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TWO-DIMENSIONAL DESIGN FOR CORRELATED ERRORS

By Joun P. MorGan! anp Nizam UpbDIN

Old Dominion University

Optimal and highly efficient two-dimensional designs are constructed
for correlated errors on the torus and in the plane. The technique uses the
method of differences to produce series of connectable planar squares.
Efficiency calculations for planner versions of the torus designs show that

- the torus approximation is very satisfactory.

1. Introduction. A number of recent papers have addressed the prob-
lems of analysis and optimality of two-dimensional layouts with correlated
errors; see Kiefer and Wynn (1981), Martin (1982, 1986), Gill and Shukla
(1985) and Kunert (1987). To this point, exact optimality results are few and
have been obtained only for certain correlation structures in conjunction with
simplifying assumptions, but recommendations have been made concerning
design properties that will give reasonable efficiency and balance across a
range of error processes [Martin (1986)]. These are, in fact, in accord with the
exact properties Martin (1982) has enumerated for design on the torus, and it
is the torus approach that will be considered first.

Let y;;, be the observation in row i and column j of the m; X m, torus
lattice & (= 1,2,..., s) with arbitrary initial cell (1, 1, 2) and let 7, be the
effect of the treatment in cell (i, j, 2). Concern will center chiefly on the model

Yijk = Mg+ Trjey + €5k,
where the errors follow the completely symmetric second order autonormal
process:

o?var(e) =1, ®|I,,, -, ®C, +C, ®I,) -y, ®C,)]|

mym

Here C,, is the m X m matrix with

(C,.)s; = {1, if i —j.E +1 (mod m),
0, otherwise,

a, vy and o? are constants and ® is the Kronecker product. Then it can be

shown that if a,y > 0, a design is universally optimum for estimation of
treatment contrasts if (i) every treatment has each other treatment as first
neighbor equally often in rows and columns combined, (ii) every treatment has
each other treatment as first neighbor equally often in diagonals, (iii) no
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treatment immediately neighbors itself in rows, columns, or diagonals and (iv)
the set of s toruses is equireplicate, with each pair of distinct treatments
appearing together in an equal number of toruses and the treatments being
replicated within each torus as nearly equally as possible.

Note that (iv) says that the toruses form a balanced block design as defined
by Kiefer (1975). If interest focuses on the treatment means u + 7; in the
simpler model u, = u for all k&, (iv) is relaxed to equireplication in the s
toruses combined. In general, equireplication in each of the toruses is suffi-
cient for (iv) to hold. In the terminology of Martin (1982), (i) and (ii) say the
design has second order neighbor balance.

Torus designs are of practical statistical interest mainly in their adaptability
to planar applications. In constructing optimal torus designs, it is expected
that their planar versions will be near optimal for correlated errors in the
plane, though the extent to which this is true depends in part on how the torus
error process is adapted to the plane. Martin (1982) discusses two methods.
One is to use the equivalent infinite planar process, introducing edge effects
that generally make it difficult to attain the complete symmetry of var(#) that
underlies universal optimality arguments. This is the approach taken in
Section 5, where the behavior of planar versions of some of the smaller
constructed torus designs (edge effects exert less influence as the design size
grows) will be evaluated numerically and seen to be very good. Alternatively,
the definition of var ~'(¢) can be modified so that var ~'(¢),; = 0 for plots i and
J that are neighbors of order 1 or 2 (for the second order process) on the torus
but not in the plane, producing a nonstationary planar process, edge sites
having variances different from those interior. Gill and Shukla (1985) take this
approach, by which it is possible to obtain universally optimum designs for the
simpler model mentioned above in reasonably small sets of planar rectangles.
The planar components that will be combined in constructing torus designs
satisfy their optimality conditions for this case and hence are of some interest
in themselves. Further results along this line are given by Uddin and Morgan
(1991). Previous results on planar behavior of torus designs may be found in
Martin [(1986), pages 272-273].

Regardless of the above considerations, construction of highly efficient and
well balanced planar designs is of no importance if the underlying planar
correlation model [see (9) of Section 5] cannot adequately describe a variety of
real-life phenomena. To some extent the possibilities here are limited since the
behavior of optimality criteria can be quite sensitive to the rate at which
correlations decay, a point examined at some length by Martin (1986). The
second order autonormal model is for long-range correlations and within this
class is fairly flexible owing to the two parameter formulation. It includes the
process (c¢;) and can approximate to second order a variety of other processes
such as (c,) (again see Section 5) of Martin (1986), which are appealing models
for field trials. Relevant here too is Martin’s [(1986), page 274] conclusion that
the reasonable approach for field trials is generalized least squares with
correlation specified by a small number of parameters, for which 7 will be
reasonably robust to the exact form of process chosen.



2162 J. P. MORGAN AND N. UDDIN

An m; X m, torus lattice becomes an m; X m, planar lattice by cutting
the lattice between any two rows and any two columns. If the torus was
neighbor balanced of order 2, then the fully bordered version of the planar
design is also: Border the first and last rows (columns) by the last and first
rows (columns), respectively. Bordered neighbor designs have applications in
situations other than that considered here, for instance, in polycross experi-
mentation [see Freeman (1979)], and thus give a separate justification for the
study of torus designs. Constructions for fully bordered neighbor designs have
been previously given by Freeman (1979), Afsarinejad and Seeger (1988) and
Morgan (1990); there seem to be no results for the construction of these
designs that, like those given here, balance-neighbors to second order and have
no like neighbors to second order, which are the desired properties for nondi-
rectional polycrosses. Some unbordered designs which approximate these prop-
erties may be found in Freeman (1969).

In summary, infinite families of optimal torus designs are constructed, then
demonstrated numerically to have excellent efficiency and balance properties
in planar applications. At no point is it proven that planar versions of optimal
torus designs are themselves optimal (indeed this is an open and challenging
problem), though the calculations indicate that in many cases any further
efficiency gain over the designs presented here will of necessity be quite small.
Thus the current work provides a variety of two-dimensional plans for experi-
mentation in the presence of long-term correlations that are statistically
satisfactory, being to the authors’ knowledge the first design work of this type.
Section 2 gives the basic construction results and concentrates on optimum
designs for prime power numbers of treatments of the form 4¢ + 1. In Section
3, two generalizations of the Section 2 results are given, and in Section 4
conditions are relaxed to obtain deigns for nonprime powers. Numerical
comparisons for planar versions of the torus designs are made in Section 5. All
of the constructions employ the method of differences.

2. Designs with second order neighbor balance. The first result
shows how differences can be used to produce a set of p X p squares with the
desired neighbor properties. To set the situation, let G be an abelian group of
order v with identity element 0, where v is the number of treatments. For
a = (a,, az, ..., a,) any p-vector of elements of G, let a* = (a; — a,,a, — aj,

.» @,_1 — a,) be the vector of forward neighbor differences. For two such
Vectors a and b, define R(a,b) as p X p array with i, j entry a; + b;.

THEOREM 1. Suppose there exist p-vectors a and b on an abelian group G
such that

@ ta*n tb*=
(i) +a* U +b*is each nonzero group element 4(p — 1)/(v — 1) times,
(iii) R(+a*, + b*) is each nonzero group element 4(p — 1)?/(v — 1) times.

