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1. Introduction. In parametric estimation theory a very important role
is played by the notion of local asymptotic normality (LAN), an idea introduced
by Le Cam [Le Cam (1953, 1956, 1960)]. In particular, this theory establishes
very general lower bounds on the accuracy of estimates [Le Cam (1953, 1972)
and Hjjek (1972, 1970), theorems]. Below in all references to the LAN theory,
we follow our treatment of the theory [Ibragimov and Has’minskii (1981)]. A
different treatment can be found in Le Cam (1986), Chapters 7 and 8.

It seems that Levit was the first to understand the importance of the LAN
concept for nonparametric estimation theory [see Levit (1974, 1975b)]. He also
showed that the corresponding lower bounds can be attained in some
infinite-dimensional estimation problems [Levit (1978)]. Further advances and
generalizations of these results were obtained by Millar (1983). The first part
of this chapter looks at the investigations of Levit and Millar from a new point
of view and may be considered as an infinite-dimensional variant of Ibragimov
and Has’'minskii (1981), Chapter 2. We suggest a new [different from Levit
(1978) or Millar (1983)] definition of LAN for families of distributions {P{®,
0 € 0}, where the parametric set ® is a subset of a normed space (Section 2) or
a smooth infinite-dimensional manifold (Section 5).

For families {P{®, 8 € ©} satisfying the LAN condition with an infinite-
dimensional parametric set ®, we consider the following estimation problem.
We would like to estimate the value ¢(8) of a known (Euclid- or) Hilbert-
valued function ¢(-) at an unknown point § € ® on the basis of observations
X® corresponding to the family {P{”, 8 € @}. Although this is a rather
nonparametric estimation problem, we may also consider it as a problem of
specifying a plausible value for the parameter ¢ in the presence of an
infinite-dimensional nuisance parameter 6. Instead, we may treat the problem
as a semiparametric estimation problem [see Begun, Hall, Huang and Wellner
(1983) and Wellner (1985)]. We prove under our LAN conditions a variant of
Hajek’s convolution theorem (Sections 3 and 5) and a variant of the Hajek—
Le Cam asymptotic minimax bound. The latter result enables us to define the
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1682 1. A. IBRAGIMOV AND R. Z. KHAS’MINSKII

notion of an asymptotically efficient estimator in the spirit of Ibragimov and
Has’minskii (1981).

It is well known that it is difficult to construct asymptotically efficient
estimators in situations where the parameter set is infinite dimensional [see,
e.g., Geman and Hwang (1982), Gill (1986), Grenander (1987) and Kiefer and
Wolfowitz (1956)]. The authors suggested a method of constructing such
estimators in Has’minskii and Ibragimov (1979, 1980, 1986) and Ibragimov
and Has’minskii (1977). We demonstrate in Sections 6 to 8 how this method
works for a Gaussian white-noise estimation problem. These sections are a
further development of the paper by Ibragimov, Nemirovskii and Has’minskii
(1986).

We hope the notation used is rather standard and familiar to the reader.
The symbols || - |[and (-, - ) are used for norms and scalar products in different
Banach or Hilbert spaces. If it is necessary, we denote the norms in the spaces
B and H by || |lg and || - ||z. The projection operator which projects onto the
space L is denoted by P;. The letters C, C;, ¢ and c; are used to denote
constants or generic bounded quantities.

Part 1.
2. Local asymptotic normality (LAN).

2.1. Definition. Consider a family E, = {X©®), Q®), P{, § € 0} of statisti-
cal experiments and corresponding observations X,. The variables X, take
their values in the measurable space (X®, Q) and have distribution P{®. We
suppose that the parameter set ® is a subset of a normed space L. Denote by
dP{® /dP{® the derivative of the absolutely continuous component of the
measure P{® with respect to the measure Py*). For the sake of convenience we
study asymptotic estimation problems through experiments indexed by ¢ and
let € — 0. In fact, one may instead suppose that a filter is defined on the set {¢}
of indexes and consider limits with respect to this filter.

DeFINITION 2.1. A family {P{), 6 € 0} is called locally asymptotically nor-
mal at a point 6 € O in the direction H(6) = H with norming factors A (0) =
A, if there exists a Hilbert space H with norm || - ||, a linear manifold H, c H
with closure H, = H and a family {A_} of linear operators A,: H — L such
that:

1. for any h € H,, lim||A_ k| = 0;
2. for any h,,...,h, € Hy and ¢ > 0, there exists e(hq,...,h,,c) > 0 such
that, if ¢ < e(h,,..., h,,c) and |x;| < ¢, all points

0+ AS(Z x,-h,-) € 0;
1
3. for any h € H, and ¢ < &(h), the representation

dP{2a,m)

ap, (X = ex{a () = 3kl + u(e, b))
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is valid, where A (k) is a linear random function on H, [ie., A (ah, +
Bh,) = aA (k) + BA (h))], for any h € H, the variables A .(h) are asymp-
totically N(0, ||£1%) and (e, h) > 0 as ¢ — 0 in P“)-probablhty

Note that in the definition, the objects H, A, and (e, k) all depend on 6.
Note also that the LAN conditions are determined by 6, H and {A,}. The
choice of H, may be made rather arbitrarily and depends on the problem
under investigation. We need only that the closure H, = H.

It is important to realize that the structure of the space H depends on how
large the set © is near the point 6. (A ball of very small radius can be very
massive in a Hilbert space.) In fact, the space H describes (linear) restrictions
imposed on ©. It may happen that the family {P,, 6 € ®} has a natural
embedding into a larger family {P,, # € 0} and satisfies LAN conditions in the
direction H' D H with norming operators A, = A, on H. The reader should
not forget this possibility and not confuse H and A, with H' and A, (see
Example 2.1 below and Sections 3 and 4).

2.2. Examples. It is well known that the LAN conditions are fulfilled for
many classical estimation problems with ® c R* [see, e.g., Ibragimov and
Has’minskii (1981)] and so in the examples given below we consider only
infinite-dimensional cases.

ExampLE 2.1. Let the experiment E, be generated by the observation
(2.1) X,(t) = [0(u)du +ew(t), O0=<t<l,
0

where w is a standard Wiener process and the parameter set ® c L,(0,1) = L
[see Ibragimov and Has’minskii (1981), page 345]. Let P{® be a probability
measure on C(0,1) generated by the observation (2.1). For any two points
¢, 1 € Ly(0,1) the measures P{*, P{® are equivalent and the density is

dP© 1
e (%) = exp{ 3 [[(6(0) () A,

—-zg(foﬂf(u)lzdu —/01|n(u)|2du)}

[see, e.g., Ibragimov and Has’minskii (1981), page 385].
Let H be a subspace of L,(0,1). Suppose that a point 6 € @ is such that for
any h € H and all sufficiently small ¢ the points 6 + ¢k € ©. We then have

Bien A(h) - ~IRIP
v (X) = esp (k) = SIRIE),

where A,(h) = [th(u) dw(u). Hence the LAN conditions are fulfilled in the
direction H with norming factors A, = eI. (Here and below, I denotes an
identity operator.) In this example the remainder term (¢, k) is equal to 0.
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In this example, it turned out that the measures Py may be defined for all
6 € L,(0,1) and, for such an enlarged family {P{®, 6 € L,(0,1)}, the LAN
conditions are fulfilled in the direction of the maximal possible space L,(0, 1).
The space H C L,(0, 1) reflects the restrictions imposed on ©. For example, if
O is an open subset of L,(0, 1), then H = L,(0,1). If ® consists of functions
6(u) which satisfy the conditions

/Olo(u)du =/01uo(u)du = .- =/01uk-lo(u)du -0,

then H is a proper subspace of L,(0,1) of codimension k. If ® consists of
functions 6(x) = £§'6; cos(2mju), then H has dimension k.

ExampLE 2.2. Let the observation X, = (X,,...,X,) consist of n iid
random variables. Suppose that the X; have a common probability density
0(x) with respect to a o-finite measure u defined on the measurable space
(X, Q). Take L to be the space L(X,u) of all functions g integrable with
respect to p with norm ||glly, = [lg|ldu. Let the parameter set ©® consist of all
densities 6 and the Hilbert space H be the space L(X, u). Define a linear
manifold H,, as the set of all bounded functions £ € L such that:

@ Jxh(x)yo(x) uldx) = 0;
(ii) there exists an integer £ = k(h) such that h(x) = 0 if 6(x) < 1/%.

The space H is the closure of H,, in H. Define operators A, by A, = n~ /%A,
where A is the operator of multiplication by the function V6 and & = n~1/2,

We now prove that the LAN conditions are satisfied in the direction H with
norming factors A_. Indeed, if h € H, and ¢ is sufficiently small (ie., n is
sufficiently large), then

0+Ah=0+n""2%h20, [(6+Ah)du=1.
X

Hence, for such ¢, all functions 8§ + A_h € O. Furthermore,

dP{2a
P ¢

X,) = TI(1 +n V2h(X,)0"%(X,))

n k(X)) 1 2 h¥(X))
exp{n 2y =L — — =+,
Zl Vo(X;) 2n T 0(X;)

Here the function

sy =nr g K

1 yo0(X;)

is linear and asymptotically normal with mean [h(x)y/60(x)du = 0 and vari-
ance [|k|°>. By the law of large numbers, the sum n~'L1h¥(X;)/0(X;) con-



NORMAL FAMILIES OF DISTRIBUTIONS AND EFFICIENT ESTIMATION 1685

verges to ||k|> in P{*-probability. The proof is completed by noting that the
remainder r, goes to 0 in P{?-probability.
Note that the space H consists of all & € Ly(X, u) such that

/h(x)\w(x) du =0, supp h = supp 6.
X

ExampLE 2.3. Now suppose that the observation X, =(X,,...,X,) is a
segment of length n from a real stationary Gaussian sequence with unknown
mean value a and spectral density f(A). Elements of the parametric set © are
points of the form 6 = (a, f). We consider © as a subset of the Hilbert space L
consisting of the points (x, g), x € R', g € Ly(—m, ), with the norm (Ix|* +
/™ _lgl? dA)'/2. [In other words, L = R'e L,(—, m).] Moreover, suppose that
if 6 = (a, f) € 0, then (i) a € (a, B) C R! and (ii) the function f(A) is strictly
positive and continuous. Take the Hilbert space H = L. Define H,, to be the
linear manifold in H consisting of all points (x, g), where x € R 1 and g is
continuous on [—, w]. Evidently, the closure H0 H = H = L. Define the
operators A,(0): H —» H by the equation [0 = (a, f)I:

V2
Az, ) =e(x/F(0)  &f), &= ——.

We now give an outline of a proof that the family {P§®, § € 0} satisfies the
LAN condition at any point # € ® in the direction H with norming factors
A,. A more complete proof will be published elsewhere. First note that, for all
h € H, and for all sufficiently small ¢ (large n), 8 + A_h € ©.

