ON THE MONOTONICITY OF A CERTAIN EXPECTATION

By RASUL A. KHAN

Cleveland State University

Let $\{X_n,\ n\geq 1\}$ be a sequence of random variables and let P_θ be a probability measure under which (X_1,\ldots,X_n) have joint pdf's $f_n(X_1,\ldots,X_n,\theta)=L_n(\theta),\ n\geq 1$. Suppose $u_n=u_n(X_1,\ldots,X_n),\ n\geq 1$, are statistics such that $(u_n-c)(L_n(\theta')-L_n(\theta))\geq 0,\ \forall\ (X_1,\ldots,X_n),\ n\geq 1$, for some constant $c=c(\theta,\theta'),\ \theta\neq \theta'.$ For any increasing function ψ and stopping time T, it is shown that $E_\theta\psi(u_T)\leq E_{\theta'}\psi(u_T)$, provided that one of the expectations is finite and $P_\theta(T<\infty)=P_{\theta'}(T<\infty)=1$. The given result holds for a certain monotone likelihood ratio family and an exponential family in particular. This generalizes a result of Chow and Studden and provides a sequential version of a result of Lehmann.

1. Introduction. Let Y_1,Y_2,\ldots be iid random variables having a common exponential density $C(\theta) \exp(xQ(\theta))$ with respect to some σ -finite measure μ on $R=(-\infty,\infty)$, where $Q(\theta)$ is continuous and strictly increasing on an open interval $I\subset R$. Let $S_n=Y_1+Y_2+\cdots+Y_n$ and T be a stopping time such that $P_{\theta}(T<\infty)=1$, $\forall \ \theta\in I$. Chow and Studden [1] have shown that

(1)
$$E_{\theta}(S_T/T) \leq E_{\theta'}(S_T/T) \quad \text{for } \theta < \theta', \theta, \theta' \in I.$$

In this article we generalize this result by proving a more general result given by the theorem below. The generalized result holds for a certain monotone likelihood ratio family and an exponential family in particular. Thus the given generalization extends (1) and provides a sequential version of a result of Lehmann [3] ([4], page 74).

2. The result. The main result of this article is given by the following theorem.

Theorem. Let $\{X_n, n \geq 1\}$ be a sequence of random variables and P_{θ} a probability measure under which (X_1, \ldots, X_n) have joint pdf's $f_n(X_1, \ldots, X_n, \theta) = L_n(\theta), n \geq 1$. Suppose $u_n = u_n(X_1, \ldots, X_n), n \geq 1$, are statistics such that

$$(2) \qquad (u_n-c)\big(L_n(\theta')-L_n(\theta)\big)\geq 0, \qquad \forall (X_1,\ldots,X_n), n\geq 1,$$

for some constant $c = c(\theta, \theta')$, $\theta \neq \theta'$. Then for any increasing function ψ and

1677

Received April 1990; revised July 1990.

AMS 1980 subject classifications. Primary 62L10; secondary 62A99.

Key words and phrases. Monotone likelihood ratio, exponential family, stopping time, increasing, expectation.

1678 R. A. KHAN

stopping time T,

$$(3) E_{\theta}\psi(u_T) \leq E_{\theta'}\psi(u_T),$$

provided that one of the expectations is finite and $P_{\theta}(T < \infty) = P_{\theta'}(T < \infty) = 1$.

PROOF. Clearly, it is enough to prove (3) when both expectations are finite. Let $P=(P_{\theta}+P_{\theta'})/2$ be the probability measure under which (X_1,\ldots,X_n) have joint pdf

$$L_n = (L_n(\theta) + L_n(\theta'))/2,$$

and let E denote the expectation under P. If ψ is bounded, then by (2) we have

$$\begin{split} E_{\theta'}\psi(u_T) - E_{\theta}\psi(u_T) &= E\psi(u_T)\big(L_T(\theta') - L_T(\dot{\theta})\big)/L_T \\ &= E\big(\psi(u_T) - \psi(c)\big)\big(L_T(\theta') - L_T(\theta)\big)/L_T \geq 0. \end{split}$$

If ψ is unbounded, let $\psi_{a,b} = \max(a,\min(\psi,b))$, and (3) follows by the dominated convergence theorem by first letting $a \to -\infty$ and then letting $b \to \infty$.

Some extended versions of (3) remain valid without the condition $P_{\theta}(T < \infty) = P_{\theta'}(T < \infty) = 1$. The following are two possible extensions without this condition. In what follows we assume the remaining conditions of the theorem and I denotes the usual indicator function.

EXTENSION 1. If
$$\psi(c)[P_{\theta'}(T<\infty)-P_{\theta}(T<\infty)] \geq 0$$
, then
$$E_{\theta}\psi(u_T)I\{T<\infty\} \leq E_{\theta'}\psi(u_T)I\{T<\infty\}.$$

PROOF. This follows from (2) and the identity

$$\begin{split} E_{\theta'}\psi(u_T) I\{T<\infty\} &- E_{\theta}\psi(u_T) I\{T<\infty\} \\ &= E\big(\psi(u_T) - \psi(c)\big) I\{T<\infty\} \big(L_T(\theta') - L_T(\theta)\big) / L_T \\ &+ \psi(c) \big[P_{\theta'}(T<\infty) - P_{\theta}(T<\infty)\big]. \end{split}$$

EXTENSION 2. Suppose that $u_n \to \mu(\theta)$ in probability under P_{θ} , and let $u_{\infty} = \mu(\theta)$. Then (3) holds.

