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INTERACTION SPLINE MODELS AND THEIR
CONVERGENCE RATES!

By ZEHua CHEN

Australian National University

We consider interaction splines which model a multivariate regression
function f as a constant plus the sum of functions of one variable (main
effects), plus the sum of functions of two variables (two-factor interactions),
and so on. The estimation of f by the penalized least squares method and
the asymptotic properties of the models are studied in this article. It is
shown that, under some regularity conditions on the data points, the
expected squared error averaged over the data points converges to zero at a
rate of O(N~2m/@m+1) a5 the sample size N — » if the smoothing
parameters are appropriately chosen, where m is a measure of the assumed
smoothness of f.

1. Introduction. Consider a system (y, x) which can be described by
(1) y;=f(x;) +e, i=1,...,N,

where f is an unknown function, the x,’s are d-dimensional vectors of
covariates, and the ¢;’s are i.i.d. noise with mean 0 and variance o2. The
objective is to estimate f from N pairs of observations (y,,x;). If d is large,
there is a major difficulty: the curse of dimensionality. Roughly speaking, the
curse of dimensionality refers to the fact that in a high-dimensional space, the
amount of data required to achieve a desired accuracy is impossible to obtain
in practice. To bypass this difficulty, efforts have been made in the literature
mainly by reducing the dimensionality of model (1). Friedman and Stuetzle
(1981) proposed projection pursuit regression which essentially models f as
the sum of univariate functions on one-dimensional projection spaces, that is,

f(x) = fi(@x) +fy(a5x) + - +f,(a,X).

Stone (1985) proposed additive model methodology which models f as an
additive function of the covariates, that is,

f(X) =fo + fi(xy) + fa(xg) + -+ +fy(xg),

where [f(x;)dx; =0, and the boldface letter denotes a vector while the
lightface letters denote the components of the vector [see also Buja, Hastie and
Tibshirani (1989)].
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1856 Z. CHEN

These methods are successful in a variety of problems. But projection
pursuit regression lacks a clear interpretation, which is a practical drawback.
Additive models are not suitable when interactions among the covariates are
present.

In this article, we consider an alternative method: interaction spline models.
An interaction spline models f as a constant plus the sum of functions of one
variable (main effects), plus the sum of functions of two variables (two-factor
interactions), and so on. For example, a function of three covariates might be
modeled as

f(xy, 29, 23) = fo + f1(x1) + fa(x2) + f5(x3) + fro(x1, %2) + fas(x4, x3),

where the components integrate to 0 on their domains.

The basic idea of interaction splines appeared in Barry (1983, 1986) and
Wahba (1986) who coined the name “interaction spline models.”” The terms
“main effects’’ and ‘‘interactions’ are borrowed from the analysis of variance.
Interaction spline models may be viewed as the analysis of variance general-
ized to continuous functions. They are capable of overcoming the difficulty
caused by the curse of dimensionality while, at the same time, being more
interpretable than projection pursuit regression and more flexible than addi-
tive models. Interaction splines have a strong potential for empirical modeling
of responses to economic and medical variables, and represent a major advance
over the usual parametric models.

Gu, Bates, Chen and Wahba (1989) developed algorithms for the computa-
tion of interaction splines while Gu and Wahba (1991) provided an elegant
algorithm for simultaneously choosing smoothing parameters. Chen (1989)
has proposed a procedure for model selection.

In this article, we study the asymptotic behavior of interaction splines. Let
{x;: i =1,..., N} be the data points satisfying some regularity conditions.
Suppose [ belongs to the space of tensor products of Sobolev spaces of order
m. Define the prediction mean squared error by

1N 2
Ry = ”N‘igl(f(xi) "f(xi)) ,

where f is the estimate of f. We are going to show that, under the extra
assumption that 2m > d, the expected prediction mean squared error ER
converges to 0 at a rate of O(N~2m/(2m+D),

The article is organized as follows. We describe interaction spline models
and their estimation in Section 2 and state the result concerning the conver-
gence rate in Section 3. Some technical details are then given in Section 4.