Then R(a,b) is a balanced neighbor difference array, so that the v arrays
R(a,b) + g, g € G, are together balanced for combined first row and column
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neighbors and for first diagonal neighbors. Furthermore, no treatment neigh-
bors itself.

Proor. When using the union or intersection notation with vectors of
differences, they are treated as lists or sets. So the combined row and column
neighbor differences are p copies of +a* U + b*, which by (ii) are balanced.
The diagonal neighbor differences are R(+a*, + b*), which by (iii) are bal-
anced. By (i)-(iii), none of the differences are zero. O

Note that the Theorem 1 designs have nondirectional neighbor balance, and
that balance is for rows and columns combined and for diagonal directions
combined. Hence they would be appropriate for roughly square plots in which
the error process is assumed [in the terminology of Martin (1982)] completely
symmetric. Neighbors in each of rows, columns and the two diagonal direc-
tions can be balanced by using another v arrays given by a 90° rotation of the
v arrays of the theorem. Rotating each of the resulting 2v arrays 180° gives a
directional design, balanced for neighbors in each of the eight directions. So
with additional replication, symmetric and reflection symmetric processes can
also be handled, but will not be further pursued here. Directionality is also an
issue in the polycross application [Freeman (1979)].

The initial problem here is in finding the vectors a* and b*, from which a
and b can be reconstructed (though if one wished to consider models with
blocking factors, consideration of neighbor differences alone would not be
sufficient). It is clear from (ii) of Theorem 1 that 4|(v — 1). When discussing
a*, b*, there is no loss of generality in taking p = (v + 3)/4; larger p will give
multiples of these two lists. [In fact, a* and b* need not even be of the same
size for the torus constructions to follow: each must just be an integer multiple
of (v — 1)/4. Considerations of design size will usually make this of little
interest, but compare Example 2b below.] Hence the problem becomes: parti-
tion the nonzero elements of G into equal-sized subsets S;, S, satisfying

(1) §E€ES;, = —g€8§,

(2) Uus,=G-o,

(3) R(S;, S;) contains each nonzero group element (v — 1) /4 times.
Perhaps surprising is that these conditions are related to those needed for

generation of a balanced incomplete block design, from which a simple solution
follows.

THEOREM 2. Let S, and S, be sets satisfying (1) and (2). They satisfy (3) if
and only if they are initial blocks for a BIBD with 2v blocks of size (v — 1) /2.

Proor. The group table for G, after deletion of the zero row and column,
can be broken into four subtables: R(S,, S,), R(S, S,), R(S,, S, and
R(S,, S,). Then (3) is satisfied iff R(S,, S;) and R(S,, S,) together have each
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nonzero group element with equal frequency. By (1), S; = S;; U S,,, where
S;, = —8S;;, so that R(S;, S;) can be broken into the four subtables
R(-S;;,8;9), R(S;;, —8;5), R(S;;, —S;)) and R(S;,,— S;,). Deleting the
(v — 1)/4 zeros in each of the last two tables leaves all the symmetric
differences for the set S;. Hence S; and S, satisfy (3) if and only if all the
symmetric differences within S, and S, are together each nonzero group

element (v — 3)/2 times and the theorem is proved. O

COROLLARY 1. Let v =4t + 1 be a prime power. Then sets S; and S,
satisfying (1)-(3) exist on the Galois field GF, of order v.

Proor. Let S; be the set of quadratic residues on GF, and S, the
quadratic nonresidues. It is well known that S; and S, generate the required
BIBD [e.g., Raghavarao, (1971), page 84]. The result follows since —1 is
quadratic. O

Now a and b of minimal size can be constructed by
(4) a= (1,x2, x4, e x(v—l)/2) and b= (x, x3’ x5, ey x(v+1)/2)’

where x is any primitive element of GF,. Hence:

COROLLARY 2. Let v=4t+ 1 be a prime power. Then there exist v
(v + 3)/4 X (v + 3)/4 squares which are balanced for first row and column
neighbors combined, are balanced for first diagonal neighbors and have no like
first neighbors.

Since none of the designs in this paper have like first neighbors, mention of
this fact will be omitted in succeeding results.

ExampLE 1. The Corollary 2 design for v = 9. The nonzero field elements
may be written as x = (1,0), x2 =(2,1), x3 =(2,2), x* =(0,2), x° = (2,0),
x%=(1,2), " =(1,1) and x8 = (0, 1). Adding mod(3, 3), then writing i for x?,
gives these nine squares:

I
ONO OWIh BN ®

R=R(a,bd) = R+ (1,0) = R+ (2,0)

R +(0,1) = R+ (1,1)= R+ (2,1)

- RO O =]
G OTO  W=I

R+ (0,2)=0 R+(1,2)=1

7 2

Note that one need not use a and b as given in (4). They could be changed,

for instance, to impart conventional block properties (not required by our

model) to the R(a, b)’s. We simply remark that there is considerable scope

here for imposing further conditions on a and b depending on the situation at
hand.

=
+
—_
%)
N
N’
I

b

IO W W=IM b H O
DN H OO W =3
C WK RO ®UTO
OO OWL AN ®
HIR O OO 3O
GO HA D O W
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Gill and Shukla (1985) consider the problem of optimal design in the
presence of second order autonormal errors in the plane (their Model 2, which
is the nonstationary planar version of the process considered in Section 1), but
find no designs. Corollary 2 designs satisfy their conditions, derived for the
simpler model E(y;;;) = 7,z For the same error process and E(y,;;) = p, +
71 jzp Uddin and Morgan (1991) are able to choose a and b of Theorem 1 with
p =v and satisfying further conditions to generate efficient sets of Latin
squares. The only other result of this nature of which we are aware is due to
Ipinyomi and Freeman (1988). Their Lemma 3, for odd prime v but easily
extended to odd prime powers, gives sets of v(v — 1)/2 rectangles balanced for
neighbors of all orders.

Theorem 1 is the underlying result for all the constructions in this section.
We do not know if its conditions can be met for nonprime powers; enumeration
shows that it is not possible for v = 21 or 33. In Section 4, relaxed versions of
Theorem 1 will be used with the merging techniques explained next to obtain
designs for other numbers of treatments.

In order to construct designs in single arrays, methods of adjoining the v
arrays of a Theorem 1 design are now considered, leading to torus designs and
what will be called pseudotorus designs. Suppose R; and R; are two p X p
components generated from R(a,b) such that the last column of R; is the
first column of R;. If a new p X (2p — 1) array is found by merging R, and
R; at this common end column, one copy of this repeated set of column
neighbors is lost, while the diagonal and row neighbors are unaffected. The
technique, which is to adjoin all v developed R(a, b)’s in this fashion so that a
balanced set of neighbors is lost, is first illustrated by Example 2.