Denote by R ,(f) the correlation matrix of the vector X, which has spectral
density f. Then for 8 = (a, f), h = (a, 8),

PO,
apo (X0

1 detR(f+egf) 1, .
=e"p{5‘n w R a(BEf+eeh) — RN Y.)

2 2

rea/F0) (R f + egf) ¥, 1) — —

Here 1 denotes the vector (1,1,...,1)and Y, = X, — al.
Now note that the summand under the exp sign does not contain « and may
be written in the form [see Hannan (1970)]:

- LX) - F(A) L)
b = 217\/_'[ Fy e ‘_f TEVY

fO)(RI(f+egf)1,1)).

g2 (A dA +r,,

In(/\) =

Ay
YJ



1686 I. A. IBRAGIMOV AND R. Z. KHAS’MINSKII

and so when n — « the first term in the summand which defines ¢, is
asymptotically N(O, ||g||2), the second one converges in probability to IIgII2 /2
and r, — 0 in probability.

Furthermore, note that (R, '(f + egf)Y,, 1) is Gaussian with mean 0 and
variance asymptotically equal to (R, (f + egf)1,1).

It is also possible to prove that

1
e?|(Ry(f +egf)1,1) = o (Ra(Cf+ egf)"‘)1,1)| = o(1).

Hence

1 = sin®(nr/2) dA
2mn f_,, sin?(A/2) f(A)(1 +eg(A))
(£(0))™" +o(1).

Finally, to complete the proof, we need only note that the linear part and the
quadratic part are asymptotically independent.

e?(R,'(f+¢egf)1,1)

ExaMpPLE 2.4 (Regression problem). Suppose we observe
X, =0(t;) + &(¢,), i=1,...,n,

where the design ¢" = (¢,...,¢,) is a sequence of independent random vari-
ables with a common density function p(¢) on [0, 1]. When the plan ¢” is fixed
the random variables &,(¢;) are iid with common density function f which has
finite Fisher information T(¢), ¢ € [0, 1]. Suppose that the unknown parameter
0 € ® = L = L,(0,1). Then the LAN conditions are satisfied in the direction
H = L,(0,1) with norming operators A, =¢A, ¢ = n~'/2, where A is the
operator of multiplication by the function (T(¢)p(¢))~1/2.
A formal proof is based on an analysis of

Fonn e ﬁ £(0(8:) + e(p(t)T(t)) " *h(t) + &(t), 1:)
dP{® B F(6(¢;) + &i(8:), ) .
We omit the details since the necessary calculations coincide with those which

have been done in the finite parametrlc case [see Ibragimov and Has’minskii
(1981), Chapter 2].

ExampLE 2.5. Let the observation X, = 0 + ¢Z, where 0 € @ CL, L is a
Hilbert space and Z is a Gaussian L-valued random variable with mean 0 and
correlation operator R. Suppose that ® € D(R~/2) and that, for all ¢ €
R™1/2Q, all h € HC H = L and all sufficiently small &, the vector £ + eh €
R~12@. We claim that in this case the LAN condition is satisfied in the
direction H with norming factors A, = ¢R'/% Indeed, the condition ® c
D(R~1/?) guarantees that the measures P{¥, § € O, are absolutely continuous
with respect to each other [see Skorokhod (1974), Chapter 3].
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Simple calculations show that the derivative (dP§?, »/dP{”XX,) may be
written as exp{(h, R~'/2Z) — }|k||?} and that the random function A(h) =
(h, R"12Z) is N(O,||k||*) and linear with respect to A [for an accurate
definition of (h, R~1/2Z), see Skorokhod (1974), Chapter 3]. One can prove
that this result is also valid for generalized Gaussian variables Z whose
correlation operator is supposed only symmetric and positive. In this case the
observation is a collection of linear functionals (X¢, ¢) = (0, ¢) + &(Z,¢), ¢ €
®, such that for ¢, € D(R) the vectors (Z, ¢,),...,(Z, ¢x) are joint normal
with mean 0 and covariance matrix [(R¢;, ¢;)l. Example 2.1 is the special case
when R is the identity operator [cf. Ibragimov and Has’minskii (1987)].

ExampLE 2.6 (Diffusion process). Let the observation X, be a diffusion
process defined by

(2.2) X,(t) =xo + [0(u)du +e[o(X,(u),u)dw(n), 0s<t<j,
0 0

with known x, and ¢ and an unknown parameter § € ® c L = L,(0,1). We
suppose that o > 0 and that o satisfies conditions which guarantee that a
unique solution of equation (2.2) exists. Let H, € L be a linear manifold.
Suppose that for any h € H,, and all sufficiently small ¢ the point 6 + ¢h € ©.
We claim that the LAN conditions are satisfied in the direction H which is the
closure of H, in L with norming factors A, = €A, where A is the operator of
multiplication by the function o(x(¢, 0), t), x,(¢,0) = x, + [56(u) du.
Indeed [see Gikhman and Skorokhod (1979)],

dP§?s o(xo(t,0),t)
W(e)h(xe) = eXp{j:_a(Xe(—t),t)h(t) dw(t)}
1 1| o (xo(2,0),1) 2
_Efo XD, 0) h(t)| dt.

When ¢ — 0, the first summand under the exp sign goes to [¢h dw, and the
second one converges to ||A]|?/2. The special case of x, =0 and o = 1 was
given in Example 2.1.

One can easily restate the results of this example for the case of m-dimen-
sional diffusions.

2.3. Some properties of distributions satisfying the LAN conditions. The
properties we are going to describe here coincide with those of one-dimensional
parametric sets ® and can be proved in the same way. For this reason we refer
the reader to the proofs given in Ibragimov and Has’minskii (1981).

Let P, denote the singular component of the measure P{” with respect to
the measure P{?). Define the function Z (k) by

dPan

Ze(h)= dP‘;e) ( e)
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(as we have mentioned earlier we denote by dP{”/dP{® the derivative of the
absolutely continuous component of the measure P{ with respect to P{®).

Lemma 2.1. If the family {P{®, 6 € ©} satisfies the LAN condition at a
point 0, then for all h € H,,,
lim EZ,(h) =1, lim Var P, , . = 0.
-0 e

-0

The proof coincides with that of Lemma 8.1 from Ibragimov and Has’minskii
(1981), page 147.
We set for an arbitrary random variable ¢ and positive constant a,

_&  lé<a,

¢ 0, 1€l > a.

We refer to £ as the a-truncation of £.

THEOREM 2.1. If a family {P{®, 6 € O} satisfies the LAN condition at a
point 0, then for any h € H, there exists an a -truncation A _(h) of A (h) such
that

A (k) — A,(k) > 0 in P{-probability as ¢ — 0,
and the random field
Z,(h) = exp{8,(h) - 3InI7)
possesses the following properties: For any h € H,,,
EQZ,(h) - 1,

(2.3)

EP|Z (k) - Z(h)| >0 ase—0.

The proof coincides with the proof of Theorem 8.1 from Ibragimov and
Has’minskii (1981), page 149.
Note that as ¢ — 0,

Pese){‘&s(hl +hy) =A (k) + As(hz)} -1,
PP{A (ah) = al,(h)} - 1.

Taking into account the last relation we shall not always differentiate between
A (ah) and aA (k).

3. Characterization of limiting distributions of estimators under
the LAN condition.

3.1. We shall now study the problem of estimating the value ¢(8) of a
known function ¢(-) at an unknown point # € ® on the basis of an observa-
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tion X, which has distribution P{®. We shall assume that the family {P}®,
0 € O} satisfies the LAN conditions at the point 6 in the direction H with
norming factors A,. The function ¢: L —» U takes its values in a Hilbert space
U. We shall also assume that this function is Fréchet differentiable with
derivative ¢'(9).

The main purpose of the present and the next section is to study the
limiting behavior of estimators T, of ¢(8). Since T, — $(6) — 0, as ¢ — 0 for
any reasonable estimator T, we have to norm the difference T, — ¢(6) in a
proper way. We shall norm these differences by bounded linear operators B,:
U - U with norms ||B,|| » © as ¢ = 0.

Let T. be an estimator of ¢(8). Suppose that one can find norming
operators B, in such a way that the normed difference has a proper limiting
distribution as ¢ - 0. We show that under some regularity conditions this
limit distribution is necessarily a convolution of a normal distribution and
some other probability distribution. This phenomenon was first discovered by
Hajek. He proved the corresponding theorems for finite-dimensional ® and
#(8) = 6 [Hajek (1970); see also Ibragimov and Has’minskii (1981), Section
2.9]. The first infinite-dimensional variant of this characterization theorem
was proved by Beran (1977) who studied the classical problem of estimating a
distribution function. General theorems for infinite-dimensional ® were proved
by Millar (1979, 1983).

We call an estimator T.-regular at the point 6 with respect to the triple
(Hy, A,, B,), or (H,, A,, B,)-regular, if for any h € H, there exists a proper
limit distribution F of the differences A, = B(T, — ¢(60 + A_h)) as ¢ = 0 and
this limit distribution does not depend on h:

Denote by P, the projection in H onto a subspace L. Define the operators
K, by

K, h—Kh=B,[ ¢(0+1tAPyh)dtA Pyh.
0

Since by the definition of the LAN conditions the operators A, are defined on
H, the presence of Py in the definition of K, may seem unnecessary.
However, as we have mentioned the operators A, may often be defined on the
whole space H allowing different restriction spaces H to be treated at the
same time.

THEOREM 3.1. Suppose the family {P{?, 6 € ©} satisfies the LAN condi-
tions at a point 6 in a direction H = H,, with norming factors A, and that T,
is a (B,, Hy, A,)-regular estimate of ¢(8). Then if the operators K, have a
weak limit K = lim, _, (K, and if the operator K is a Hilbert—Schmidt opera-
tor, the limiting distribution F of the difference B (T, — $(0)) is a convolution
N(, K)*G. Here N(0, K) is a normal distribution on U with mean 0 and
correlation operator KK* and G is a distribution on U.
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Proor. Let f(u)be the characteristic function of the distribution F. Since
the estimator T, is regular, it follows that for any 2 € H,,,

F(u) = lim B, expli(u, BT, = 6(0 + A,h)))}
= e‘i(“'Kh)li_r)x})Eg?Aeh exp{i(u, B(T, - ¢(0)))}
The LAN conditions, Lemma 2.1 and Theorem 2.1 imply that
f(u)exp{i(u, Ku) + HIhl?)
= 811_13)E;e> exp{i(u, B,(T. — ¢(6))) + A,(h)}.
Define for a complex number Z,
,(u, 2) = E{expli(u, B,(T, - (6))) + Z8,(h)]}.
It follows from Section 3.2 that for real Z,

(3.1) lim¢(u, Z) =f(u)exp{iZ(u,Kh) + Z?Ilhllz}.

