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ON THE MONOTONICITY OF A CERTAIN EXPECTATION

By RasuL A. Kaan
Cleveland State University

Let {X,, n > 1} be a sequence of random variables and let P, be a
probability measure under which (X,,..., X,) have joint pdf’s
fXy,..., X,,0)=L,(60),n > 1. Suppose u, = u,(X;,...,X,),n=1,are
statistics such that (u, — ¢)(L,(6)-L,(60) =0, ¥ (X,,...,X,), n>1,
for some constant ¢ = ¢(6, '), 8 + ¢'. For any increasing function ¢ and
stopping time T, it is shown that Egy(u) < Egy(ur), provided that one
of the expectations is finite and Py(T < ») = Pg(T < ) = 1. The given
result holds for a certain monotone likelihood ratio family and an exponen-
tial family in particular. This generalizes a result of Chow and Studden and
provides a sequential version of a result of Lehmann.

1. Introduction. Let Y,,Y,,... be iid random variables having a com-
mon exponential density C(8)exp(xQ(6)) with respect to some o-finite measure
u on R =(—o,), where Q(0) is continuous and strictly increasing on an
open interval I CR. Let S, =Y, +Y,+ --- +Y, and T be a stopping time
such that P,(T < «) = 1, V 6 € I. Chow and Studden [1] have shown that

(1) E,(S7/T) < Ey(Sy/T) for9<¢,0,0 cl.

In this article we generalize this result by proving a more general result given
by the theorem below. The generalized result holds for a certain monotone
likelihood ratio family and an exponential family in particular. Thus the given
generalization extends (1) and provides a sequential version of a result of
Lehmann [3] ([4], page 74).

2. The result. The main result of this article is given by the following
theorem.

THEOREM. Let {X,, n > 1} be a sequence of random variables and P, a
probability measure under which (X,,..., X,) have joint pdf’s
f(Xy...,X,,0) =L (68), n>1. Suppose u, =u,(X,,...,X,), n=>1, are
statistics such that

(2) (u, —c)(L(0) —L(8)) 20, V(X,,...,X,),n>1,

for some constant ¢ = c(8, '), @ # 0. Then for any increasing function ¢ and
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stopping time T,

(3) Egp(ur) <Egy(ur),

provided that one of the expectatiqns is finite and P(T < ®) = Pp(T < ©) = 1.
Proor. Clearly, it is enough to prove (8) when both expectations are finite.

Let P = (P, + Py)/2 be the probability measure under which (X,,..., X,)
have joint pdf

L, = (Ly(6) + L,(8))/2,

and let E denote the expectation under P. If § is bounded, then by (2) we
have

Eyp(ur) — Egp(ur) = E¢(up)(Lp(0) — Lp(8))/Ly
=E(Y(ur) = ¢¥(c))(Lr(¢') — Ly(6))/Ly 2 0.

If ¢ is unbounded, let ¢, , = max(a, min(y, b)), and (3) follows by the domi-
nated convergence theorem by first letting a - — and then letting b — o.
O

Some extended versions of (3) remain valid without the condition
Py(T < ©) = Py(T < ») = 1. The following are two possible extensions without
this condition. In what follows we assume the remaining conditions of the
theorem and I denotes the usual indicator function.

ExTENSION 1. If $(c)[Py(T < ©) — P(T < )] > 0, then
Egp(up) (T < =} < Epp(ur) (T < ).

Proor. This follows from (2) and the identity
Eyy(ur) {T < ®} — Egp(ur) {T < =}
= E(¥(ur) = ¢(c)){T < <} (Lp(6') — Lr(8))/Ly
+ ¥(e)[Py(T < =) — Py(T < «)]. O

EXTENSION 2. Suppose that u, — u(6) in probability under P,, and let
u., = uw(0). Then (3) holds.

Proor. It is easy to verify that
Eyp(ur) — Egp(ur) = E(¥(ur) — ¢(c)){T < =}(Ly(8') — L(6))/Ly
F(W(1(8)) = $(0)) Py(T = +)
~ (W ((8)) ~ ¥(e)) Py(T = +=).
Hence (3) follows from (2) and the fact that u(6’) > ¢ and u(6) <c. O
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The following is a special case of the theorem for a certain monotone
likelihood ratio family.

CoroLLARY 1. Let X,, X,,... be iid random variables having a common
density f(x,0) with respect to a ofinite measure p on R = (—o, ), where
6 € QCR (Q is an open interval). Let u, = u(X,,...,X,), and L (6) =
7., f(X;,0), n > 1. Assume that L,(0) has monotone likelihood ratio in u,,
V n > 1, and that the interval J = {u ,: log(L,(6') /L ,(6)) < 0} is independent
of n where 6 < 0'. Let y be an increasing function and T a stopping time such
that Egy(ur) is finite and P(T < ©) = 1,V 6 € Q. Then

Ew(uyp) <Eyy(up) for0<6,0,0 €.

That the preceding is true follows from the fact that J = (-, ¢) and it
implies condition (2) of the theorem. An important special case is that of an
exponential family with the following result.

CoroLLARY 2. Let X, X,,... be iid random variables having density
f(x,0) = exp(6x — b(6)), 8 € Q, with respect to a o-finite measure u on R,
where ) is an open interval. Let ¢ be an increasing function and let T be a
stopping time such that Egy(S;/T) is finite and P(T <o) =1,V 6 € Q,
where S, =X, + -+ +X,. Then

E,(Sy/T) < E,0(Sp/T) for0<6,6,0 < Q.

REMARK. The condition that Egy(u,) be finite would be satisfied if
Eqysup, ., |¢(u,)l < ». For example, if ¢(x)=x, and u,=S,/n, then
E,sup, ., IS,/n| < = if E,X? < « (in fact a weaker condition suffices, cf. [2]).

The following is a nonexponential example.

ExampLE. Let X, X,,... be iid random variables with the density
f(x,0) = exp(—(x — 0))I{x > 6}, where Q = R = (-, ®). It is easy to see that
L,(6) has monotone likelihood ratio in u, = min(X,,..., X,) and that the
interval J in Corollary 1 is independent of n. Clearly, § < u, < X, a.s. Hence
for an increasing function ¢ and stopping time T,

Eow(ur) <Ey¢y(urp) for0<6,0,00 €Q,
provided that Ey (X)) is finite and Py(T < ©) = 1,V 6 € Q. In particular, we
have
Eymin(X,,..., X;) < E;min(X,,...,X;) for6<¢.
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