ExamMpLE 2a. On Zg = GF;, take a =(0,1,2,1,0) and b =(0,2,4,1,3),
where in accordance with Corollary 1, S; = {1,4} and S, = {2, 3}. Developing
R(a, b) (mod 5) gives

Rl Rz R3
0 2 4 1 3 3 0 2 4 1 13 0 2 4
1 3 0 2 4 4 1 3 0 2 2 4 1 3 0
2 4 1 3 0 06 2 4 1 3 3 0 2 4 1
1 3 0 2 4 4 1 3 0 2 2 4 1 3 0
0 2 4 1 3 3 0 2 4 1 1 3 0 2 4
R, : R,

4 1 3 0 2 2 4 1 3 0

0 2 4 1 3 3 0 2 4 1

13 0 2 4 4 1 3 0 2

0 2 4 1 3 3 0 2 4 1

4 1 3 0 2 2 4 1 3 0

Note two important facts about this set of neighbor balanced squares: (i) they
are ordered so that the last column of one square is identical to the first
column of the next and (ii) the first and last rows coincide. Using (i), merge the
five squares at their common end columns as explained above, giving a
cylindrical 5 X 20 array (R is merged with R;). This upsets the neighbor
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balance by deleting one copy of the set of column neighbors generated from a.
To correct this, delete one copy of the set of row neighbors generated from b
by using (ii): merge the common first and last rows. A planar representation of
the resulting 4 X 20 neighbor balanced torus design, with placement of the
R/’s indicated, is

R, R4 Ry
0241302413024 13U02413
130241302 41302413202 4
241302413024 13©02413FP0
1302413602 41302413U0 24
R, R, R,

The R;’s of Example 2a could be placed in a mergeable order because
b, — b, = 3 generates Z; (see Corollary 3 below). If a, — a,; # 0, the first and
last rows of the intermediate cylinder design will not coincide, but an obvious
consequence of the technique is that the last row will always be a cyclic shift of
the first. So by a suitable twisting of the cylinder, the first and last rows can be
merged, yielding a pseudotorus design.

ExampLE 2b. Still on Z;, take a = (0,1,2,3,4) and b = (0, 3). The devel-
oped R(a, b)’s are

0 3 3 1 1 4 4 2 2 0
1 4 4 2 2 0 0 3 3 1
2 0 0 3 3 1 1 4 4 2
3 1 1 4 4 2 2 0 0 3
4 2 2 0 0 3 3 1 4

which merge to give the 4 X 5 pseudotorus Youden design

1 4 2 0 3 1 4
2 0 3 1 4 2 0
3 1 4 2 0 3 1
4 2 0 3 1 4 2
0 3 1 4 2 O 3
1 4 2 0 3 1 4

where, while the north neighbor of the (4, 5) element 0 is 4, its south neighbor
is 1 (not 2). Borders have been included to clarify the neighbor relationships.

Example 2b also illustrates that a and b need not have the same number of
elements to construct a neighbor balanced (pseudo) torus design. Applying the
merging and twisting techniques demonstrated by Example 2 to the results of
the previous corollaries gives:

COROLLARY 3. Let v =4t + 1 be a prime. Then there is a (v — 1)/4 X
v(v — 1)/4 torus or pseudotorus design balanced for first row and column
neighbors combined and balanced for first diagonal neighbors.
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Proor. Take b as in (4), and a as any (v + 3) /4 vector with the same set
of neighbor differences as a of (4). Since w, = b, 3,4 — by = x“* D2 —x =
—2x # 0, it generates 2, so a mergeable ordering of the developed R(a, b)’s
is R, R,,..., R,, where R, = R(a,b) + (i — Dw,. The merged components
yield a torus or pseudotorus design as w; = a, 3,4 — @; does or does not
equal 0. O

The torus designs of Corollary 3 satisfy conditions (i)-(iv) of Section 1, and
so are universally optimum for the second order completely symmetric torus
lattice process with a > 0 and y > 0. If the designs are to be used in the plane,
the same neighbors are lost whether a torus or a pseudotorus design is used
and the distinction is unimportant. If it is desired to preserve neighbor balance
in the plane by bordering, this too can be done for either case. Corollary 3 and
all succeeding torus and pseudotorus results could be equivalently stated in
terms of fully bordered planar designs; the torus approach is taken for
optimality arguments and for the cohesion and simplicity afforded the con-
structions.

As with the planar components, the torus neighbor balance is such that if
two treatments appear as neighbors in columns (rows), they never do in rows
(columns). Should the error process lack the assumed row-column symmetry,
that is, should it be simply reflection symmetric rather than the assumed
completely symmetric, then universal optimality is lost. By replicating the
proposed designs with row and column neighbors reversed (multiply the design
by x) this can be accommodated and optimality regained. For the designs as
given, the efficiency calculations of Appendix 1 indicate that mild departures
from row-column symmetry are well tolerated. In particular it is shown there
that in the reflection symmetric setting, the proposed designs are two-class
partially balanced with A-efficiency no less than (v — 1) /v.

When v = q" for prime ¢ and n > 1, GF, does not have an additive
generator. In this case the R(a, b)’s, upon proper ordering, can be merged in
two directions. For instance, the nine components of Example 1 have been set
out in a 3 X 3 array so that the end rows as well as end columns match.
Merging these common ends gives the Example 3 design.

ExaMpPLE 3. A 6 X 6 knight’s move torus design with second order neigh-
bor balance. Rows and columns together are a PBIB(2) of Latin square type.

O H B O W]
DW= Ot
HOTo WwIN
LW NOWOTO
QUO Wk DN
OO gO -

Corollary 4 gives one of the possible series of this type. In terms of
differences, the key requirement is that w, and w,, the differences in the end
elements of a and b, together generate the additive group.
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COROLLARY 4. Let v =4t + 1 be a squared prime. Then there exists a
v% (v — 1)/4 X v/*(v — 1) /4 torus design balanced for first row and column
neighbors combined and balanced for first diagonal neighbors.

Proor. Take a and b as given in (4) and calculate w, = a,,3,,4 — @ = —2
and w, = b, 3,4 — b; = —2x. A mergeable Vv X Vv arrangement of the v
R(a,b)s is given by R;; = R(a,b) + (i — Dw; + (j — Dw,. O

The final result of this section is for higher powers of primes. In fact,
Corollary 4 is just a special case of this result.

COROLLARY 5. Let v =4t + 1 =q" be a power of the odd prime q, where
n > 2. Then there exist q" 2 q(v — 1)/4 X q(v — 1)/4 toruses together bal-
anced for first row and column neighbors combined and for first diagonal
neighbors.

Proor. Let a and b be as in (4) for the additive group G of GF, and form
the q(v — 1)/4 X q(v — 1)/4 torus T be adjoining g2 of the v Theorem 1
components as in the proof of Corollary 4. Let A = {c; + cyx: ¢;,¢; € Z,} be
the additive subgroup generated by w, and w,. The q" 2 toruses are T + y,
where y takes on one value in each of the ¢g"~2 cosets of G/A. O

The individual toruses of Corollary 5 are not generally equireplicate when
n> 2.