The functions ¢.(u, Z) are a family of analytic functions of Z. This family is
bounded in every region |Re Z| < a. Indeed, in view of (2.3), we have for all
sufficiently small £ > 0,

sup |{(u,Z)| = sup Eexp{Re Zﬁe(h)} < 2exp{az(||h|l2 + 1)}
Re Z|<a Re Z|<a

Consequently, by Montel’s theorem the family {{ («, Z)} is compact and, since
the right-hand side of (3.1) is analytic for all Z, we have for all complex Z,

2
limZ,(u,Z) = Lo(u, Z) =f(u)exp{iZ<u,Kh) " %uhu?}.

Suppose for a moment that H, = H. We may then take h = K*u, Z = —i
and obtain
f(u) = exp{—%(u,KK*u)}(bo(u, —i)
= exp{—3(KK*u,u)}g(u).

Evidently, the first factor on the left is the characteristic function of the
normal distribution N(0, K). We now prove that g(u) is a characteristic
function. First note that the equality

g(u) = lim B expli(u, B,(T, - #(6))) — id (K*u)}

shows that the function g(u) is positive definite. Indeed, with probability
going to las ¢ — 0,

A (K*(u—v)) =A,(K*u) - A (K*v)
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and hence

Z A g(uy —uy)
k,l

2
- E® +0(1).

% A exp{i(uk, B.(T. - ¢(0))) — iAe(K*uk)}

Now by the Minlos—Sazonov theorem [see Skorokhod (1974), Section 1.4],
the positive-definite function g(u) is a characteristic function if and only
if one can find nuclear operators {R;, 8 > 0} such that |g(x) — g(0)| < 4§ if
(R, u,u) < 1. We now construct such operators.

We have

lg(u) — g(0)| <| f(u)exp({3(KK*u,u)} - 1|
<|f(u) — 1| +|exp{:(KK*u,u)} — 1|.

By virtue of the Mil}los—Sazonov theogem, one can find a family (R 5 0 > 0} of
nuclear operators R such that for (R u,u) <1,

| F(u) — 1] < =
f(u) -1 < 3"
Set Ry = R, + (1/8)KK*. If (Rsu,u) < 1 and 6 < 1/2, then
8
lg(u) — 1] < 3t (e®2-1) <4.

Now let H, # H (but Hy, = H). It is possible that K*u & H,, but one can
always find a sequence &, € H,, h, » K*u in such a way that

1
f(u)exp{E(KK*u, u)}
lim £ (u)exp{~ 3| ha|* + (1, k)

lim lim E{” exp{i (u, B,(T, — $(0))) — iAh(h,)} = g(u).

The theorem is proved. O

REMARK. It is easy to see that in many cases the operators K, and K may
be defined in the simple way

Ke = Bed)'(a)AsPH’

(3.2) K = limB,¢'(6) A, Py.

3.2. Example.

ExampLE 3.1. Consider one of the simplest situations: Example 2.1. We
observe X, where

dX.(t) = 6(¢) dt + edw(t), 0<t<l.
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Let I,,1,,... be orthonormal vectors in L,(0,1). Let H C L, be a subspace
orthogonal to all /;. Suppose that the parametric set ® c H. If the set O is
sufficiently large and if for § € ® we have 6 + ¢h € 0, for any h € H and
g < g(h), then as we have seen the LAN conditions are fulfilled in the direction
H with A_ = ¢l. Setting B, = ¢~ 'I, where I is the identity operator, we find
that

K = limK, = ¢/(6) Py

and that the conditions of the theorem will be fulfilled if ¢'(8) is a
Hilbert—Schmidt operator.

For example, let ¢(8) = [116(t)|> dt. Then ¢'(8) = 20 and N(0, K) is the
distribution of the normal random variable

£ = 2[019(t) dw(t) - 2% j;llj(t)ﬂ(t) dtfollj(t) dw(t).

We show later (see Sections 6 to 8) that if the set ® is not too large one can
construct an estimator T. such that the limiting distribution of ¢ (T, — ¢(6))
as ¢ — 0 coincides with the distribution of £.

Now let ¢(8) = fto(s) ds. We then have ¢'(6)h = [{h(s) ds and the random
0

function

E=w(t)— ) ftlj(u) du[llj(u) dw(u) has an N(0, K) distribution.
j o 0

Setting
T.=X(t) - T [1,(u) duf 1,() dX.(t),
J 0 0

we find that the distribution of ¢ (T, — ¢(8)) coincides with the distribution
of ¢.

We shall return to this and other examples in the next section where we
consider them from a slightly different point of view.

4. A lower bound for the asymptotic minimax risk.

4.1. In this section we prove a variant of the Le Cam-Hajek theorem
which was mentioned in Section 1 [Le Cam (1953, 1972) and Hijek (1972); see
also Ibragimov and Has’minskii (1981)].

We consider here the same estimation problem as in the previous section. If
the function ¢(6) takes its values in a Euclidean or Hilbert space U, we
measure the closeness of an estimator T to ¢(8) by a loss function I: U —» R
We assume that [ is subconvex, that is, (1) {(z) > 0, (2) I(x) = I(—u), (3) for
all A > 0 the sets U, = {u: I(u) < A} are convex. We denote this class of loss
functions by A.
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We suppose (see Section 2) that the parameter set ® C L , where L is a
normed space. Let S be a topology on L compatible with the linear structure of
L. We call the topology S compatible with the LAN conditions if for any
h € H, the vectors A_h — 0 as ¢ — 0 in the S-topology.

As before let us denote by K, the operator for 2 € H defined by

K.h = Be(fldﬁ(e +tA,Pyh) dt)AePHh.
0

THEOREM 4.1. Suppose the family {P{®, 6 € O} satisfies the LAN condi-
tions in the direction H with the norming factors A_, S is a topology compatible
with the LAN conditions and {V} is a family of vicinities of 0 in the S-topol-
ogy. Suppose that K_.h —__,Kh in U for any h € H, where K: U > U is a
Hilbert—Schmidt operator. Then for any | € A and any family of estimators
{¢.} for ¢(6),

(4.1) inf lim inf sup EQI( B, (¢, — ¢(u))) = El(£),
(v} &-0 uevV

where £ is a Gaussian random vector in U with distribution N(0, K).

REMARK. It is often sufficient to consider the simpler operators
B.¢'(0)A, Py instead of the operators K,. For example, we can do so if
A B, = OQ) as £ — 0.

ProoF. Fix a positive number a and set

l(u)7 |l(u)|5a,

fal) = a, [I(u)] > a.

Fix further an integer n and choose n orthonormal vectors h; € Hy, i =
1,...,n. Let Q(b) = Q =[—b,b]" be a cube in R". If ¢ is sufficiently small,
then for all x = (x,,...,x,) € @ the points § + L x;A_h; € V. Hence, setting
Lx,;h; = h and taking into account the relation (2.3), we find that for suffi-
ciently small &,

sup EQU(B, (¢, — ¢(u)))

uevVv

v

sugE0+A2hla(Be(¢e - ¢(0 + Aeh)))

|

(mes Q) jQ Eanlo(B.(d, — $(0 + A,h))) dx
- (mes @) [ Es”{la(Bs(d»g — $(0 + A,h)))

Xexp(ﬁe(h) - %Ilhll2 + .p(e,h))} dx.
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The random variable A (k) = £72x,A (k) with probability going to 1 as
¢ = 0. Hence we can represent Ae(h) as a scalar product (¢, x), where ¢,
denotes an n-dimensional bounded random vector with distribution converg-
ing to N(0, I) as ¢ —» 0. Thus as ¢ — 0,

(mes Q)‘lfQE;ﬂ{za(Be((pe —¢(0 + A,R)))
. 1
Xexp(Ae(h) - §||h||2 + ¢(e, h))} dx
< (mes Q)" [ EP{1(B(6, - 6(0)) ~ Kk + o(1)
Xexp((fs, x) - %Ix|2)} dx + o(1)

= (mes Q)_lfQE,SE){la(Fe — Kh + o(1))exp((§€, x) — %lez)} dx +0(1).

Consider the function {: R® — R! defined by
{(x) =1,(Kh) = la(inKhi)-
1

The function { is symmetric and has the following property: For all A > 0 the
sets {x: {(x) < A} are convex. Hence, using the arguments which prove the
original Le Cam-Hajek theorem [see Ibragimov and Has’minskii (1981), pages
162-168], we find that

1
. . -1 [O) _ 2 _ 2
hlelélf(mes Q) fQEG {la(I‘6 Kh)exp((fs,x) 2le )}dx

(4.2) >dJ(a b)(27r)_"/2(1 — —1—)"
. = ) JE ’

J(a,b) = /Q (‘/g)la(Kh)exp(—lez/Z) dx.

It follows from (4.2) that if the function { is continuous, then

1iixli(x)1f(mes Q)_lfQng){la(FE - Kh + o(1))exp(( f,,x) — %lez)} dx
(4.3)

> J(a b)(2w)_"/2(1 —~ i)n
>J(a, =

The last inequality turns out to be true also for functions ¢ which take on only
a finite number of values. Indeed, in that case the function {(x) is continuous
everywhere except on a finite number of convex surfaces. Next, if  is an
arbitrary function from A, we can approximate the function {(x) = L (Kh) by
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functions {y(x), where
k+1
N

k " k
{n(x) = ¥ 5 <{(x) <
Hence the inequality (4.3) is valid for all [ € A.
It follows from (4.3) that for all integers n,

inf lim inf sup EQI(B, (¢, — #(0)))
{V} &—0 uevVv

> limJ(a,b)(27) |1 - —=| =EIl ,

lim J(a, b)(2) ( ﬁ) o(£2)

where ¢, denotes a Gaussian vector in U with distribution N(0, KP,), P,

denotes the projection in H on the subspace spanned by the vectors 4,..., A ,,.
Let &,,&,,... be a sequence of Gaussian iid variables with E¢; =0,

Var ¢; = 1. One can write
Ela(gn) = Ela(z §1Kh.l)
1

and to finish the proof, we need only check that

n—o

liminfEla( i §J-Khj) > Ela( }0_:, §thJ-).
1 1
Set U, = {h € U: 1 (h) < x}. Suppose that we have proved the inequality
(4.5) P{ f ¢Kh; € Ux} > P{f ¢ Kh; € Ux}.
1 1
Then

liminfEla( ._sthj) - 1iminfj°°(1 - P{la(z nghj) > x}) dx
1 n—e 0 1

> f0°°(1 —P{la(i:.nghj) >x}) dx

=Eza(f nghJ.).
1

We must prove (4.5). This inequality follows from the following infinite-
dimensional analog of Anderson’s lemma.