2. Interaction spline models. We describe the models to be studied in
this section. For an interaction spline model, we must first construct a
reproducing kernel Hilbert space (r.k.h.s.) to accommodate the underlying
regression function f. This is done by forming the tensor product of Sobolev
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spaces of real-valued univariate functions. In this article, we confine the
domain of f to the unit cube [0, 1]%.

The Sobolev space of real-valued univariate functions with order m and
domain [0, 1], denoted by W{™), is defined by

W™ = {fIf® abs.cont.,» =0,1,...,m — 1; f™ € L,)}.

Define an inner product on W{™ by

m-—1

(f,8)= X (L,f)(L,g) + folf“"’(u)g‘"”(u)du,

v=0

where L, f= [3f®(u)du. The space W{™, endowed with this inner product,
is a r.k.h.s. with reproducing kernel (r.k.) given by

R(s,6) = ¥ k(o)(0) + (~ )" hun(ls = 1]),

where £, is the vth normalized Bernoulli polynomial satisfying Lk, = 5,,,
8,,, being the delta function, and [¢] is the fractional part of ¢. See, for example,
Craven and Wahba (1979).

The tensor product of two r.k.h.s.’s E and F, denoted by E ® F, is defined
by

EoF- {f(xl,xg — Y d(x)bi(x):
i=1

¢,€E y,€eF,i=1,...,n;n=1,2,...
The corresponding inner product on E ® F is defined by

n m
(2) <f’g> = Z Z <¢i,¢j>E<¢ia¢j>F,
i=1j=1
where f(x;, x,) = L7_;¢,(x)y(x;) and g(x;, x,) = L7 1J>j(x1)t/~/j(x2). A par-
ticular function may admit many different representations but the inner
product, {f, g, is independent of the particular representation chosen. See
Aronszajn (1950), page 358.
If E and F admit orthogonal decompositions given by, respectively,
E-E, ®E,® - ®E,
F=F oeF,® - ®F,

then E ® F admits the orthogonal decomposition given by

P g
E®F=) ) E oF,
i=1j=1
The following results can be found in Aronszajn (1950): The tensor product of
r.k.h.s.’s is again a r.k.h.s. and the r.k. of the product space is the product of
the r.k.’s of its factors. The direct sum of orthogonal reproducing kernel
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Hilbert subspaces is again a r.k.h.s. and the r.k. of the sum is the sum of the
r.k.’s of its components. The above definitions and results can be extended to
the tensor product of d r.k.h.s.’s with d > 2.
Now we consider the space ® ¢ W{™), the d-fold tensor product of W{™. Let
W, = span{1},
W, =span{k,:v=1,...,m — 1}
and
W, ={f: f® abs.cont.,L,f=0,v=0,1,...,m — 1; f"™ e L%}
These spaces are mutually orthogonal reproducing kernel Hilbert subspaces of
W™ with their r.k.’s given by, respectively,

Qw(t,s) =1,
m—1

Qw(t,s) = L k,(t)k,(s)
v=1

and

Quft,5) = kn(t)kn(s) + (=)™ kan([t = 5]).
It can be easily checked that W™ admits the orthogonal decomposition
Wim =W, o W, & W,.
In what follows we attach a covariate to each of the components of W{™ in
its subscript to indicate that the elements in the component are functions of

the covariate. If follows from the properties of the tensor product of r.k.h.s.’s
that ® W™ is a r.k.h.s. with an orthogonal decomposition

d 2 2

(3) QwWm=Y - LW, 8 W,

v;=0 vg=0

and that the r.k. of ® ‘W™ is given by

d
Qw(t,s) = .I;IIR(ti’ 8;)
2

Y Z Qw (tv 81) QW,,d(td’ Sq)-
vy=0 vg=0
Noting that Wo @ W, . =W, . ® W0 W, ..
the decomposition (3) as

d

®W2(m)=W0 i {

for any v and i, we can rewrite

(4) Z {

2
@...@{ Z 2 ...®w)d,xd}’
vi=1
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The formation (4) shows explicitly the main-effect-and-interaction structure of
® ?W§™. The subspaces in the braces of the first sum are the spaces of main
effects and those in the braces of the second sum are the spaces of two-factor
interactions, and so forth.