Proof. It is easy to verify that

$$\begin{split} E_{\theta'}\psi(u_T) - E_{\theta}\psi(u_T) &= E\big(\psi(u_T) - \psi(c)\big)I\{T < \infty\}\big(L_T(\theta') - L_T(\theta)\big)/L_T \\ &+ \big(\psi\big(\mu(\theta')\big) - \psi(c)\big)P_{\theta'}(T = + \infty) \\ &- \big(\psi\big(\mu(\theta)\big) - \psi(c)\big)P_{\theta}(T = + \infty). \end{split}$$

Hence (3) follows from (2) and the fact that $\mu(\theta') \geq c$ and $\mu(\theta) \leq c$. \square

The following is a special case of the theorem for a certain monotone likelihood ratio family.

COROLLARY 1. Let X_1, X_2, \ldots be iid random variables having a common density $f(x,\theta)$ with respect to a σ -finite measure μ on $R=(-\infty,\infty)$, where $\theta \in \Omega \subset R$ (Ω is an open interval). Let $u_n=u_n(X_1,\ldots,X_n)$, and $L_n(\theta)=\prod_{i=1}^n f(X_i,\theta), \ n\geq 1$. Assume that $L_n(\theta)$ has monotone likelihood ratio in $u_n, \forall n\geq 1$, and that the interval $J=\{u_n: \log(L_n(\theta')/L_n(\theta))<0\}$ is independent of n where $\theta<\theta'$. Let ψ be an increasing function and T a stopping time such that $E_\theta\psi(u_T)$ is finite and $P_\theta(T<\infty)=1$, $\forall \theta\in\Omega$. Then

$$E_{\theta}\psi(u_T) \leq E_{\theta'}\psi(u_T)$$
 for $\theta < \theta', \theta, \theta' \in \Omega$.

That the preceding is true follows from the fact that $J = (-\infty, c)$ and it implies condition (2) of the theorem. An important special case is that of an exponential family with the following result.

Corollary 2. Let X_1, X_2, \ldots be iid random variables having density $f(x,\theta) = \exp(\theta x - b(\theta)), \ \theta \in \Omega$, with respect to a σ -finite measure μ on R, where Ω is an open interval. Let ψ be an increasing function and let T be a stopping time such that $E_{\theta}\psi(S_T/T)$ is finite and $P_{\theta}(T<\infty)=1, \ \forall \ \theta \in \Omega$, where $S_n=X_1+\cdots+X_n$. Then

$$E_{\theta}\psi(S_{T}/T) \leq E_{\theta'}\psi(S_{T}/T)$$
 for $\theta < \theta', \theta, \theta' \in \Omega$.

REMARK. The condition that $E_{\theta}\psi(u_T)$ be finite would be satisfied if $E_{\theta}\sup_{n\geq 1}|\psi(u_n)|<\infty$. For example, if $\psi(x)=x$, and $u_n=S_n/n$, then $E_{\theta}\sup_{n\geq 1}|S_n/n|<\infty$ if $E_{\theta}X_1^2<\infty$ (in fact a weaker condition suffices, cf. [2]).

The following is a nonexponential example.

Example. Let X_1, X_2, \ldots be iid random variables with the density $f(x,\theta) = \exp(-(x-\theta))I\{x \geq \theta\}$, where $\Omega = R = (-\infty,\infty)$. It is easy to see that $L_n(\theta)$ has monotone likelihood ratio in $u_n = \min(X_1, \ldots, X_n)$ and that the interval J in Corollary 1 is independent of n. Clearly, $\theta \leq u_n \leq X_1$ a.s. Hence for an increasing function ψ and stopping time T,

$$E_{\theta}\psi(u_T) \leq E_{\theta'}\psi(u_T)$$
 for $\theta < \theta', \theta, \theta' \in \Omega$,

provided that $E_{\theta}\psi(X_1)$ is finite and $P_{\theta}(T<\infty)=1, \forall \theta \in \Omega$. In particular, we have

$$E_{\theta} \min(X_1, \dots, X_T) \leq E_{\theta'} \min(X_1, \dots, X_T)$$
 for $\theta < \theta'$.

Acknowledgment. I am grateful to the referee for suggesting the theorem and its simple proof. Invaluable comments by the referee greatly improved the original version of the main result.

R. A. KHAN

REFERENCES

- [1] Chow, Y. S. and Studden, W. J. (1968). On the monotonicity of $E_p(S_t/t)$. Ann. Math. Statist. **39** 1755-1755.
- [2] CHOW, Y. S. and TEICHER, H. (1978). Probability Theory. Springer, New York.
 [3] LEHMANN, E. L. (1955). Ordered families of distributions. Ann. Math. Statist. 26 399-419.
- [4] LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

DEPARTMENT OF MATHEMATICS CLEVELAND STATE UNIVERSITY **EUCLID AVENUE AT EAST 24TH STREET** CLEVELAND, OHIO 44115