3. Two generalizations. Designs for v not necessarily of the form 4¢ + 1
can be obtained by partitioning the nonzero elements of G into more than two
subsets. Let v = 2¢m + 1 and suppose there exist subsets S;, S,,..., S,, of G,
IS;| = 2¢, satisfying (1), (2) and

(5) R(S;,S;,;) fori=1,2,..., m are each nonzero
elements of G exactly 2¢ times,
where S,, . ; is written for S;. Then construct m (¢ + 1) vectors a,, a,,...,qa,,

such that +a% = S;. The previous results can then be generalized by applying
the techniques of Theorem 1 and Corollaries 2-5, successively taking a, b as
each pair a;,a,,, (@, .1 = ap).

THEOREM 3. Let v = 2tm + 1 be a prime power. Sets Sy, S,, ..., S,, satis-
fying (1), (2) and (5) exist on G = GF,,.

Proor. Let x be a primitive element of G and
S, ={1,x™, %%, ..., x@ D"} and S,=x""19,.

S, is closed under multiplication and x*™ = —1isin S;,sog € S, = —g € S,.
By inspection of R(S;, S,), one can see that its entries are those of R, =
(x% x™ x2™ ..., x@ D)y @ (1 +x,1 +x™t 1 +x2m*+1 |1+ x@-Dm+1)



TWO-DIMENSIONAL DESIGN FOR CORRELATED ERRORS 2169

Defining R, = x'"'R,, it follows easily that R, contains the entries of
R(S;, S;.;) and R,, R,, ..., R, collectively contain the elements of
(% xlx2...,x2" D) @A +x,1+xm%, 14+x2m+l |14 @ Dmtl)
that is, each nonzero element of G 2¢ times. O

Let h be given by (1 — x™)~1 = x"* Then with a, = (x*, x**™ ... x**im),
a; = x% VYa, satisfies +a* = S, of Theorem 3. Combining these results yields
the following corollaries.

COROLLARY 6. Let v =2tm + 1 be a prime power, m > 1. There exist vm
(¢t + 1) X (¢t + 1) squares that are together balanced for combined first row and
column neighbors, and for first diagonal neighbors.

Proor. Develop the m arrays R(a;,a;,,),i=1,2,...,m. O

COROLLARY 7. Letv = 2tm + 1, m > 1 be prime. Then there exist m t X vt
toruses that are together balanced for combined first row and column neigh-
bors and for first diagonal neighbors.

Proor. For each i, connect the v arrays developed from R(a;,a;,,) by the
method of Corollary 3. O

COROLLARY 8. Letv = 2tm + 1 = q" be a power of the odd prime q, where
m,n > 1. Then there exist mq™ 2 qt X qt toruses that are together balanced for
combined first row and column neighbors and for first diagonal neighbors.

PrROOF. q" 2 gt X qt arrays will arise from each R(a,,a,,;) by applying
the technique in the proof of Corollary 5. O

The number of separate arrays in Corollaries 6-8 can be halved when
m = 2 since only one of the two pairs S;, S, and S,, S; need be used, so that
Corollaries 2-5 have been generalized. More generally, the number of arrays
can be halved if the number of times each S; is used can be reduced from
2 to 1. This requires that the number ‘of S,’s be even, so write v = 2tm’ + 1 =
4tm + 1, where m' = 2m is even. The general problem is to find subsets
S.,S,,...,8,, of G, IS;| = 2¢, satisfying (1), (2) and

6) R(Sy_1,8y) fori=1,2,..., m are each nonzero

elements of G exactly ¢ times.

Then apply the Section 2 methods to m pairs a,, b, such that +a¥ = S,;_,
and +bF = S,;,i = 1,2,..., m. Under certain conditions the sets of Theorem

3 can be so partitioned.



2170 J. P. MORGAN AND N. UDDIN

TaBLE 1
r values satisfying (7)

Primitive root

v t m r or polynomial
17 2 2 nonexist. 3
25 2 3 1,2,3 x2+x+2
3 2 nonexist.
37 3 3 2 2
41 2 5 3 11
5 2 nonexist.
49 6 2 1,2 x2+2x+5
4 3 2
3 4 1,2,3,4
2 6 2,5

THEOREM 4. For v =4tm + 1= 2tm' + 1 a prime power, the sets
S1,Sy,...,8,,, of Theorem 3, in some order, satisfy (6) if for some integer r,

(7) {1 :tx2r—1’1 i_x2m+2r—1’1 ix4m+2r—1’“.’1 ix2(t—1)m+2r—1}

is composed of t quadratic residues and t nonresidues.

Proor. Given an integer r satisfying (7), reorder the sets of Theorem 3 so
that S, = {1,x?™, x*", ... x2@"Dm} G =x2718 and S,; , =x2¢"VS,,
Sy; = x27DS, for i = 1,2,..., m. Using the relation x%™ = —1, the entries
of R(S,, S,) can be written as (x° x2™ x%™ .. .  x22-Dm)y@ (1 +x27"1 1+
a2mH2rl 1 g g2 DmAr =1y RS, 1, S,,) = x2¢7DR(S,, S,) implies
that the m tables together contain (x° x2, x4 ...,2%" " 2)®@ (1 +x2""1 1 +
x2mA2r=1 ] 4 pdmF2r=1 1 4 xAt-Dm+2r-1) The left-hand vector contain-
ing all the quadratic residues gives the result. O

Now write x” = (1 — x2™)~!, Then for a, = (x*, x**2™ ... x"*2m) and
by =x>"la;, a;=x%"Ya; and b; =x%*"Vp, satisfy +a*=3S,, , and
+bf = S,; in the proof of Theorem 4. Hence the number of arrays in Corollar-
ies 6-8 can be halved whenever (7) helds, which is not always the case (see
Table 1). The following are immediate.

COROLLARY 9. Let v = 4tm + 1 be a prime power and suppose (7) holds.
Then there exist vm (t + 1) X (¢ + 1) squares that are together balanced for
combined first row and column neighbors and for first diagonal neighbors.

CoRrOLLARY 10. Let v = 4tm + 1 be prime and suppose (7) holds. Then
there exist m t X vt toruses that are together balanced for combined first row
and column neighbors and for first diagonal neighbors.
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A small complication arises when connecting the developed R(a,, b;) in two
directions. The result for even powers of primes is:

COROLLARY 11. Let v =4tm + 1 =q" be a power of the odd prime q,
where n > 1 is even, and suppose (7) holds. Then there exists mq™ ™2 qt X qt
toruses that are together balanced for combined first row and column neigh-
bors and for first diagonal neighbors.

Proor. It is sufficient to show that the method of Corollary 5 can be used
to form q" 2 qt X qt toruses from the developed R(a,, b,)’s. Hence it must be
shown that w, = x**2m™ — x* = —2x* and w, = x®~'w, generate distinct
additive subgroups. Now —2 generates the subfield GF,, which for even n is
composed only of quadratic residues and 0, so 2 and A + 2r — 1 having

different parities establishes the result. O

The elements of GF, in GF, are powers of x*, where u = (¢" — 1)/(q — D).
So the proof of Corollary 11 holds for odd n > 1 if and only if 2r — 1 is not an
odd multiple of u. Of course the a;’s and b,’s given in the proof are only one of
many possibilities and it appears that the corollary will hold for all odd » > 1
as well.