We illustrate how to obtam the explicit form of the inner products on the
component spaces of ® W ™ through the following example. Let f and g
belong to W2 , W, a.nd admit the representations f= L7 ,ff? and
g = L7 ,g}g}, respectively. By definition

n

(f,8)=X X {ftg{f2 gl

i=1j=1

lamfil 0mg} & 1amfi2 amgj2 p
e X
fo dxr dxp 1f0 oxyr dxpr 2

n m 2m( £1£2\ 92m( ;1,2
Y 8 i) e o g,

i=1j-17070 ox{" 0xg®  dx{"dxy’

1,1 02mf a2mg
_f 0 Ox{" dx3" dx{" dx3"

dx,dx,.

The components of ®¥W§™ in (3) will be referred to as the fundamental
subspaces of ®¢W{™. These fundamental subspaces are then used to con-
struct the space of regression functions in an interaction spline model. An
interaction spline model might be stated as follows:

=f(xi)+£i, i=1,...,N,
feH,

(5)

where H is the direct sum of some fundamental subspaces of ® W""’ For
example, for an additive spline model, H = W, ® £¢_((C2_W, . }. A specific
example is the model containing the main effects of x,, x, and x5 and the
two-factor interaction between x, and x,, for which

H=W0€BE3{ZW } {Z Z s © Wi, e,

i=1 vi=1vy=1

In a smoothing spline model [see, e.g., Craven and Wahba (1979)], the
underlying regression function f is estimated by minimizing over W{™ the
sum of squared residuals plus the penalty functional A[J(f(™)(¢))? dt which
annihilates all the polynomials up to degree m — 1. Analogously, we estimate
f in model (5) by minimizing over H the sum of squared residuals plus a
penalty functional which annihilates all the tensor products of polynomials up
to degree m — 1. An explanation for doing so from the Taylor expansion’s
point of view is given by Eubank (1988), Chapter 5, for smoothing spline
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models. The same explanation applies to the interaction spline models. In the
remainder of this article, we pull out the tensor products of polynomials up to
degree m — 1 from the fundamental subspaces in H and treat them separately
as a space H,. For the sake of convenience, we denote, in what follows, the
fundamental subspaces in H with the tensor products of polynomials up to
degree m — 1 pulled out by generic notations H;, j = 1,..., p, p being the
total number of fundamental spaces in H.
Let

(6) H-H,eH, o - oH,.

The f in model (5) is then estimated by the solution to the problem:

2

p

2

+ Y AN
Jj=1

N

- Minimize 51\72:"1 ( y; — éo fi(x;)

subject to f; € H;, j =0,1,...,p,

where f=Y2_,f; and Il - Il is the norm || - || on H restricted to H ;- Note that
WANZ = NF13 =112

The solution for (7) exists and is uniquely given by functions of the form

R M
o) = £ 0,00,

N
fi(x) = X (c:i/2,)Q;(x;,%x), j=1,...,p,
i=1

where M is the dimension of H,, ¢,(x) = k,(x)k,(x,) - -+ &, (x,) for some
Vi, Vg ..., Vg, v = 1,..., M, which span H,, and @;(t,s) is the r.k. of H;.

The coefficients d = (d,,...,d ;)" and ¢ = (cy,...,cy)” are obtained by
solving

(8) (Q, +Nl)e+Td =y,
(9) T'ec =0,
where

P

Q)= Z (l/Aj)Qj,
=1

j=
Q = (Q(x:,X4)) yon
and

T = (¢.(x:)) nxu-
For derivation of the above results, see Chen, Gu and Wahba (1989).
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To illustrate the idea, consider the example of an interaction model with
m = 2,d = 2. Then

p =3,
H, = span{l, ki(x1), ky(x2), k1(x1)k1(x2)}’
H, = W2,x1’
H, = W2,x2’

H3 = {Wl,xl ® W2,x2} ® {W2,x1 ® Wl,xz} & {W2,x1 ® W2,x2}’

a2f. \?
IIfllI2=f01 i) dx,,

dx?

2

o%f.