Let u be a centered Gaussian measure in a Hilbert space U. Let A be a
symmetric convex Borel subset of U. Then for any u € U,

(4.6) (A +u) <u(A).

In its turn, this inequality is an immediate consequence of the following
general result of Ehrhard.
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THEOREM [Ehrhard (1983)]. Let y be a Gaussian Radonian measure in a
locally convex Hausdorff space E. The function ®(x) = (27)7!
[* - exp{—v2/2} dv. Then for any two convex Borel sets A, and A, and for any
number A € (0,1),

(4.7) D y(AA; + (1 — M) Ay)) = A~ (y(4Ay)) + (1 — 1)@ (¥(A,)).

To deduce (4.6) from (4.7), choose in (4.T)A =1/2, A, = A+ u, A, = —A,.
This completes the proof of Theorem 4.1. O

4.2. Examples.

ExampLE 4.1. Let us return to Examples 2.1 and 3.1. In this case (see
Example 3.1) the operator K = ¢'(6)Py. Hence, for any estimator ¢, of
&(0) = [ld*(t) dt, we have

V e=0y,ev

inf lim supe 2E®)|$, — ¢(8)|* = 4([102(t) dt - ¥ ([olzj(o)o(t) dt)z)
0 J

= 4]0 — P40

We show in Part II that if the set ® is sufficiently small (a long one-dimen-
sional segment of a Hilbert space is very meager), one can construct an
estimator T, such that

e %E,|T, — 6(0)[" = 4|6 — P,0]”.
If ¢(6) = [(6(s) ds, then

N =

inf lim sups2E9|| ¢, — d(u) |1, =
V -0 ey

_§j;l(j:lj(u)du)2dt.

ExampLE 4.2. We now consider several estimation problems in the context
of Example 2.1. Let &,,..., &, be real-valued random variables. Therefore, X is
the real line R, Q is the collection of Borel sets and u is a measure on Q. If
we choose B, = n~ /2], then the operator K is equal tc ¢'(§)APy, A is the
operator of multiplication by V8 . Let w,(x) be a Gaussian random function on
R' with independent increments, Ew,(x) = 0 and E(dw“(x))2 = du(x).

ExampLE 4.2.1. Suppose we would like to estimate ¢(8) = [ 2x20(x)u(dx).
This functional is differentiable if we consider only functions 6 with
[12x20(x)u(dx) < © and ¢'(0)h = [*2x2h(x)u(dx). [Of course, we have to
choose H in such a way that, for h € H, [x?|h|V8du < »; in the sequel we
omit such evident explanations.] It follows from Theorem 4.1 that for any
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estimator ¢, and for any compatible topology S,

inf liminfn sup EQ(¢, — qb(()))

6V n-owx

> B[ "5 du(x) - [ e0(e) du(e) VG d ()|

05‘11 - (Eoff)z

2

1 n
— 2 _
L& =00

= lim nE,

n—oo

ExaMPLE 4.2.2. Suppose now that we wish to estimate the same ¢(6) but
under the additional restriction that [*Zx6(x)u(dx) = 0. This restriction
imposes the condition [AV6du =0 but also the condition [xhV6du = 0.
Hence

1nf lim sup RE®|p, — $(0)|?

n—ow, =

E|[ "x*V6 duw,(x) - [+mx20(x)y(dx)f_+w\/9(x)dw“(x)

[+ 30(x);L(dx)

E,¢3)°
= Eoff - (Eoff)z - (Eoglf) :
)

ExampLE 4.2.3. Take ¢(0) = [* 06(y)u(dy). [There are many ways to repre-
sent ¢(0) as an element of a Hilbert space U.] The derivative of ¢ is the

integral operator ¢'(8)h = [* _h(y)u(dy).

Luy = | sup|u(y)| <t,
! 1, suplu(y)| > ¢,

belongs to the class A. Hence, for any compatible topology,

ir&f lim inf supPu{\/rT sup|o, — dp(u)| > t}
n

n=%® pev

$

[ Vo dw) - [ 6 dul) [ Vo0) du,(y)

[see Levit (1978)].

> P{ sup
x
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5. Nonlinear restrictions.

5.1. We have mentioned many times that the linear space H of the LAN
conditions reflects the restrictions imposed on the parametric set ® near the
point 6. By definition these restrictions are linear and the set ® has to be
linear in a neighborhood of 6. Since in the end the characterization of the limit
distributions of estimators under the LAN conditions depends on the behavior
of 6 + A_h as A_h — 0, we can expect that these results continue to hold if ®
is linear only infinitesimally, that is, if © is locally a differentiable manifold. In
this section we try to outline the corresponding results without any attempt to
give them in utmost generality.

Consider a family of distributions {P{®, 6 € @} where © is a subset of a
normed linear space L. Suppose further that ® is a differentiable manifold
with tangent space T, at the point 6 € 0.

DEFINITION. A family {P{®, 8 € @} is called locally asymptotically normal
(LAN) at a point 8 € @ as ¢ — 0, if there exists a Hilbert space H with norm
[l-1l, a linear manifold H, c H and a family {A,} of linear operators A, :
H, —» T, such that:

1. lim|[A k[l = 0 as ¢ = 0 for any h € H,,.
2. For any h € H;, and all ¢ < &(h), the following representations are true:
Let m(e) be the point of ® closest to the point 6 + A,k (in L). Then

dP®)
O (X,) = exp{A (k) - —||h||2 + ¥(e, h)}

P(e)

where A, (k) is a linear random function on H,, the random variables
A _(h) are asymptotically N(O, ||h|| )as ¢ > 0 and (e, h) > 0as ¢ > 0 in
P(E)-probablhty

As before we put H = H, and speak about the LAN conditions in the
direction H with the norming factor A,.

Suppose further that ¢: ® - U is a Fréchet differentiable function and
consider the problem of estimating ¢(0) on the basis of observations X,. As
before we shall consider normed differences B,(¢, — ¢(0)), where ¢, is an
estimator of ¢(6). For the sake of simplicity, we shall consider only such
normed factors B, for which ||A, Pyl B, |l is bounded as ¢ — 0.

An estimator ¢, (more precisely a sequence of estimators {¢,}) will be called
(H,, A,, B,)-regular if for any m(e) defined by the LAN conditions the
normed difference B, (¢, — ¢(m(e))) has with respect to the measures P,
(as & —> 0), the same limit distribution as B,(¢, — ¢(8)) does with respect to
the measures P{®.

THEOREM 5.1. Suppose the family {P{®, 6 € @)} satisfies the LAN condi-
tions and that the estimator ¢, is (H,, A,, B,)-regular. Then if the operators
K, = B,¢'(0) A, Py converge weakly (as ¢ — 0) to a Hilbert-Schmidt operator
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K, the limit distribution F of the difference B (b, — ¢(0)), if it exists, has the
form F = N(0, K)* Q.

THEOREM 5.2. Suppose the family {P{®, 6 € O} satisfies the LAN condi-
tions that S is a topology compatible with the LAN conditions and that {V} is a
system of neighborhoods of 6. If the operators K, = B ¢'(8)A, Py converge
strongly (as € = 0) to a Hilbert-Schmidt operator K, then for any loss
function I € A and any estimator ¢,

(5.1) inf lim inf sup EQI(B,(¢, — #(u))) = El(£),
{v} &-0 uevV

where £ is a Gaussian vector in U with distribution N(0, K).

REMARK. As before we could define the operators K, in a simpler way

because of the condition ||A, Pyl Bl = O(1).

£

We omit the proofs of Theorems 5.1 and 5.2 since they coincide with the
basic results of Sections 3 and 4.

5.2. Examples.

ExampPLE 5.1. Suppose that as in Examples 2.1, 3.1 and 4.1 we observe the
process X,:

(5.2) dX,(t) = 6(t)dt + edw(t), O0<t<]l.

ExampLE 5.1.1. Let 6(¢) in (5.2) be an element of a one-parameter family of
t-functions S(¢,0). In this case the set ® is a curve in L0, 1). Define the
functional ¢ by the equation ¢(s(-,6)) = 6 and the norming factors A, = 1.
Putting B, = ¢!, we find that K, = K = ¢'P,. The operator Py is a projec-
tion onto the one-dimensional subspace spanned by S§V(-, 8). Differentiating
¢(s(-,0)) = 0, we find that ¢’ = (S;)~L. It follows that the limiting Gaussian
distribution N(0, K) is the distribution of the random variable

£=|S)72 [Ols‘;(t,e) dw(t).

In particular [see Ibragimov and Has’minskii (1981), Sections 2.7 and 3.5],
for a real-valued parameter 6,

lim liminf sup EXI(e7'(6, — 0)) = El(£).
-0 -0 10—ul<d

One can obtain an analogous result for S(¢,6,,0,,...,0,) as an element of
an n-dimensional parametric family. In that case the set ® is an n-dimen-
sional surface in L,(0,1). It is easy to show that the limiting Gaussian
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n-dimensional vector ¢ has the correlation matrix

-1

aS aS
e

[see Ibragimov and Has’minskii (1981)].

ExampLE 5.1.2. Now let the estimand ¢(68) = [3l(x)0(u)du and ©{6:
6]l = 1}. We then have ¢'(8) = I and the tangent space at the point 6 consists
of all vectors orthogonal to 6. Hence

Kh = ¢/'(8) Pyh = [Oll(t)h(t) dt — ¢(o)j01h(t)o(t) dt.

The distribution of the limit Gaussian variable ¢ is then the distribution of

1 1
¢ = [[1(¢) duw(e) = $(0) [ 0(t) du(t).
In particular,

inf lim inf sup E{"e ~2%| ¢, — ¢(9)| > [IZ]I? — $2(6).
{Vv} -0 yev

Noge that without the restriction ||0|| = 1 the bound will be different, namely
11718

ExampLE 5.1.3. Consider the differential equation

(5.3) y'(t) =f(x(2),6(2),8), ¥(0) =

We assume that f is sufficiently smooth and raise the question of estimating
the solution y = ¢(6, ¢) on the basis of the observation (5.2). The solution ¢ of
the problem (5.3) is (as function of 6) a nonlinear operator ¢: L,(0,1) —
L,(0,1). Its derivative is an integral operator with kernel

tof
Hy(s,t) = x,(s)exp f 5;((#(0,0);0(0);0) dv
(5.4) °
of o
X — ) .
o9 (9(8,5);6(s);5),
where
1, <t,
xi(s) = {0 N
Hence, if there are no restrictions on 6, the limiting Gaussian distribution
N(0,K) is the distribution in L4(0, 1) generated by the random function

£(s) = folHo(s,t) dw(t).
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If 6 € ® = {6: 6]l = 1}, then

1 1 1
£(s) = [ Hy(s,¢) dw(t) — [ Hy(s,£)8(¢) dt [ 6(t) du(t).
0 0 0
We shall return to this in Example 8.4.