Again, it follows from Section 2 that (7) always holds when m = 1. Next it
will be shown that (7) holds when ¢ =1, that is, that 1 + x?"~! is one
quadratic residue and one nonresidue for some integer r. Multiplying by
y = 21727 this becomes, equivalently, y + 1 is one quadratic residue and one
quadratic nonresidue for some quadratic nonresidue y. The following lemma is
proven in Appendix 2.

LEMMA 1. Let v=4m + 1 =q" be a power of the odd prime q. There
exists at least one quadratic nonresidue y € GF, such that one of {y — 1,y + 1)
is a quadratic residue and the other a quadratic nonresidue. If n > 1, such a y
may be chosen so that it is not in the subfield GF,.

COROLLARY 12. Letv=4m + 1 = q", where q is an odd prime and n > 1.
Then there exists q"~%(v — 1)/4 q X q toruses that are together balanced for
combined first row and column neighbors and for first diagonal neighbors.

Proor. This is just Corollary 11 with ¢ = 1 and x?"~! = y~1, where y is
given by Lemma 1. That y, and hence y !, is not in the subfield GF,, removes
the Corollary 11 restriction that n be even. O

Note that these designs have only (v — 1) /4 replicates.

Proper choice of y for these designs can often give balance of neighbors at
higher orders. This property is noted in Example 4, but not explored further
here, as higher order torus neighbors are more radically affected by a planar
conversion and cannot be preserved by a simple bordering. It may also be
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shown that the Corollary 12 designs are balanced lattice squares when n = 2
and balanced incomplete block designs with nested rows and columns [Singh
and Dey (1979)] when n is odd; the similar result for even n > 2 requires
further restrictions on y.

ExamMpPLE 4. A balanced lattice square for 25 treatments that is also
balanced for torus neighbors of all orders. This is the Corollary 12 design with
y~1 = x27"! = x, using the primitive polynomial x2 + x + 2. Again i is written

for x. -

11 16 15 18 2 13 18 17 .20 4 15 20 19 22
4 23 14 6 3 6 1 16 8 b 8 3 18 10
8 21 17 24 22 10 23 19 2 24 12 1 21 4

19 7 1 0 13 21 9 3 0 15 23 11 5 01
9 20 10 12 5 11 22 12 14 7 13 24 14 16

17 22 21 24 8 19 24 23 2 10 21 2 1 4 12
10 5 20 12 9 12 7 22 14 11 14 9 24 16 13
14 3 23 6 4 16 5 1 8 6 18 7 3 10 8

1 13 7 0 19 3 15 9 0 21 5 17 11 0 23
15 2 16 18 11 17 4 18 20 13 19 6 20 22 15

In closing this section it should be pointed out that the approach of (6) is
indeed distinct from that of (5) and not simply a technique for halving those
designs. To see this, put v = 25, ¢t = 3 and m = 2, for which (7) is not satis-
fied (Table 1). The following four sets satisfy (1), (2) and (6): S, =
{1, x* x8 x'2, 6 x20), S, =x2S,, S;=xS, and S, =x3S,. But it can be
checked that R(S,, S;) and R(S,, S,) do not combine to satisfy (5). With
these sets a design in two 15 X 15 toruses can be obtained.

OINMNI®

4. Designs for nonprime power v. In this section designs will be
constructed using cyclic groups for small v. In most cases the perfect balance
of Section 2 will not be attained: the approach here is to keep the range in
neighbor counts small, still allowing no like neighbors in rows, columns or
diagonals [a general prescription for high efficiency for long-range correlations;
see Martin (1986)]. The methods used are those arising from (1)-(3), but
without demanding that S; and S, are equal sized subsets and relaxing (3).
The effect of the former will depend on the method of merging the component
arrays; the latter relaxes the demand of exact diagonal neighbor balance.

Consider first the cast of v =4¢+ 3. Let S; and S, be a partition of
Z,—- 0,15, = 2¢, |S,| = 2¢ + 2, satisfying (1), (2) and

R(S,, S,) contains the nonzero elements of Z,
8
(8) with frequencies f; <f, < -+ <f,.
Let a, b be such that +a* = S, and +b* = S, and write w, = a,,, — a¢; and
wy = b, — by. Then in the v arrays {R(a, b) + g: g € Z,} of order (¢ + 1) X
(¢ + 2) each pair of distinct treatments occurs as first neighbors ¢ + 1 or ¢t + 2
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times in rows and columns combined and f7, f5,..., or f, times in diagonals.
If b is chosen such that the greatest common divisor of w, and v is (w,, v) = 1,
then the R(a, b)’s can be merged via common end columns into a (¢ + 1) X
(4t + 3X¢t + 1) cylinder design with first neighbors balanced for rows and
columns combined, the merging having deleted the excess column neighbors.
Alternatively, as a torus or pseudotorus design, the dimensions are ¢ X
(4t + 3X¢t + 1), with combined first row/column neighbor counts of ¢ and
t + 1. In either case the diagonal first neighbors are the same as in the
R(a,b)s. If (w,,v) =1, a t(4t + 3) X (¢ + 1) pseudotorus design with the
same counts can be obtained; of the three, the cylinder design is to be
preferred in planar applications. For merging in two directions analogous to
Corollary 4, if w, generates a subgroup G, of order v, and w, is such that
G, +iw, for i =1,2,...,v, (v =v,v,) are the cosets of G, in Z,, then a
vt X vy(¢ + 1) torus or pseudotorus design results again with the same neigh-
bor counts. Of course the size of a (b) can be increased so that +a* (+£b*) is
multiple copies of S; (S,), multiplying the number of rows (columns) of the
design; this may be useful for some of the small treatment numbers (see Table
2), but can further spread the row/column neighbor counts depending on the
method of adjoining the R(a, b)’s.

Having set the conditions on S; and S,, the problem is to choose a
partition that minimizes the dispersion in the f;’s of (8), which will be
discussed after the other cases for v are covered.

For v = 4¢ + 1 the procedures are the same except that |S,| = |S,| = 2¢.
Hence a pseudotorus design will be balanced for combined first row and
column neighbors, while the cylinder row/column neighbor counts will be ¢
and ¢ + 1.

When v is even the order 2 element requires that a larger a or b be used if
the row/column neighbor counts are to be kept reasonably balanced. For
v = 4¢, partition Z, — 0 as S;, S,, ISl = 2t — 1, |S,| = 2¢ satisfying (1), (2)
and (8). Now find a and b such that +a* = two copies of S; and +b* = S,.
Then in the 2¢ X (¢ + 1) array R(a, b) (i) the symmetric row differences are 2¢
copies of S,, (ii) the symmetric column differences are 2(¢ + 1) copies of S,
(iii) the symmetric diagonal differences are R(+a*, + b*) = two copies of
R(S,, S,). Since each column of R(a, b) gives two copies of S;, the 2¢ X 4¢2
cylinder designs will be balanced for combined row and column neighbors. Any
torus or pseudotorus design will have, row/column neighbor counts of 2¢ — 1
and 2t.