2 1 2
= — | dx,,
Il = [ ax%) 2

3 2
1 9%,
f 5 i dx2) dx,
0 0x1 0x2

3 2
s 1 ;1 fs 1
= ——dx,| dx, +

£l j;) foaxlaxg 1) 2 fo

+f1f1( o )2dx d,.
070 | dxZax2 1o
In the above example, we have M = 4 and
$y(x) = 1,
$o(X) = ky(x,),
$3(X) = ky(x3),
G4(x) = ky(x1) ky(%3),
Qu(x,X') = ky(x1) ka(x7) — ky([x, — 21]),
Qy(X,X') = ky(x5) ky(x3) — ky([22 — x3])

and
Q3(X,X') = ky(x;)Ry(x7)Qa(X,X') + ky(x2) ky(x3)Qy(X,X')
+ @y(x,X')@,(x, X').

Let f= X2 o f'j, and f = (f(xl), R f(xN))'. Then f can be expressed as the
product of a matrix A(A), which will be referred to as the influence matrix,
and the data vector y, that is,

f=A)y.
Let

Ay(A) = Q(Q, + NI) ™!,
E()) =N(Q, + NI)'T(T"(Q, + NI)'IT)—IT'(QA +NI)™..
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It can be obtained from (8) and (9) that

A(X) =Ay(A) + E(A).
It can also be proven [cf. Craven and Wahba (1979), page 400] that
(10) tr A%(A) < trA%(A) + 3M,

where M is the rank of T.

The tensor product space ®dW2(’”) satisfies natural identifiability condi-
tions. That is, any fundamental component of a function in ®¢W{™
is integrated to 0 with respect to any of its arguments, for example,
Jof x)dx; =0, [3f;(x;,x;)dx; = 0, for any i, j = 1,...,d, and so on, which
is analogous to the ANOVA.

An additive model in the class of interaction spline models is a model with
the space of regression functions H = W) & --- & W{"?). The smoothness
properties imposed on W™ are the usual assumptions placed on the additive
components in an additive model. Thus the class of interaction spline models
described in this article is at least as rich a class as the additive models in the
literature.

Concerning the modeling of interactions, Breiman (1989) proposed to model
a two-factor interaction, say f(x,,x,), as ¢(x)i(x,) or ):3’=1¢> (2P (x5). In
the framework of interaction spline models, an interaction is modeled as the
sum of products of univariate functions, which coincides with Breiman’s idea
in the case of two-factor interaction.

The tensor product space ® dWé’"’[O, 1] is different from the Sobolev space
W£4m)([0, 1]%). The membership of W{")([0, 1]%) requires all the derivatives up
to order dm while the membership of ®dW2(’”’[0, 1] requires only a part of
them. Neither one of the two spaces completely contains the other. The reason
we choose to use the tensor product space is because of mathematical conve-
nience.

3. Convergence rate. We give our main results in this section. Suppose
{x,:i=1,..., N}is a tensor product design given by

{xi =(xi1,1,xi2’2,...,xid,d)|1k =1,...,n,; k= 1,...,d}, N=n; - ng

where

xj,k=j/nk7 j=1,"‘,nk,k=1,...,d.

Let ER, denote the expectation of the prediction mean squared error R
with respect to y.

THEOREM 1. Suppose (5), (6) and the above assumptions on the data points
hold and 2m > d. Then ER, tends to 0 at a rate of O(N~2™m/@m+D) if the
smoothing parameters A;’s are chosen as O(N~2m/Gm+D),
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Proor. First, we can write ER 5 as the sum of a bias term and a variance
term:

1 2
ERy = EIIf — A(A)yl

(11) _

Lt A1 + L b 420
SIE— AEI + - tr 4%(2)

= bias% (1) + vary(A),

say. Let A_,, = max{A;} and A,;, = min{2 }. We have [cf. Craven and Wahba
(1979), Lemma 4.1] that

p p
(12) biask (1) < X A1 < A & N F11% = O(A ) -
j=1 j=1

We prove in the next section that under the assumption of the theorem,
(13) tr A3(A) < O(AgL%™).
It follows from (10), (11), (12) and (13) that

1 1
(14) ERNSO(AM)-FO(W) +O(ﬁ)

We can minimize the right-hand side of (14) by either making A, = A_, in
the first term or making A_;, = A, in the second term, and then minimizing
with respect to A_;, or A_,.. In either case, we obtain that if the smoothing
parameters are chosen as N~2m/@m+D then