ExampLE 5.2. Let X;,..., X, be a sample of size n where the X; take
their values in the measurable space (X, ). Suppose that the X; have dens1ty
function p(x) with respect to a o-finite measure u on Q. As i 1n Example 3.2
and 4.2, we consider the problem of estimating ¢(p) but treat it from a
different point of view.

Let L. be the Hilbert space L,(u) of all functions g: X — R! with
/1g(x)1?u(dx) < . Represent the density function p(x) as p(x) = |6(x)/%
Then 6 is a point in the unit sphere 3 = {0: [|6]| = 1} in L. We take H = L. If
there are no restrictions imposed on p, the space H consists of all vectors
orthogonal to 6. Define the operators A, = (2Vn)~I. Then [m(e) is the point
of ® closest to 8 + A k]

dP%® n 1 h(X, x,)\*
Sy - P L ACD | UKD
dP{® 1 2Vn 0(X;)  0(X))
where [|yll = O(|h|12/n). It is easy to see that as ¢ — 0,

(&)

P x A(R) = SlAI?
dPo(s)( E) _exp{ e‘( ) E +‘/’e}’

where the random variables
g (X
Vn T 8(X)
are asymptotically N(0, [|2]?) and ¢, — 0 in probability. Thus the LAN condi-
tions are fulfilled.

If in Theorems 5.1 and 5.2 we choose the operators B, = (1/ Vn )I, then the
operators K, = K = ¢'(0) Py,.

A (h) =

ExampLE 5.2.1. Let the density function p(x) be an element of the one-
parameter family {p(x, ¢)}. In this case we can treat the parametric set ® as a
curve on the unit sphere 2. The tangent space T, is one dimensional and
consists of the vector proportional to the vector pi(-,#)/ {/p(-,¢) . Keeping in
mind that we wish to estimate ¢, consider the functlonal 1) deﬁned by the
equality ¢(y/p(-,t)) = t. Arguing as before (see Example 5.1.1), we find that
the limiting Gauss1an variable ¢ of Theorems 5.1 and 5.2 may be written as

” ! pt(x ?)

x p(x D) dw,(x).
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Here w, is the Gaussian measure on ) with Ew,(A) =0 and Ew/(A) X
w,(A) = u(A A A). In particular,
VI(2) f 2

lim liminf sup E®I(Vn|f > /'exp(—I ¢ ——)dx,
lu—tl<s (/n It = ul) Vom /g 03

-0 £-0

where I(t) is the Fisher information

rZex
I(t) = fx—-l;—(—x—,t—)'—u(dx)

To avoid any possible misunderstanding, note that to check the LAN
conditions under the minimal restrictions given in this example is in essence
the same as repeating the proof of Le Cam’s theorem [see Ibragimov and
Has’minskii (1981), Section 2.1].

ExaMPLE 5.2.2. Suppose now that the variables X; take real values and
that the estimand

F(p) = $(8) = [ p(3)u(dy).

If there are no additional restrictions imposed on p, the space H consists of all
vectors orthogonal to 8 = y/p . The derivative ¢/() is the integral operator

¢ (0)h(x) =2[ h(y)6(y)n(dy)

and the limiting Gaussian distribution N(0, K) is the distribution of the
random function

£ = [ Ve dw,9) = [ p(»)udy) [ Vp(y)du,(»).

Part II.

Here and below we shall suppose that the conditions under which Theorems
4.1 and 5.2 have been proved are fulfilled. Estimates 7T, of #(6) for which
equality holds in the inequalities (4.1) or (5.1) are called asymptotically effi-
cient [cf. Ibragimov and Has’minskii (1981), Section 1.9]. In this part we are
interested in how one can construct efficient estimators. This problem has a
relatively simple solution in the finite-dimensional case: If 0 is an asymptoti-
cally efficient estimator for 0 (e.g., the maximum hkehhood estimator), then
#(8,) is asymptotically efficient for $#(8). If the parametric set ® is infinite
dimensional, asymptotically efficient estimators will not usually exist (under a
natural normalization).

One of the possible approaches to the construction of asymptotically effi-
cient estimators is expounded below following the example of estimation in
Gaussian white noise (see Examples 2.1, 3.1, 4.1 and 5.1):

(*) dX (t) =0(t)dt + edW(t), 0<t<]l.
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If the functional ¢ to be estimated is linear or polynomial, we can replace the
argument 0 of ¢ by the ‘“maximum likelihood estimator” X (see Section 6). In
general, one can first replace #(6) by a polynomial (by a part of a Taylor’s
series, for example) and estimate this polynomial (see Sections 7 and 8). We
discuss this construction in detail for the problem ().

IMPORTANT REMARK. We denote by ||All; the Hilbert—Schmidt norm of a
linear or multilinear operator A. The norm in L,(0,1) is denoted by | - |l or

I Iz,
For the statistics generated by (*), we often write E,(-) instead of E{(-).
The reader can find results for other problems in the papers of Levit (1974,
1975b), Pfanzagl (1982) and Has’minskii and Ibragimov (1979, 1986).

6. Asymptotically efficient estimation for linear and multilinear
functions.

6.1. Linear functions.

6.1.1. Suppose that in Example 2.1 (see also Example 3.1, 4.1 and 5.1) the
estimated ¢: L, = U has the form

(6.1) @(6) = ["U0)6(2) dt,

where 1(¢) is a U-valued function and [2[|I(+)l} dt < . Then the estimator

A 1
(6.2) .= [U(2) dX.(¢)
0
is asymptotically efficient.

6.1.2. Return to Examples 2.2, 3.2, 4.2 and 5.2. Let X; be real-valued and
du = dx. If the estimand

8(6) = [ #(x)0(x) ds,

#(x) € U, [llp(x)lI56(x)dx < o and the loss function () = |lull? then the
estimator ¢ = (1/n)L2¢(X,) will be asymptotically efficient if the set @ is
sufficiently large [see Levit (1975b)].

6.1.3. Reconsider Example 2.3. Let the estimand be the linear functional
$(f) = [ #(A)F(1)da,

where f(A) is the spectral density of {X;}, ¢ € Ly(—, ). It is possible to
prove arguing as in Has’minskii and Ibragimov (1986) that under some
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additional conditions the estimator

2
dA, X =

S| =

o 1 'n'
¢, = ﬁf_;ﬁ(’t)

n
21 e™M(X; - X)

will be asymptotically efficient.

6.1.4. In Example 2.4 suppose the estimand is

$(6) = [Olou) du.

Consider the estimator

. ﬁ’: X,
¢ = pduvg' ¥ —,
K-1 [Ax * t,ea, P(4)

where Ay is a decomposition of the interval [Q, 1], N = [yn/In n], vx denotes
the number of ¢, € Ag. One can prove that ¢ is asymptotically efficient [for
details see Pastuchova and Has’minskii (1988)].

6.2. Polynomial functions ¢. We have more or less complete results only
for the models 2.1 (3.1, 4.1, 5.1) and 2.2 (3.2, 4.2, 5.2). In Example 2.2 let the
random variables X; be real-valued, du = dx and the estimand

u(0) = [+ [ B(xr 50, 2)0(x) - O(xg) dxy o

where ¢: R* - U. In this case the U-statistics

(6.3) i = (2)_IZ¢(Xil""’Xik)

will be unbiased and asymptotically efficient estimators under fairly weak
assumptions, see Levit (1974). It is easy to check that under the same
assumption the statistics

=1 &
k=0

will be unbiased and asymptotically efficient estimators of the polynomials
r
() = X‘. ¢:(0).
k=0

We now consider in detail the problem of estimating polynomial functions
under the assumptions of Examples 2.1, 3.1, 4.1 and 5.1. This problem has
been considered in Ibragimov, Nemirovskii and Has’minskii (1986). As distinct
from the paper we consider here a different and more natural construction of
estimators and a wider class of estimands.
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6.2.1. Let Ap(¢y,...,¢p) be a symmetric function from R? to U such that

1 1
(6.4) [0---[0||Ap(t1,...,tp)||?,dt1---dtp=||Ap||§<w.

(Il All is the Hilbert—Schmidt norm of the operator A. In this case the norm of
the integral operator generated by the kernel A,.) Let the function to be
estimated Ap: Ly(0,1) —» U be defined by

Ap(0) = fol fOIAP(tI,...,tP)B(tI) coe 0(tp)dt, - dip.

We shall estimate Ap(6) by multiple stochastic integrals, for example, by the
integrals

(65)  Jp(4p) = [ e A Ap(ty,. o tp) dX,(2) - dX,(tp).

Under the assumptions (6.4) the integrals (6.5) are defined as the usual
stochastic multiple integrals with respect to a Wiener process [see McKean
(1969) and Meyer (1976)]. First we define in the usual way the integral (6.5)
for indicators of parallelepipeds lying inside one of the sets B, = {0 <¢;, <
t;, < -+ <t;, < 1}. The integral is then extended to all linear combinations
of such indicator functions. The integral for a svmmetric step function is then
defined as a sum of the integrals over all B, =B, ; .. It is then easy to

check that for step functions

E,[ - [(Ap(ty,... tp) dX(t)) -+ dX(tp)
0 0

1 1
=f0 ...foAP(tl,,,.,tP)dtl oo dtp 2 Ap[6]p,

2

(6.6) L L
fo ...foAP(tl,...,tP)dX(tl) - dX(tp) — Ap[0]p ,

E,

P . &2
=X " DJAP[O]P||2—-T .
Jj=1 J:

Here || D/Ap[0]5l; denotes the Hilbert—Schmidt norm of the jth derivative of
the function Ap[6]p [all these norms are finite because of (6.4)].

The integral (6.5) for a symmetric function satisfying (6.4) is the limit of
integrals of step functions with respect to the norm (E{| - [|y)*/2. The basic
relations remain valid for such functions. It is important to note that the
integrals (6.5) are statistics; in other words, they are functions of the observa-
tion X,.
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Note also the following formula:

Jp(Ap) = Ap[0]p + ¢ [ DAL[6]p(2) du(t)
0
(6.7) + %folfolDzAP[B]P(tl,tz) dw(t,) dw(ty) + -+

+ %jfolfolD”Ap[O]P(tl,-..,tp) dw(ty) -+ dw(tp).

For step functions formula (6.7) is an immediate corollary of the definition of
the integral (6.5) and the It6 stochastic multiple integral.

6.2.2. Let
k
T(0) = ¥ Ap[0]p
1

be a polynomial of degree % defined on L,[0,1]. The next theorem is a
generalization of Theorem 1.1 from Ibragimov, Nemirovskii and Has’minskii
(1986).