For v = 4t + 2 sets S;, S, satisfying (1), (2) and (8) with |S,| = 2¢ + 1,
IS,] = 2¢ are required. Then with a, b such that +a* = two copies of S; and
+b* = S,, in the 2(¢ + 1) X (¢ + 1) array R(a,b), (iv) the symmetric row
differences are 2(¢ + 1) copies of S,, (v) the symmetric column differences are
2(t + 1) copies of S;, (vi) the symmetric diagonal differences are
R(+a*, + b*) = two copies of R(S;, S,). So torus or pseudotorus designs will
have combined row and column neighbor counts of 2¢ and 2¢ + 1; for cylinder
designs the counts are 2¢ + 1 and 2(¢ + 1), or 2¢ and 2(¢ + 1), as the arrays
are adjoined via rows or columns, respectively. Interesting here is that the row
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TABLE 2
Partitions of Z, — 0 and possible design sizes

Single array minimum

v S, fo — 11 design sizes*
7 1,6 1 2% 142X 7
8 1,4,7 1 4X16{/3%X166x812x 424 X2
10 1,2,5,8,90r1,4,5,6,9 3 5% 2010 X 1025 X 450 X 2
11 1,3,8,10 2 3% 33/2x3322x%3
12 3,4,6,8,9" 1 6 X 36(5 X 3610 X 1815 X 12
3,5,6,7,9% 2 20 X 930 X 660 X 3
14 1,2,5,7,9,12,13 2 - 7X4214 X 2149 X 698 X 3
15 1,2,5,10,13, 14 2 4 X 6073 X609 X 20
1,3,4,11,12,14 2 15 X 1245 X 4
16 1,2,4,8,12,14,15 2 8 X 647 7 X 64 14 X 32
28 X 1656 X 8112 X 4
18 1,2,4,5,9,13,14,16,17" 2 9 X 7218 X 36 27 X 24
1,2,4,8,9,10,14,16,17 2 54 X 1281 X 8162 X 4
1,2,6,7,9,11,12,16,177 2
19 1,2,6,8,11,13,17,18 2 5X95,4%X9576 X5
20 1,2,3,7,10,13,17,18,19% 2 10 X 100¢ 9 X 100 18 X 50 36 X 25
1,2,4,9,10,11,16,18,19* 3 45 %X 20 90 X 10180 X 5
21 1,2,3,5,10,11, 16, 18,19, 20 2 5% 10515 X 35
22 1,2,3,5,10,11, 12,17, 19, 20, 21 2 11 x 11022 x 55
1,3,4,5,8,11,14,17,18,19, 21 2 121 X 10242 X 5
1,2,4,6,7,11,15, 16, 18, 20, 21* 3
23 1,2,3,7,9,14, 16,20, 21, 22 3 6 X 13875 x 138115 X 6
24 1,2,4,5,10,12, 14,19, 20, 22, 23" 2 12 X 144¢ 11 X 144 22 X 72
1,2,3,7,10,12, 14,17, 21, 22, 23* 3 33 X 48 44 X 36 66 x 24

88 X 18132 X 12264 X 6

*{ = cylinder design; all others are toruses.
w, and w, must both be even.
*Does not minimize T, f2.

and column neighbor counts will be balanced if +&* is two copies of S, and
the R(a, b)’s are adjoined by rows.

All sets of S, S, on Z, giving the smallest value of Ln, f, where n; is the
number of elements of Z, occurring with frequency f; in R(S,, S,), are given
in Table 2 for v < 24, along with possible design sizes. On the torus for the
second order autonormal process this method gives the MS-optimal design
within this class. In all of the cases here at least one of the partitions also
minimizes f, — f;, the value of which is listed for each partition.

As an example of the above techniques, take v = 8. Then a = (0,1,5,4)
satisfies +a* = two copies of S; of Table 2 and b =(0,3,1) has +b* =
(2,6,3,5) = S,. For these two vectors, the developed R(a, b)’s joined in two
directions give the 6 X 8 design displayed in Section 5.

Only two sets S;, S, have been chosen here so as to obtain designs in single
arrays. It is not, however, always the case that for given S; and S,, a and b
can be found so that w, and w, are of appropriate orders to generate a single
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array design. When v is even, if the number of odd elements in S, is a
multiple of 4, then for the constructions given above, both w, and w, must be
even and thus together generate a subgroup of order no greater than v/2. In
general if the subgroup G, generated by w; and w, is of order v, then the
initial torus found by merging the R(a, b)’s according to w, and w, may be
developed into v/vg; toruses by addition of elements of distinct cosets of G4
(this is analogous to Corollary 5). Alternatively a different partition (with
larger n, f2) could be used; these are also listed (where necessary) in Table 2.

Designs with size marked ¢ in Table 2 are cylinder designs; such designs are
given only when they result in exact row/column neighbor balance. Two
comments concerning variants on the design sizes are worthy of mention.
First, any torus design or cylinder design can be divided into sections with all
neighbor counts preserved by bordering. For instance, a 4 X 16 cylinder design
for eight treatments could be layed out as two 4 X 8 side-bordered arrays.
Secondly, as mentioned above, larger designs can be obtained by choosing a
and/or b such that their differences give replicates of the required sets,
though care must be given to the row and column counts if this is done. Hence,
for instance, a 7 X 16 torus design for eight treatments is a possibility.

Given the sets S; and S,, construction depends only on appropriate choice
of a and b. For the second order autonormal process on the torus, this
amounts to obtaining w; and w, of the desired orders. Practically speaking for
planar applications, one can be guided by the general recommendations of
Martin (1986) for long-term correlation structures: Having already insured no
like first and second order neighbors, efficient designs should have as few like
third order neighbors as possible, and to keep var(; — 7;) as constant as
possible balance neighbors to as high an order as possible. The designs in this
paper will not be efficient for short-term correlations, which require a large
number of like diagonal neighbors.

5. Efficiency calculations. In this section numerical comparisons are
used to investigate the behavior in the plane of some of the constructed
designs. The model is as given in Section 1, but with planar correlations

1

2
) CL T cos(g0,)cos(h6,)

% f / 80, 2
—n/—x1 — 2acos(60;) — 2a cos(8,) — 4y cos(6,)cos(6,)
where |i —i'| = g, |j —Jj'| = h, in this section only s = 1 array is considered
and |la| + |yl < 1 [see Moran (1973)]. This is the stationary second order
autonormal planar process discussed in Section 1, which is different than the
nonstationary planar process considered by Gill and Shukla (1985) and Uddin
and Morgan (1991).

Let p,j, = ps, be the correlation for plots separated by g rows and h
columns. As mentioned in Section 1, manipulation of « and vy affords consider-
able flexibility in the p,,. In the calculations below, p,, = 0.1,0.2,...,0.5 and
P = p{{f_ . This diagonal correlation p,, is the same as that of Martin’s

cov(e;;, fi'j') =

de, de,,
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(1986) process c,, for which p,;, = p Y8 *+h* "4 reasonable model for field trials

with roughly square plots. The values of a and vy actually used, along with the
first few correlations, are

a Y P1o P11 P20 P12
0.0881 0.0192 0.100 0.039 0.012 0.007
0.1485 0.0298 0.200 0.103 0.048 0.034
0.1890 0.0284 0.300 0.181 0.109 0.084

- 0.21635 0.02084 0.400 0.274 0.194 0.160
0.23422 0.011822 0.500 0.379 0.300 0.263.