ERN < O( N—2m/(2m+1))'
The proof is complete. O

Let the interaction spline model with space H be referred to as of order r if
H contains at least one r-factor interaction component but no higher interac-
tion components. The definition of the order of an interaction spline model
coincides with the definition of model dimensionality in Stone (1985). Notice
that the rate O(N~2m/Gm*D) in Theorem 1 depends on neither d, the
dimension of the covariates, nor r, the order of the concerned model. This
seems unreasonable at first since, in general, as r becomes larger the rate of
convergence for an estimator of f becomes slower. However, this will not be
surprising if we notice that the smoothness requirement is implicitly changed
as r is changed. For example, if r = 1, the membership of H requires m
derivatives for each main effect component. If r = 2, the membership of H
requires 2m mixed derivatives for each two-factor interaction component and
m derivatives for each main effect component, and so on.

Stone (1982) has shown that if a regression function f of d covariates is
p-times differentiable, then the optimal rate of convergence for an estimator of
f is O(N~2P/@P*d) in an L2-norm in the absence of any special restrictive



1864 Z. CHEN

structure for f. Stone (1985) shows that under certain regularity conditions,
regression spline estimates of the main effect projections of f achieve a rate of
convergence of O(N~2P/@P*D) ip an L2-norm, regardless of the form of f. He
further presented a heuristic dimensionality reduction principle: If a r-dimen-
sional (r < d) model can be assumed for f, then the optimal rate of conver-
gence should be O(N~—2P/@P*7) instead of O(N~2P/@P+d) Qur rate of
convergence has a similarity with Stone’s dimensionality reduction principle.
In the case of r = 1, the order of derivatives required for f in an interaction
spline model is m, which is roughly the same as Condition 3 in Stone (1985),
that is, p = m. The rate O(N~2m/@m+D) matches Stone’s except in a different
sense of convergence. Notice that in an interaction spline model of order r, the
order of derivatives required for f is rm, that is, p = rm. In this case, the rate
O(N~2m/@m+D) = Q(N~2P/@P*1)) When the design points get denser and
denser, the criterion R is compatible with the L2-norm. Therefore we might
hope that the convergence rate established in Theorem 1 is optimal.

4. Technical details. We prove in this section that if the assumption of
the theorem is true, then

tr A3(A) < O(Aqi/%™)

with A, = min{A }.
Let Qw denote the kernel matrix corresponding to the r.k. of the tensor
product space ® W(’”) that is ,

Qw = (QW(xi7xj))NxN'

Let @y = L%_,Q;, where @,’s are the kernel matrices corresponding to the
rk.’s of the components H s in model (5). Let @4(x,x') denote the r.k. of
H o ---@®H, Since H ®---®H, is a closed subspace of ®dW(’")
QW(x x') - QH(x x') is the r. k of the orthogonal complement of H, ® --- &
H,in ® YWS™. Thus it follows from the properties of r.k. that QH < Qw
(where the notation B < C means that C — B is nonnegative definite). Since
@, = L?_,A;'Q;, it is obvious that @, < A1 Qy.

LEMMA 1.

tr A3(1) < tr[@u(Quw + NAgnD) Y]

ProOF. Let a; >a,> -- 2 ay and B; = By, > - - = By be the eigen-
values of @, and @y, respectively. Then

< Bi/Amins i=1,...,N,
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since @, < A;LQy < AL LQw. Now

tr 43(1) = [ @@, + NI) |
N a, \2
A

Zi\a;+N
(15)
8, 2
< I |5
1\ B; + NA
~112
= tr[Qw(Qw + Na ) 7] O
In the condition about the design points {x;: i = 1,..., N}, we assume,
without loss of generality, that n, =n,= -+ =ng;=n. Let 2 =

(R(x; 1, %; 1)) xn, the marginal kernel matrix corresponding to the r.k. of
WS™), Suppose the data points {x;: i = 1,..., N} are permuted appropriately.
Then
QW — 2 ®  ® 2 ,
d fold

where “ ® ” is the Kronecker product operator. Denote by u; > o> -+ 2 u,
the eigenvalues of 3. Then the eigenvalues of @y are given by

”ilulz"'”id’ ik=1,---’n’k=1,---’d.
For the above results, see Chen (1987).