THEOREM 6.1. Let the functions Apl6lp, P =1,...,k, satisfy conditions
(6.4). Then the statistic

k k
A 1 1
T=Y Jp(Ap) = ¥ [ - [ApdX(2) -+ dX(tp)
P=1 pP=1"0 0
is an unbiased estimator of T(0). Moreover,

A 2 k L — . 2
E|T-T®)]y= L (i) ID/T(8) ],
(6.8) /=1
ko g2J ) 2
- L STl

2
U j=2

E|T - T(8) - stl[DT(B)](t) dw(t)

The proof follows from (6.7). We need only note that the multiple Wiener-It6
integrals of different multiplicity are orthogonal and that

2

2
= P! Ap|l;.
U

E,

fol . folAP(tl,...,tP) dw(t,) -+ dw(tp)

COROLLARY 6.1. Let T(0) be a polynomial of degree k. If conditions (6.4)
are satisfied, then
2

E, < C(k)e*(1 + 101 7%).
U

T - T(6) - ¢ [ DT(8)(¢) duw(t)
0
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The statistic T' is unbiased, asymptotically normal and an asymptotically
efficient estimator of T'(6) in any ball 16| < R.

Proor. The corollary follows immediately from (6.8) and the inequality

| DiA[6]5]2 < C(P)IOI*P,  j=1,2,..., P. o

Let ¢, ¢,,... be an orthonormal basis in L,[0, 1]. Let 6 = £6(i)¢$, be the
expansion of § with respect to {¢,}. It follows from (5.2) that

X(i) = f01¢i(t) dX,(t) = 0(i) + e£(i), i=1,2,...,

where £(i) are independent normal variables with mean 0 and variance 1. Let

k- LX), 0= Lo, X7(D) = X(0) - [K(u)d,
1 1

0" =0-0,, f= L Db, w(t) =w(t) - [E(u)du.
1 0

The process Xn(t) is measurable with respect to the o-algebra D, generated
by £(1),..., &(n). Since the Gaussian process w™(t) is orthogonal to all £(i),
i < n, the process

Xn(t) = [O‘o"(u) du + ew™(t)

does not depend on D,.
Our next interest centers on the estimation of polynomials

k
(6.9) T(o") = Z Ap[6™]p.
P=0
We begin with a definition of the stochastic integrals

(6.10)  JE(Ap) = [T [(Ap(ty,....tp) dX"(t;) -+ dX"(tp)
0 0

when the conditions (6.4) are satisfied. For P = 1 we define

folAl(t) dxXn(t) & fOlAl(t) dX(t) - folAl(t)Xn(t) dt.

It is obvious that

1 n _ 1 n 1 n _ 1 n
foAl(t) dXn(t) = foAl(t)o () dt+sfo Ay(t) dw(t) = j;Al(t) dXx(t),

where A7 is the projection in L,[0,1] of A, onto the subspace spanned by
{¢n+1’ ¢n+2’ e }

If P> 1 we can consider the kernel Ap(t,,...,¢p) as an element of the

space L,([0,1]7). The set of functions {¢, (¢)) -+ ¢, (tp)} is an orthonormal
basis in this space. Denote by H} the subspace of L,(0,1]") spanned by
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ip®i, " bips ip,...,ip2n + 1, and let A} be the projection of A, onto
Hp. Define

1 1
. foAP(tl,...,tP) dw™(t,) -+ dw"(tp)
(6.11) L
&[0 [t tp) dw(ty) - dw(tp).
0 0
Define JZ(Ap) by putting into the right-hand side of (6.10) 6™(¢)dt +
e dw™(t) 1nstead of dX"(¢) and multiplying by T17(8"(¢;,)dt; + & dw™(¢,)).

Obvxously, the integral J7(Ap) does not depend on L ,. Moreover the follow-
ing generalization of (6.11) holds:

1 1
(612)  JE(Ap) = [ [(Ap(ts,..,tp) dX(t) -+ dX(2).
It follows from (6.5), (6.6) and (6.12) that

(6.13) E,J"(Ap) = Ap[0]p = Ap[67]p,
JE(Ap) = Ap[67]p + sf DA%[6]p(2) dw(2) + -
(6.14) P
+ P—!fo jODPA';[o]P(tl, cotp) dw(y) - dw(tp).
Hence, if conditions (6.4) are satisfied for p = 1,2,..., k, we may consider

as an estimator for the function (6.9) the expression
k k
- 1 1
(6.15) T=Y JE(Ap) = Y j;) .- fo Ap(ty,...,tp) dX(t)) -+ dX(tp).
1 pr=1
It follows from (6.13) and (6.14) that this estimator is unbiased and that

2
E,|T - T(8") - stlPHlnDT(S")dw(t) i}

(6.16) b g .
- £ SHegprcsnl
j=2J:

REMARK 6.1. Since X" does not depend on L,, the stochastic integrals
J3(Ap) may be defined in the same way for random L -measurable kernels
Ap. Formula (6.16) continues to be true for the conditional expectation
E{-|L,}.

REMARK 6.2. Let A be Hilbert—Schmidt integral operator with the kernel
A(t,s). Sometimes we shall write the stochastic integrals [jA(z, 5) dw(s),
JLA(t, s) dx(s), and so on, in the form (A, W), (A, X) or A(W), A(X) as the
result of the operator A acting on the “function” W or X.

Note that a Hilbert-Schmidt operator A can be realized as an integral
operator. Usually we denote the kernel of this operator with the same letter A.
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6.2.3. Suppose now that conditions (6.4) are satisfied for 0 <P <k — 1
but not for P = k. In this case there are no unbiased estimators of T defined
by (6.9). Consider instead of the kth condition (6.4) the weaker one:

2

< L2l0]1°.
U

1 1 1
(6.17) fo fodtz e dt, fOAk(tl,...,tk)H(tl) dt,

Following Ibragimov, Nemirovskii and Has’minskii (1986), take an integer
N > 0 and substitute A,[60], by

1 1
AII:I[O]k é/;) foAk(tl"~~,tk)oN(t1)0(t2) <o+ 0(t,)dt dty - dt,

1 1
=f0 -~-f0AkN(t1,...,tk)0(tl) o O(ty) dty - dby,
with symmetric kernel A,y. We have [cf. Ibragimov, Nemirovskii and
Has’minskii (1986)]
lA.nll; < L?N.

Define
k-1

Ty(0) = ;lAp[o]p + Apn[0]s-

Then the statistic
3 k-1
T, =Y J(Ap) +J(ALN)
p=1

is an unbiased estimator for Ty(6). It follows from (6.17) that
(6.18)  |Ty(6) — T(8)| <|Aun[0] — Axl0]:| < LllO™IlI6N* .

Using Theorem 6.1 and the last inequality, we deduce that
2

E,

Ty = T(6) — ¢ [ DTy(6) du(t)
0

(6.19) U

< o(k)(s* + (N + 101%)e?* + 0¥ [P0 ~2).

7. Asymptotically efficient estimation of smooth functions. Let
X,(¢) be the observation process of Examples 2.1, 3.1, 4.1 and 5.1. In other
words,

dX, (t) = 0(¢)dt + edw(t), 0<t<l1.
Suppose that the parameter set © is a compact subset of L,(0, 1). For the sake

of simplicity, we suppose that ® c ®; = {6: 6]l < 1}. Kolmogorov’s diameters
d,(0),n=1,23,...,of the set @ are defined as follows:

d,(0) = iﬂr}lf sup in£l||x = ylL,,

x€@®@YE
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where the infimum is taken over all n-dimensional linear manifolds in L,(0, 1).
We would like to estimate the value ¢(8) of a known function ¢ at an
unknown point # € @. Suppose that the function ¢ satisfies the following
conditions:

1. The function ¢: ®, —» U is k > 1 times Fréchet differentiable the deriva-

tives D¢, j = 1,...,k — 1, are continuous functions of 6 for [|6|| < 1 with
sup ||Dj¢(0)||2sL<oo, j=1,...,k—1.
lloll<1
The last derivative D*¢ satisfies the condition
(7.1) ID*¢(6)[g1:ll. < Lilgl
for all |lg]| < 1.

2. The derivative D*¢(8) satisfies Holder’s condition of order y with respect
to the usual operator norm in the ball @, = {6: |10l < 1}:

||Dk¢(02) - Dkd)(ol) ” < L||02 - 01”7’ 01’ 02 € ®1‘

The following theorem is a modification and generalization of Ibragimov,
Nemirovskii and Has’minskii (1986).

THEOREM 7.1. Suppose that the parameter set ® < int ®, and that the
Kolmogorov diameters of © satisfy

d,(0) <cn™h.

Suppose further that a function ¢: ®, — U satisfies conditions 1 and 2, the
constants vy and B being connected by the relations

E+y>(28)7", k=3,
E+y>1+(28)"", k=12
Then there exists an estimator ¢, of ¢(8) such that

2
e 2-50.
U

(7:2) sup Ey| 9, — #(6) — ¢ [ ¢'(6)(1) du ()
006 0

Proor. We will only sketch the proof because it is mainly a repeat of the
proof of the afore-mentioned results from Ibragimov, Nemirovskii and
Has’minskii (1986). We restrict attention to the case 2 > 3. The case £ =1
has been considered in Has’minskii and Ibragimov (1980) and the case & = 2
may be treated in the same way as the case £ > 3. For the sake of simplicity,
suppose that ® is symmetric.

Choose two integers n = [¢ 2(In(1/¢))"']and N = [¢~2*~D(In 1/¢)~']. Pick
an orthonormal basis {¢;,} = {¢,} in L0, 1) in such a way that

sup inf |lx — yll < 2d,(0),

xE@yE n
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where E, is the span of ¢,,...,¢,. By integrals of the type J& -

foa(ty,...,t,)dX"(¢) - dX"(¢,) we mean the basis {¢;} (see Section 6).
Fix a small positive number & and let

- if| X,| <1-8,

b .
X IX, "Y1 -96), if]|X,]=1-s.

n

Define the estimator
¢. = ¢(X,)
k-1
+
(7.3) - i
1 _
e LO9(R) (test) dXP(1) - X (0).

Here the symmetric kernel (D*¢(X,,))" is constructed in the same way as the
kernel AY in (6.18). We will show that ¢, satisfies (7.2).
We begin with the identity

¢~ #(0) ~¢f "Do(6) dw(t)

1 . —
L [ DXt ty) (1) - dXP (1)

- [4,6 ~ 8(X, +07) — ¢ ['D§( X, + 07)(0) dw"(t)]
+[8(X, +07) = (6) — e(DB(6)(2), £x())]
+ s[[ol(w(xn +67)(t) — D(6)(2)) dw”(t)]

I, + 1, + 1,

The relation (7.2) will be proved if we check that

(7.4) lime 2 supEI? =0, j=1,2,3.
e—0 0c®

For sufficiently small 6,
P(X, + Xn} < ¢, exp{cynd®Ine) = o(&?).