The C matrix for estimation of treatment contrasts is

C=X|R'-

R YJR | X,

TR™1
where X is the plot/treatment incidence matrix, R the correlation matrix for
e, and J and 1 are a matrix and vector of ones, respectively. Then

TR~ ) ) v—1
+ Y ) re¥I(r Y > 0) = ot

u+u

tr(C) < tr(R™Y) —

v

say (R™1 = (r**)). Let A\, <Ay < -+ <A,_; be the nonzero eigenvalues of
C~. A universally optimum design arrived at by the method of Kiefer (1975)
would have A, = A, = --- = A,_; = A* providing a standard against which to
evaluate the proposed designs; commonly used are the A (£A;), E (A,_,) and
D (I1A,) criteria. In addition, S = A,_, /A, provides a simple measure of the
dispersion in the design. This is just the ratio of the largest and smallest
variances of estimated treatment contrasts, which is 1 for the hypothetical
universally optimum design.

Consider first the design of Example 2b for five varieties. This design may
be extended row-wise by successively adding 1 (mod 5) to the last row; the
5 X 5 thus obtained is design D5.185 of Martin (1986) with rows and columns
interchanged and is a Latin square. Values of A, E, D and S for the 4 X 5
and 5 X 5 each appear in Table 3. Note in particular that all of the A-

TaBLE 3
Two designs for v = 5 relative to universal optimality*

P10 A E D S

0.1 (0.9998, 0.99998) (0.990,0.994) (0.9995, 0.9999) (0.971,0.991)
0.2 (0.999, 0.9999) (0.984, 0.988) (0.998, 0.9998) (0.951,0.983)
0.3 (0.999, 0.9998) (0.979, 0.985) (0.997,0.999) (0.936,0.978)
0.4 (0.998, 0.9995) (0.974,0.983) (0.995, 0.998) (0.924,0.977)
05 (0.997,0.999) (0.968, 0.983) (0.991, 0.996) (0.914,0.978)

* Within the parentheses, the first entry is for 4 X 5; the second for 5 X 5.
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TABLE 4
6 X 8 for v = 8 relative to universal optimality

Pro A E D s

0.1 0.999 0.952 0.996 0914
02 0.997 0.917 0.988 0.857
0.3 0.995 0.891 0.979 0.818
0.4 0.993 0.873 0.970 0.791
05 0.990 0.859 0.958 0.772

efficiencies are greater than 99% and that the loss is small even in terms of S.
Similar values are obtained for the 6 X 5, 7 X 5 and so on.

Regarding the 5 X 5 square relative to his process (c,), which is close to the
process considered here, Martin (1986) remarks that it ““... has almost perfect
second order balance. This was the optimal design found, and it seems unlikely
that any better design exists.” It is seen that the reason for the near second
order balance is that this degree of balance is achieved on the torus and that
this design is a member of a family of torus designs for five treatments that
exhibit high efficiency and balance.

Examined next is a 6 X 8 design for eight varieties based on the Section 4
approach (Table 4). The design, constructed using a = (0,1,5,4) and b =
0,3,1), is

—_OUR Ol O
OO W
DNOOTO N -
Q= O = O
W= Jwhn
AN =D OO
OO0 kW
SJWNDWI®

As compared to the designs for five varieties, the behavior here is less
satisfactory, reflecting the poorer approximation to neighbor balance. The
A-efficiencies still exceed 99% however.

To better see the effect of controlling neighbors, consider this design due to
Preece (1976):

U= DO W
O UTa®
00 WHWON
N»hqoocn\»—a
O UToWND
!—‘0005«‘]»#10

This is a generalized Youden design with the additional property that each
3 X 3 corner is a complete replicate, so that like varieties are very well
separated. There is, however, a single like diagonal neighbor pair. The design
of Example 3 is compared to this design (first value) and to the hypothetical
universally optimum design (second value) in Table 5. Gains in A-efficiency for
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Comparison of 6 X 6 designs forv =9

P10

A

E

D

S

0.1
0.2
0.3
0.4
0.5

(1.004, 0.999)
(1.010, 0.997)
(1.016, 0.995)
(1.020, 0.993)
(1.022,0.991)

(1.095, 0.963)
(1.166, 0.933)
(1.212, 0.908)
(1.236, 0.888)
(1.248, 0.872)

(1.021, 0.996)
(1.047,0.988)
(1.068,0.979)
(1.081, 0.970)
(1.090. 0.961)

(1.144,0.931)
(1.251,0.880)
(1.321,0.838)
(1.363, 0.805)
(1.385,0.782)

the (torus) neighbor-balanced design are small, but are more substantial with
respect to the other criteria.

The planar designs so far examined have been obtained by separating torus
designs between two rows and two columns and it should be noted that where
this is done can affect the planar behavior. It has also been discussed how the
balanced neighbor counts of the torus can be maintained in the plane by
bordering; in some cases it may be desirable to increase the size of an
unbordered planar design by addition of one of these potential borders as an
actual row or column of the design. This is especially relevant to Corollary 3
designs, which suffer the greatest departure from neighbor balance in their
planar versions because of the repeated set of neighbors lost by the separation
of two rows. Adding, say, the row that would serve as the north border of a
(v — 1) /4 X v(v — 1)/4 unbordered design, gives a (v + 3)/4 X v(v — 1)/4
unbordered design with the property that each pair of neighbors occurs
(v + 3)/4 or (v — 1)/4 times in rows and columns combined and (v — 1)/4 or
(v — 5)/4 times in diagonals. This is the closest approximation to exact
neighbor balance achievable in an unbordered planar design of this size.

To illustrate this, Table 6 compares 3 X 39 and 4 X 39 designs for v = 13.
The designs are constructed using a = (0, 1,4,8) and b = (0,6, 11,9) and the
column separation is between the first two columns of R, = R(a,b).
Both designs perform well, the 4 X 39 design holding a slight advantage in
A-efficiency and, as expected, a somewhat stronger edge in the E and S
criteria.

TABLE 6
Two designs for v = 13 relative to hypothetical optimum*

P10 A E D S

0.1 (0.998,0.9998) (0.939,0.981) (0.991, 0.999) (0.894,0.963)
0.2 (0.995,0.999) (0.895,0.967) (0.973,0.996) (0.823, 0.935)
0.3 (0.993, 0.999) (0.866, 0.956) (0.956,0.993) (0.776,0.916)
0.4 (0.990, 0.998) (0.847,0.948) (0.941,0.988) (0.745,0.903)
05 (0.988, 0.998) (0.836,0.943) (0.928, 0.983) (0.726,0.894)

*Within the parentheses, the first entry is for 3 X 39; the second for 4 X 49.



TWO-DIMENSIONAL DESIGN FOR CORRELATED ERRORS 2179

In conclusion, the calculations given here relative to an unattainable bound
indicate that optimum torus designs can be excellent planar designs.