Recall that
m—1
R(t,s) = Z_‘.O By (8)k,(8) + k() n(s) + (—1)" kg, ([t = s]).

Let K be the n X n matrix defined by

K = k(i )hn(x;,0) + (=1 lp([2i1 = %;10)) .00

and let J be the n X n matrix with its ({,»)th element being %,(x; ,),
v=0,....m—-1,i=1,...,n. Then(

S=JJ + K.

Under the assumptions about the design points, the eigenvalues of K have a
rate of decay ni~2™, that is,

(16) et i=1,...,n,

where 7, is the ith largest eigenvalue of K, and ““ ~ " is read as ‘““has the same
order as.” See Utreras (1983) and Chen (1987).

The following two lemmas from Stewart (1973) establish the relationship
between the eigenvalues of 3 and those of K.
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LEMMA 2. Let A be an n X n symmetric matrix and let X be an n X [
matrix with orthonormal columns. Let B=XAX and a; > a,> '+ > a,,
By =By = - = B, be eigenvalues of A and B, respectively. Then

a, ;. <B;<a; i=1,...,1L
LEMMA 3. Let ay>ay> - 2 a,, B;=2By> - 2B, and y, >y

9 =
- > v, be the eigenvalues of the symmetric matrices A, B and C = A + B
respectively. Then

a;+ B, <v;, <a;+ B 1=1,...,n.
LemMma 4. Let py 2 py> - 2p, and 7,27, > -+ =17, be the eigen-
values of 3 and K respectively. Then:

(i) TiSI-Li,i= 1,...,n;
(i) pu;, <7, +nc,i =1,...,m, where c is a constant;
Gii) w; <7_,,i=m+1,...,n.

Proor. Let X be an n X (n — m) matrix such that X’X =1 and X'J = 0.
Then we have
X'3X =X'(JJ +K)X = XKX.
Note that
JJ =11 + kK, + - +k,,_ K

m-—1»

where k, = (k,(x, 1), k,(x; ), ..., k (2, 1)) Hence the largest eigenvalue of
JJ' is less than or equal to ¥ 1x 7 k2 2(x; 1), which is bounded by nc for
some constant c¢ since those &,’s are umformly bounded on [0, 1]. The lemma
then follows from Lemmas 2 and 3. O

It follows from Lemma 4 and (16) that

I.Li ~n, l < m,
p,i~n(i—m)_2'"~ni‘2'", i>m.
We now group the p; --- p; s according to the number of those i,’s which
are less than or equal to m. For 0 <! <d, those p; - p;’s which have

exactly / subscripts less than or equal to m are of the orders
N(igy - ig) ®™, i,=m+1,...,n,k=1,....,d -1,

where N = n. Among all the K **° M;,'s there are ml(‘f) of them that have
the same order N(iji, --- i,_,)"%2™, i, >m,k=1,...,d — I, since there are
(‘li) possibilities for exactly / of i,,i,,...,i, to be less than or equal to m and
for each possibility the / subscripts can change from 1 to m.
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Let c(l) = ml(‘l’). It follows from Lemma 1 and the argument above that

2
z”: ( Boiiy = By, )
i o=t My, o g, Ny,

d n N(ijig -+ i )‘2'" z
Le) X — I
= N(igy = igy) + NApin

IA

tr A3(A)

Iiyeeeslg_y=m+1
2
d n N(igiy o ig_) "
< Z c(l)y X — T —om
= I1yeeerligg=1 N(lll2 ld—l) +N/\min
f o X ( - )
= c m
= Igyeeerigy=1 1+ Amin(i1i2 id—l)z
d
= Z c()1,,

where

n

n 1 2
. _—
=1 lg_1)

=1 ig— 1+ ’\mm(lll2 T

<X

ip=1 ig=1

1 2
.. . 2m
1 +Amin("1"2 ld—l)

N

1

2
Zm) de A dxd_l

min( X1%2 " Xg_;)

@ 1
= A p/2m f ( .
0 0\ 1+ (%325 =" %4_)

If 2m > d, the above integral is finite for any 0 <! < d. Since, d, m, M are
fixed, we have obtained that tr A%(A) < O(AL/2™).

2
m) dxl A dxd_l.
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