Since X, + 6™ =6 + aén, e2n — 0 and D¢(9) is a smooth function of 0, it
follows that the equality (7.4) is satisfied for j = 8. For j = 1 the proof of (7.4)
is given as in Ibragimov, Nemirovskii and Has’minskii (1986) and so we omit
it. The proof of (7.4) for j = 2 is based on two lemmas.

LeEmMMA 7.1. Let ¢: ®, - U be a twice Fréchet differentiable function such
that
lg'(O)llz <c <o, l¢"(B)z<ec <, 6€0,.
Let E(n) be an n-dimensional subspace of L,0,1]. Denote by &(n) an



1712 1. A. IBRAGIMOV AND R. Z. KHAS’MINSKII

E(n)-valued Gaussian random vector with mean 0 and unit covariance ma-
trix. Let n = n(g) be chosen in such a way that n(e) = », eyn - 0 as ¢ > 0.
Then for any & > 0,

||0||Su1p_5E{”¢(0 + Efn) — ¢(9) ”lzjl(ellénlka) - 32”4"(0)PE(")"2} < a(e)e?,

where Py, denotes the projection on E(n) and a(e) — 0 as ¢ > 0. Moreover,
a(e) depends on &, n(e) and C but not on ¢.

Proor. The proof of this lemma is essentially the proof of Lemma 2.1.1 of
Ibragimov, Nemirovskii and Has’minskii (1986) and so we only give a sketch of
it. Let the function

g(h) =ll6(6 +h) — $(6) 5

The function g is defined and twice continuously differentiable in the ball
V ={h € E(n): ||kl < 8}. Denote by I(f) the mean value of a function f on
the sphere {h € E(n), |||l < p}. Let A denote the Laplace operator on func-
tions E(n) —» U and let V denote, for p < R < §, the gradient of such func-
tions. Arguing as in Ibragimov, Nemirovskii and Has’minskii (1986), we find
that for p < R < 6§,

(7.5) In(g) = (2n)'B2[ "on(p)1,(Ag) dp,

where

03(P) = = (p— p"IRPT),  O3(p) 2 0 [65(p) dp = 1
r(P R2(n_2) p—p )’ r\P) 2 Y, o R(p) p = 1.

Setting ¢(60 + h) — ¢(8) = I(h), we have
(7.6) 1Ag = 3A(L(R), I(R))y = (AL(R),I(h))y +]Vi(R)lIg-
Set

A(R) = max I(g), B(R)= Orsr:ixRIp(llAllli),

C(R) = max L(|VL[5).

It follows from (7.5) and (7.6) that, for 0 < p < R,

2 2

R
1,(8) < “~(AY%(p) B'*(p) + c(p)) < —(AV*(R)BY*(R) + (R)).

Hence for a > 0,

2 4

AR<RCR 1+ B(R)j|1 !
(R) < "-C(R1+a) + Tz B(R)1+a+
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Let @ denote the distribution of &l|£, . The last inequality gives
. 2
E|¢(0 + 2£,) ~ $(0) [y Li,i <

8
= ["1,(8)Q(dp)
0
1 B c(ryawary + L1 L) o E b ryacar
<(+a) [ C(RQER) + 7[1+ e+ 2| [7BRIQUR).
Now C(R) < II¢’(0)PE(n)II§ + ¢;R and B(R) < c¢,n (all ¢; depend on C only).
Hence
. 2
Eo|#(6 + ¢£,) — $(0) ||y Leéi<a
1
<(1+ a){z-;z” ¢'(0)PE(n)”§ + 6382(8\/77)} + 04(1 +a+ —)82(8\/77)2
03
and it is sufficient to choose @ = a(e) > 0as ¢ - 0. O
LEmMMA 7.2. Let ¢(0) be a twice Fréchet differentiable function in the ball
0, = {6: l16ll < 1}. Suppose that for all 6 € O,
l¢'()ll < C <o, [¢"(0)]z <c <.

Let E(n) be an n-dimensional subspace of L,(0,1) and let ¢, denote an
E(n)-valued Gaussian vector with mean 0 and unit covariance matrix. Fi-
nally, suppose that e¥n — 0 as ¢ — 0. Then for any § > 0,

. g . , .2
(17)  lime E{||¢(0 +eé,) — ¢(60) — ed/(0)¢, ||U1(e||én||<w)} =0.
This last relation is uniform with respect to all 6: 6]l < 1 — 6.

Proor. It follows from Lemma 7.1 that

lim sup {s‘zE{”d)(H +eé,) — ¢(0) — ed'(0)é, ”1211(s||§'n||<6)}}

€20 gl<1-5

. 2
<2lim sup {E"¢'(0)§n"0

€0 p1<1-5
_g—lE[(¢(0 +2£,) — ¢(0), ¢'(0)én)ul(e||én||<a)]}
and hence we need only prove that the right-hand side of the last inequality

is 0.
Let ¢4,..., ¢, be an orthonormal basis in E(n) and

£.= L ()Y,  EF=€, - (k).
1

Put ¢,(8) = ¢'(8)¢,. Since Pfell£, |l > 8} = o(¢2), we can discard the factor
1ié,1> 5 and suppose that the function ¢(6) is defined for all § € L,(0, 1) and
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that [[¢'(8)ll2 < ¢ for all § € L,(0,1).
Then

E{(d’(o + efn) - ‘f’(o)’ ¢'(0)§n)(]}
(7.8) n .
-y E{g(k)( 1(8), 6(0 + €,) - ¢(0))U}.

=1

bl

Since
$(0 +8£,) — 6(8) = (6(0 + 2£,) — &(0 + e£F)) + (&(6 + e£%) — 6(6))
and £(k) does not depend on £%, we can write (7.8) as
E{(6(6 + e£,) — 6(6), #(8)é, ) ;)
= % (64000, B[k (00 + o) ~ 0(0 + c62))]),,
By Taylor’s formula,

$(0 +2£,) — ¢(0 + e&k) = e£(R) (6 + €€,) + Rye? £(k) |
and |R,lly < C, C < . Hence
‘E{(¢(0 +88,) — $(0), #(0)E,) .} - akgl(dfkw), E[£2(k)ei(0 + aén)])U‘
< ce®Vn =o(e).

Finally,

X E(64(0), (0 ($(0 + o) ~ 44(0)),

<2 £ emla@Is|E £ oo+ et,) - sl

k=1

<ol ¢ (0) 1BV ¢ (6 + e£,) — #(0) |

2
< c,E? <c; ase'n - 0,¢& - 0.
2

f:¢”(0 +t€,)€, dt
Hence, uniformly in [|6]| < 1 — 5,
T 'E{(6(0 + ¢£,) — $(6), #(0)€,) )

, .12 , 2
= E|¢'(0)é, [y + o(1) =] ¢'(8) Peg |2 + 0(1), & — 0.

This completes the proof of the lemma and hence also the proof of Theorem
7.1. O
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8. Asymptotically efficient estimation of smooth functions on
smooth manifolds.

8.1. Once again consider the problem of estimating a function ¢(8) on the
basis of the observation X,:

dX,(t) = 6(t) dt + edw(¢), O0<t<l.

We shall now suppose that the parameter set ® = 3 N I, where as before 3, is

a compact subset of the unit ball ®, = {6: ||0]| < 1} and T is a smooth manifold

(cf. Section 5). We show that under some restrictions imposed on I' a small

modification of the estimator given in Section 7 will be asymptotically efficient.
Let the manifold T' be defined by the parametric equation

0 =F(u), vevV,

where V is a subset of an Euclidean or Hilbert space H,. We suppose that the
map F: V — L, satisfies the following properties:

A,. The map F is Fréchet differentiable in V and
| F'(va) = F'(vy) || < Lllvg — v, |

for any v,,v, € V.
B. The linear operators F'(v)*F'(v): H, - H, are bounded and strictly
positive defined uniformly in V.

Let T(0) denote the tangent space to I' at the point 6. Denote by Py, the

projector in L, onto 7'(6). It follows from the conditions A, and B that
" Pre (8 — 91)” <65 — 64],
(8.1) Y
I Pre, — PT(01)|| <cl6; — o,

Only the second formula needs a proof. The tangent space T'(0) consists of
the vectors {F’(8)v, v € V}. Hence

(8.2) Pro, = F'(8)((F'(8))*F'(8)) '(F'(8))*.

Indeed, P2y, = Pry, and P, F'(0)u = F'(0)u. It follows from A, B and
(8.2),

I P, — PT(ol)" <cllo, - 0,]".

Now we present a modification of Theorem 7.1. For the sake of simplicity,
we consider only the case 2 = 1. There are no principal difficulties in treating
the general case.

THEOREM 8.1. Let the parametric set ® =3 N T where Kolmogorov’s di-
ameters d (3 of the set 3, satisfy the condition

d, (%) <en™®,  B>0,
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and the manifold T satisfy the conditions A, and B. Let the function $(6),
¢: O, = U, be defined and Fréchet differentiable in the ball ®, = {0: ||6]| < 1}.
Let

le'(0)llz <c; ld'(6) —&'(8)l2 >0, fore' — 6,
” ¢'(0) - ¢,(01)" <cl6, — 6, ”y
for all 6,60',6, € ©,. Suppose that vy and B satisfy
(8.3) y>(28)"

Then there exists an estimator ¢, such that

(8.4) sugE,,l . — $(8) — £(¢'(8) Prgy, ) = 0(£?), &~ 0.

ReEMARK. Formula (8.4) means, in particular, that the normed difference
e~ ¢, — #(0)) is asymptotically normal with the limit distribution equal to
the distribution of (¢'(6) Py ), ) and

L 2 , 2
Eh_{%g ’Eoll b, — ¢(0) |y =”¢ (B)PT(O)nz'
Hence the estimator ¢, is asymptotically efficient.