APPENDIX 1

Efficiency when the correlations lack row-column symmetry. Here
the proposed designs are examined for the torus model E(y;;,) = p; + 7(;
but with errors following the reflection symmetric version of the second order
autonormal process, for which the row and column correlations are not equal:

o?varl(e) =1, ® I -ayI, ®G, —a,C, ®I, —vC, ®C

mymg ’"2]
with a; > 0, a; > 0 and y > 0, and for positive definiteness 1 — 2a; — 2a, —
4y > 0. The conditions for universal optimality are the same as for the
completely symmetric model except that neighbor counts must be balanced in
each of rows and columns rather than just in rows and columns combined. Let
Ao=ZL,rZ; and A, = L,r;, ;73 ;, where ry ; is the replication count for treat-
ment i in torus k. For s m, X m, toruses satisfying (i)-(iv) of Section 1 but
having disjoint sets of row and column neighbors, the C-matrix of the reduced
normal equations has diagonal entries
sm,m A
cii = ; 2 - mlfnz(l — 2a; — 2a, — 4v)

and off-diagonal entries

4sm m, A
Cij = _v(—v_"l’)‘(al +y) - mlmz(l - 2a; — 2a, — 4v)
or
4sm m, A
Cij =~ m(az +v) - m1m2(1 — 2a; — 2a, — 4v).

Restricting now to Section 2 designs for prime powers, the two values of c;;
occur as the difference in the field elements corresponding to treatments i and
j is or is not a quadratic residue. The pattern of this C-matrix is just that of a
two-class partially balanced incomplete block design of pseudocyclic type [see
Raghavarao (1971)], from which the nonzero eigenvalues are easily derived as
(v — 1)/2 copies of each of e; = e + d and e, = e — d, where

2(a; — az)smym,

Vo (v-1)

and
smymy[v — 8(1 — 2a; — 2a, — 4v)]
v(v—-1)

with 8 = 1 + (v26(1 — 8))/(m,m,)? and 8 = fractional part of (m,m,)/v. The
common nonzero eigenvalue of a universally optimum design of the same

e =
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parameters is just e, so that the A-efficiency of the proposed design is

2/

As expected, this expression is minimized over the allowable region when all of
the correlation is concentrated in one of rows and columns to the exclusion of
the other, at (a;, a,,y) = (0,0.5,0) or (0.5,0,0). Thus the A-efficiency is at
least (v — 1)/v.

The dispersion in the C-matrix has a stronger effect on the balance proper-
ties. The S criterion, given by e, /e, or e,/e; as a; < ay or a; > a,, is also
minimized at (a;, @y, v) = (0,0.5,0) or (0.5,0,0), the lower bound being
(Vv — 1)/(Jv + 1). Likewise the E-efficiency = 1 — (|d|/e) has lower bound
(Vv — 1)/ Vv at these points.

The bounds above are approached as the process becomes one-dimensional
or nearly so. Though it is not expected that the designs under consideration
would be used in such extreme cases, the calculations do indicate that as
differences in row and column correlations grow large, designs balanced for
neighbors in each of rows and columns will become superior. In so far as such
asymmetry is accompanied by small vy, diagonal neighbors become of less
concern, so that in the plane designs such as quasicomplete Latin squares and
their analogues for m,; and/or m, not a multiple of v [definitions, construc-
tions and references are given by Afsarinejad and Seeger (1988)], when they
exist, should be good alternatives [compare model 1 of Gill and Shukla (1985)].
The expressions derived above also indicate that the proposed class of designs
is reasonably robust for small departures from row-column symmetry of the
process.

1 1 1 d? 4v(ay — az)®
e+d e—d| e

+ - 3 -
[v—-98(1-2a; — 2a, — 4y)]

APPENDIX 2

Proof of Lemma 1. Write v =q" = 4m + 1, q is prime. Partition GF,
into the ¢" ! disjoint ordered cycles of length g given by the cosets of
¢, =(0,1,2,...,q9 — 1), where each cycle (y,,y,,...,y,) is ordered so that
¥; —¥;-1 = 1. Then replace each y by x(y), where

1, if y is a4 quadratic residue,
x(y) = { —1, if y is a quadratic nonresidue,
0, ify=0.

Now, all ¢g"~ ! cycles taken together have 4m + 1 ordered pairs of adjacent
elements. Of these, m are (—1,1), m are (1, —1), m are(—1, —1)and m — 1
are (1, 1) [Storer (1967), page 30].

It will first be shown that there is at least one ordered triple (-1, —1,1) or
(1, —1, —1). Suppose this is not so. Then if a cycle contains two consecutive
—1’s it must contain only —1’s and each such cycle will contain ¢ pairs
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(=1, —1). Hence the number of (—1, —1) pairs is a multiple of ¢ = g|m, that
is, ql(¢™ — 1)/4, which is impossible.

Now let n > 1. It will be shown that there is a triple (1, —1, —1) or
(=1, —1,1) not arising from c,. The nonzero elements of ¢, are in some order
x“ fori=1,2,...,q — 1, where u = (q" — 1)/(q — 1). If n is even, these are
all quadratic residues and the result is established. If n is odd, these have
(¢ — 1)/2 quadratic nonresidues, so that the number of (—1, —1) pairs in
x(c,) is j, say, and the number of such pairs in the other ¢g"~! — 1 cycles is
m — j, where 0 <j < (q — 3)/2. Suppose none of the desired triple occurs
outside of x(c,). Then arguing as above, if two consecutive —1’s occur in one
of these cycles, the cycle contains only —1’s. Hence q|(m —j), that is,
4ql(q" —4j— 1) =j=(q — 1)/4 = there are (¢"~ ! — 1)/4 cycles composed
solely of —1’s and 3(¢™~! — 1) /4 cycles containing no (—1, — 1) pairs.

The proof is completed by counting ordered triples among the ¢" ! — 1
cycles excluding x(c,). There are (¢ — ¢q)/4 triples (-1, -1, —1), ¢ from
each of the cycles composed only of —1’s. There are (¢" — q)/4 triples
(1, — 1, 1), one for each occurrence of —1 not in x(c,) or the cycles of —1’s. To
count the number of (1,1, —1) triples, note that since (1, —1, —1) does not
occur in these cycles, this is equal to the number of (1, —,— 1) triples where
the middle element is arbitrary, that is, this is the number of pairs (w, w + 2),
w & GF,, such that w is a quadratic residue and w + 2 is not. Multiplying by
271 this is the number of (1, —1) pairs if 2 is quadratic, or the number of
(—1,1) if 2 is not quadratic, among these cycles. In either case this is just the
number of —1’s in the 3(¢g"~! — 1)/4 cycles excluding x(c,) and the cycles of
—1’s, since for these cycles, every —1 is preceded and succeeded by a 1. This
number is then easily counted as (¢” — q)/4. A similar argument shows that
the number of (-1, 1, 1) triples is also (¢ — ¢)/4.

With the q triples of x(c,), all triples are now accounted for. In particular,
after excluding x(c,), there are no triples of the form (1,1,1), (—1,1, —1),
(-1,-1,1)o0or (1, -1, —1). So the g"~! cycles are x(c,), (g"~! — 1)/4 cycles
of —1’s and 3(¢q"~! — 1)/4 cycles composed of consecutive, disjoint triples
(1,1, —1). This implies that 3|q. Since g is prime, g = 3. But with odd n,
3" # 1 (mod 4), a contradiction.
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