0(x)| > ¢) dt
(3.20)

+ [ gt 1Py ((8,(%) — 0(x)| > ¢) dt
2M,8,

<cwdd + [0 qt? Py, (|8,(x) — 6(x)| > ¢) .
2M,5,
By Conditions 1-3, 4(iii) and 5(iii), there is a positive number c,; such that
(321) [ g P, (|8,(x) - 6(x)| > t) dt < ¢,,89 forx e C.
2M,6

On

[The proof of (3.21) will be given shortly.] It follows from (3.20) and (3.21) that
there is a positive constant. c;, such that

B [15,x) - 00)['] < 1387 forxec.
Thus there is a positive constant c¢,5 such that
- q - q
(3.22) Egn[ [18.x) - 6(0)] dx] = [ Eo[18,0) - 00)[] dx < 1555
c c
The conclusion of Theorem 3 follows from (3.19) and (3.22).
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Finally, (3.21) will be proven. Let x € C be fixed. By Condition 4(iii), there
is a positive constant c,, such that

L_NIY P(Y, 2 0(x) + ¢X;) = crat,  2Myd, <t <2T.
I, .
Set
Z; = Ly,z0m+n — P(¥Yi 2 0(x) + tX;).
Then (since {Y; > 6(x) + ¢} c {Y; > (%) + ¢}
P, (0,(x) — 6(x) > t)

-1 1
< Pﬂ,,( N;'Y Ly omy+ty = E)
In

IA

-1 1
Pn,,(Nn h Ly,>om+s = E)
I,

(3.23)
<Po N L2z}~ N L P(Y 2 0x) + 1K)
Iﬂ Iﬂ
< P( YZ, > c9c14tn8,‘f).

I

Set Ki = Kl(x) = l(llxl_xnsan}. NOte that ZI,,Zi = EiKiZi’ E(KZZZ) = 0,
EIK,Z) = 0(8¢) and EIK,Z,K,Z;| = O(82%). Since Z; is bounded, it follows
from Lemma 9 that

2k
I, i
Consequently, by Markov’s inequality,

A
P( Z Zi > CgCMtnﬁg) < —Q_J_m;
1 (coC14tn87)

2k b
) =0(n8?)" fork=1,2,8,....

(3.24) ’
0(ns?)
(c9c14tn6,‘f)2k ’
By (3.23) and (3.24), there is a positive constant c;5 such that (note that
néd ~ 8,2

(8.25)  Pq (8,(x) — 6(x) > t) <cyst 263",  2M,8, <t <2T.

2M,6, <t <2T.

Similarly,
(3.26) Pq (,(x) — 0(x) < —¢) <cit”?*8%k,  2Mo8, <t <2T.
Note that ¢, and ¢;5 do not depend on x. It now follows from (3.25) and (3.26)
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by choosing & > ¢q/2 that

2T ya- ] 2T oh 1 ge
[2M05ntq IP(‘),"(Ion(x) - 0(x)| > t) dt < 233kc15[2M06"tq 2-1gs = 0(89). O

L]

REMARK. Why is it necessary to use Lemma 9 to establish the above
inequality, instead of using Lemma 8? The main reason is: For simplicity,
suppose ¢ = 2M,6,,. Then the exponential inequality (from lemma 8) contains
the term exp(—c2n69%2) = O(1), because n62+2 ~ 1. [See the inequality be-
fore (3.10).] Consequently, that would not yield the desired result. However,
the exponential inequality is useful for establishing the L., convergent rates in
that exp(—c2n69+2) ~ exp(—c2log(n)) as 8, is now chosen so that n8§2*2 ~

log(n).
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