Proor. Take n =[¢~%/@F*D]. Let X, and X, be defined as in Section 7
and let d, be the distance from X, to I'. Let X, denote a point X, € I" such
that

(8.5) |X, - X,|<d, + ¢
We show that (8.4) holds for the estimator ¢, defined by
(86) ¢e = ¢(X~n) + (FI(Xn)PT(Xn)’ Xn)

As in Section 7, it is sufficient to prove that

(8.7) g"e‘gEoﬂ b, — ¢(8) — &(¢'(6) Pr), w)l|U1(€II5nII<5)} = o(?)

as € > 0.
Put ¢' = Ppx ,0. By the conditions' of the theorem,

[6(%,) = 6(0) ~ ¢/(%,)(Z, - o), s LI %, - 0
It follows from this inequality and (8.6) that
|6, - 8(0) — &/(X.) Preg (X" + X, - 0)|, <LIZ, -0
The inequality (8.5) implies that
(8.8) Ee" PT()'(,,)Xn - Xn " =o(¢),
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where o(¢) is uniform in 9 € ©. If ¢l£,|| < §, then X, = X,,. Hence
| Prog (X" + X, — @) = Pz (X, + X" = 0)|| = o(e).
Therefore, if ¢ll£,|l < 8,
| ) = ¢ (%) Prx (X, + X" = 6)|,

(8.9) <L|X, - o] +o(e)

. 1+y
<L|X,-06] " +o(s), e-0.
Since X, + X" — 6 = ew, formula (8.7) follows from (8.9) and the relations:

E %, - o = o(e?),
E {”4’(0) - ¢(0,)||(2]1(€||§.n|<8)} = 0(32):
E n PT(X y— ¢ (O)PT(O))gw” = o(&?).

The first relation has been established in Section 7. The second one follows
from the equality E,|l6 — 6'||> = o(¢2). We now prove the last one.

Let A be a random L -measurable linear operator A: L, — U with [|All; <
. Then

EllAwl} = B ¢, + 4|,
< 2| Aé,||;, + 2Bl Aw"Il%
< 2B{|| AP, .1} + 2B 40071
< 4nE'/?|| AP, |* + 2E| All3.
Therefore,
62E|(#/(X.) Prs, — ¢/(6) Prx, ),
<ne’BV (%) - # O + 2:2E7¢/(X,) - #(0)]
<o(s?) + cne?EVY| X, - o
=0(e2) + O((¢2n)""7) = o(¢?).
Using (8.2), we have in the same way

E|(¢/(6) Prcs,) — ¢/(6) Prep))etb |, = o(e?)

and the theorem is proved. O

(8.10)

8.2. The estimator (8.6) can be relatively easily constructed if the manifold
I has finite dimension. We now show that there is also a rather simple way to
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construct efficient estimators if I' has finite codimension. Suppose that the
surface I' is determined by the equations

(8.11) F(6)=0,...,F.(6) =0.

Here the real-valued functions F;(6) are supposed to be defined and Fréchet
differentiable in the unit ball ®,. We also suppose that the vectors F;(6) are
linearly independent for all # and that the Gram determinant

(8.12) G(0) = det||(F/(0), F/(0))| = m >0

for all 6 € ©. Denote by E(6) the subspace in L, spanned by F;(6), j = 1,...,r.
Evidently, the tangent space T'(9) at the point 8 consists of vectors orthogonal
to E(6) and so

¢'(0)PT(9) = ¢'(‘9) - ¢'(0)PE(9)~

Hence we can plug into (8.6) an estimator of ¢'(8) — ¢'(8) Py, instead of an
estimator of ¢'()Pp,, and which is easier to analyze since the projection Py
is finite dimensional. The situation is especially simple if the function ¢ takes
real values. Suppose as before that the Kolmogorov diameters satisfy

d.(2) <cnk.

Also suppose that the functions ¢, F, ..., F, satisfy conditions 1 and 2 of
Section 7 with constants k&, v, &, vy, ..., k,, v,, respectively. Let

X=min{k+’)’,k1+')'1,--"kr+')lr}‘

Consider the conditions (cf. Theorem 7.1)

> (28) 1, ifx > 3,
(8.13) x> (28) nx
x>(28) ' +1, ifx<3.
Under these conditions denote by ¢,, F,, ..., F,, the same efficient estima-

tors for ¢(9), Fy(0),..., F.(8), which have been constructed in Theorem 7.1.
Let A,(0), j = 1,2,...,r, be determined from the expansion

Pgoyd'(8) = X 2,(8)F(6).
i1
Finally, define the estimator ¢* by

%(X.)E

Je?

™~

j=1
where X, and n are the same as in Theorem 7.1, and

A;(0), ifG(0)=m/2,
0, if G(6) <m/2.
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THEOREM 8.2 [Cf. Levit (1975a)]. Under conditions (8.11) to (8.13),
/ . 12
&F — ¢(0) — e¢'(0) Pryr| = o(?)

sup Ea|
00
and so the estimator ¢¥ is asymptotically efficient (see Section 5).
Proor. One can deduce Theorem 8.2 from Theorem 8.1, but we will

instead deduce it from Theorem 7.1.

It follows from Theorem 7.1 and (8.11) that
615 b, = d(0) +ed'(0)w + ay(e)e,
(8.15) Fjg=£Fj'(0)w+aj(£)£, j=1,...,r,

and the random variables «; satisfy the condition

(8.16) Y. supE,a?(¢) =o(1), &—0.
j=0 6

Put §;(¢) = )\j()?n) — 1,(6). Formulas (8.14) and (8.15) imply that
oF =d(0) +ed'(0)w + ap(e)e — ¢ Y (/\j(()) + 51(8))(F'J'(0)w + aj(e))
j=1
= ¢(0) + £¢'(0) Prew + v(e),

where
e 2Egv%(e) < c| X E,a2(e) + X E,8%(¢) |-
0 1

Because of (8.16) we need only prove that

(8.17) lim ¥ E,8%(¢) = 0.
1

-0
j=
Now note that the coefficients A () are determined by the linear equations
(818) L A(O)(FI(0), F)(9)) = (#(8), F/(9)),  j=1,...,r,
i=1 .
and that the conditions of the theorem imply that there exist « € (0,1), ¢ > 0
such that
(8.19) |Fi(6) — Fi(¢)| <cllo—ol", 0,0 c8.

It follows from (8.18) and (8.19) that if the Gram determinants G(8) > m /2,
G(0') > m/2, then

(8.20) |A;(8) = A;(0)| < cillo - &ll°,

where the constant ¢, depends only on ¢, m and r.
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Hence
- m
E,8%(¢) < Eo{siz(e)l((;()?np m/2)} + ’\%(O)Po{G(Xn) < "2"}
— a — m
< B X, - ol + .2 |60) - 6(X,)|> T
< csBy|| X, - 0.
This inequality together with the inequalities

E|X, - 0| <E,| X, - 6| +o(e?) < C(n"% + ¢2n)

and the relation £2n — 0 imply (8.17), which as we noted before completes the
proof. O

8.3. Examples.

ExampLE 8.1. Suppose that conditions (8.11) are satisfied, that the func-
tionals F}(H) are linear and that the restrictions (8.11) have the form

(8.21) [l1(0)6() dt - a; = 0.
0
Then condition (8.12) takes the form
(8.22) det||(Z;, ;)] > 0,
and the A;(0) are the solutions of the equations
(823) Z Al(o)(ll’lj)= (¢,(0)7lj), .]= 1"-',"'
i=1
Then if the function ¢ satisfies the conditions of Theorem 8.2, the estimator
- = 1
Pr=¢,— ) )‘i(Xn)(/O 1;(t) dX.(t) - ai)
i=1

is asymptotically efficient (and asymptotically normal), and
2

eli—rf(l)g_onMf - $(0)|" = =| PT(0)¢"(0)||2‘

$(6) = ¥ 1 (0)1;
1

ExampLE 8.2. Now suppose that under conditions (8.11) we have only one
restriction:

F(6) =F(6) =(K0,0) —a=0, a#0.
Here we assume K is a bounded symmetric operator. Then
(¢'(0), K6)

F'(6) = 2K6,  M(0) =~z
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Since a # 0 and ® C O,,
K0l = || > 0, 00,
and condition (8.12) is satisfied. The estimator (8.14) then has the form

d),(Xn)’ Ia—n
¢t =¢, — _(“2”1.0(—_"2“)1(||KX,L||>¢:/2)I'1-

If K is a Hilbert—Schmidt operator with the kernel K(s,?),
F, = ["['K(s,t) dX,(s) dX.(t),
070

and the estimator ¢* is efficient if the function ¢ satisfies the conditions of
Theorem 7.1.

If the operator K is only bounded [e.g., F(8) = ||6]|> — a], then the estimator
¢* will be asymptotically efficient if d,(3) <cn™®, B > 1/4, and ¢ satisfies
the condition & + y > 1 + (28)~ 1. The quadratic error is

(#'(9), K0)

o(&?).
Kol

Ey¢* — $(0)]" = 82(||¢'(0)II2 -

ExampLE 8.3 (Cf. Example 4.1). Let ¢(0) = ((6(u)du. If there are no
restrictions imposed on 6, X, (¢) will be an unbiased and asymptotically
efficient estimator of ¢(8). Now impose on 8, r linear restrictions

Fi(0) = [(1,(0)6()dt =0, j=1,...,r,
0

and suppose for the sake of simplicity that the vectors [, ..., , are orthonor-
mal. The derivative ¢'(9) is then the integral operator with the kernel

_J1, s <t,
(8.24) ()= {5 55h

Hence the operator
U 4 t
¢'(0) Py = > (lja )/ lj(u)du
j=1 0
and the estimator
. B Tt 1
#r = X(0) = I [ du [1,(0) dX,(1)

will be asymptotically efficient. For example,

EJ| 4%~ o(0)| = (% - % [ ) ) +o(e?).
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ExamPLE 8.4. Let us return to Example 5.1.3. We wish to estimate the
solution ¢(8) of the differential equation:

¥y =f(y,0,t), y(0) =y,

where f(-,-,-)is a known function. In Section 5, we saw that F’'(9) is the
integral operator with the kernel H,(s,¢) given by (5.4).

Suppose that the Kolmogorov diameters d,(®) < cn™#, B > 1/2. Also sup-
pose that the functions £, af/dy, 32f/dy2, 9%f/dy 30 and 3%f/362 are uniformly
bounded in # € 0. Then

IF'(0) 3 <c<w, |F(6%) —F(6,)] <cllo,— 6,

and the conditions of Theorem 7.1 are satisfied with £ = 1, y = 1.
Denote by Y, the solution of the problem

¥y =f(y, X.(2), ¥(0) =y,
and let Y,(¢) be the solution of the following stochastic equation:
of
ay
of
+ —
a0

dYy(t) = ——(Yo(t), X,(t),t)Yy(2) dt

(Yo(2), X,(2),t)(dX.(¢) — X, (¢) dt),  Yy(t,)=0.

Then the statistic ¢,(¢) = Y,(¢) + Y,(2) is an asymptotically efficient estimator
for ¢(#). Moreover, the normed differences £~ (¢,(t) — ¢(6,¢)) converge in
distribution as ¢ — 0 to the solution U(¢) of the stochastic differential equa-
tion

a
dU(t) = a—j(d)(o,t), 0(t),t)U(t) dt + ggw(o,t), 8(t), t) dw(t).

An efficient estimator for an estimation problem closely connected with the
problem of this example is constructed in Korostelev (1988).
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