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MONOTONE GAIN, FIRST-ORDER AUTOCORRELATION
AND ZERO-CROSSING RATE!

By BENJAMIN KEDEM AND TA-HSIN L1

University of Maryland

The effect of a linear filter with monotone gain on the first-order
autocorrelation of a weakly stationary time series is discussed. When the
gain is monotone increasing, the first-order autocorrelation cannot in-
crease. Otherwise, when the gain is monotone decreasing, the correlation
cannot decrease. Further, when the gain is strictly monotone, the first-order
autocorrelation is unchanged if and only if the process is a pure sinusoid
with probability 1. Under the Gaussian assumption, the zero-crossing rate
moves oppositely from the first-order autocorrelation.

1. Introduction. In this paper it is shown that when a weakly stationary
process is filtered with a time-invariant linear filter possessing a monotone
increasing (decreasing) gain, the first-order autocorrelation cannot increase
(decrease). If, in addition, the gain is strictly monotone, the first-order autocor-
relation is unchanged if and only if the process is a pure sinusoid with
probability 1. When the relationship between the autocorrelation and the
zero-crossing rate is known, this can be translated into statements concerning
the zero-crossing rate. The Gaussian case is the best example [Kedem (1984)].

Let {Z,; t =0,+ 1, + 2,...} be a real-valued zero-mean stationary process
with autocorrelation p, and spectral distribution function F(w), 0 < @ < .
Let _Z(-) denote a time-invariant linear filter with transfer function H(w)
satisfying the conditions that H(w) = H(—w), and that the squared gain
|H(w)|? is integrable with respect to the distribution function F. Let p,(H) be
the kth-order autocorrelation of the filtered process {£(Z),; t=10,+ 1,
+2...}

When the probability

(1) Pr{.#(Z),-£(Z),-, < 0}

is independent of ¢, as for example is the case under strict stationarity, we
refer to it as the zero-crossing rate of the filtered process {-#(Z),}, and denote
it by y(H). The zero-crossing rate of the original unfiltered process will be
denoted simply by y.

When {Z,} is Gaussian, so is the filtered process {-#(Z),}, and by the
well-known cosine formula, y(H) can be expressed in terms of p,(H),

@ Y(H) = ~ cos™(py(H)).
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This is the formula that relates the zero-crossing rate to the first-order
autocorrelation for Gaussian processes. Similar formulas, that show explicitly
the inverse relationship between y and p,, also exist for some non-Gaussian
processes [Barnett and Kedem (1990)].

A slight generalization can be obtained by replacing p,(H) by p,(H) and
Z(Z),_, by £(Z),_,. However, this point will not be pursued in this paper.

2. Monotone gain functions. Intuitively, when a high-pass filter is
applied to a stationary time series, we expect a higher zero-crossing rate, but
lower first-order autocorrelation. Similarly, when the filter is low pass, we
expect a lower zero-crossing rate, but higher first-order autocorrelation. This
intuition can in fact be vindicated with the help of the following basic result.

THEOREM 1. Let |H(w)| be the gain of a linear ﬁlt‘er, and let p,(H) be the
first-order autocorrelation of the filtered process. Then we have:
(a) If |H(w)| is monotone increasing in [0, 7], then
P12 py(H).

If the gain is monotone decreasing the inequality is reversed.
(b) Assume that |H(w)| is strictly monotone. Then

p1 = pi(H)

if and only if {Z,} is a pure sinusoid with probability 1.

Proor. From the spectral representation of the autocorrelation sequence,
we have

J51§1 H(@)["[cos(1) — cos(w)] dF(w) dF(A)
/§ dF (@) /7| H(w)|* dF ()

(3)  pi—p(H) =

Let I denote the numerator in the right-hand side of (3). Then I can be
decomposed into the sum of two integrals:

I= {ffT+ ffT’}lH(w)lz[cos()\) — cos(w)] dF(w) dF(2),

where T={(A\,0): 0<A<w<7}, and T'={(A\,w): 0 <w <A <7} By
switching A and o in the second integral, we obtain

(4) I= //T[IH(w)|2 —|H(A)[*] [cos(A) — cos(w)] dF(w) dF(A).

If |H(-)| is monotone increasing, the integrand in (4) is always nonnegative on
T, and hence I > 0. On the other hand, if |H(-)| is monotone decreasing, the
integrand is nonpositive on T, and therefore I < 0. Assertion (a) is thus
proved.
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To prove (b), we note that if {Z,} is, with probability 1, a sinusoid with some
frequency o, € (0, 7), then

p1 = py(H) = cos(wy).

Conversely, suppose that p, = p;(H), and hence I = 0, but that {Z,} is not a
pure sinusoid. Then we can find in the support of F a constant A, € [0, 7]
such that both [0, Ay] and (A, 7] have positive F' measure. However, the set T
contains [0, A,] X (Ay, 7]. Therefore, T contains at least one point (X, ')
whose neighborhood has a positive (F' X F') measure. Assume, without loss of
generality, that |[H(-)| is strictly increasing. Then the integrand of I is strictly
positive on T'. It follows that I > 0. This, however, contradicts the fact that
I =0, and (b) is proved. O

Suppose {Z,} is Gaussian. Then by the cosine formula (2), the expected
zero-crossing rate can be obtained from the first-order autocorrelation by a
strictly decreasing transformation. Therefore, we have the following corollary.

COROLLARY 1. Suppose that the process {Z,} is Gaussian.

(a) If |H(w)| is monotone increasing in [0, ), then
y < v(H).

The inequality is reversed if |H(w)| is monotone decreasing.
(b) Assume |H(w)| is strictly monotone. Then

y=vy(H)

if and only if {Z,} is a pure sinusoid with probability 1. The frequency of
the sinusoid is given by my.

Since the differencing operator is a high-pass filter with a strictly increasing
gain, we can see, under the Gaussian assumption, that the sinusoidal limit
given by Kedem (1984) is only a very special case of part (b) of Corollary 1.

Notice that Theorem 1 has no restrictions on the spectral distribution
function F. In particular, F does not need to have a density. However, if F
does have a (spectral) density with respect to Lebesgue measure, and if this
density is positive almost everywhere on [0, 7], then formula (4) for I implies
that p, # p,(H) whenever the gain is monotonic and is not equal to a constant
almost everywhere. This is weaker than strict monotonicity, and covers ideal
high-pass and low-pass filters. '

THEOREM 2. Suppose that the process {Z,} has an absolutely continuous
spectral distribution function F and that its density f(-) is positive on [0, ]
almost everywhere with respect to Lebesgue measure. Then p, # p,(H) as long
as |H(+)| is monotone on [0, 7] and does not coincide with a function which is
a constant almost everywhere. If, in addition, {Z,} is Gaussian, then y #+ y(H).
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Proor. Suppose that |H(-)| is increasing. Since |H(:)| is not equal to a
constant, except on a set of Lebesgue measure 0, it follows that for any
Ao € (0,7), we can either find a A, € (A, 7) such that [H(A)| < [H(Ay)| <
|[H(A)| < |[H(w)I, for all (A, w) €[0,A,] X[A;,w] T, or we can find a A, €
(0, Ay) such that |[H(A)| < |[H(Ap)| < fH(/\o)[ < |H(w)|, for all (A, ) € [0, A,] X
[Ag, m] € T. From this, and the fact that f(-) is positive almost everywhere, it
follows that the set on which the integrand in (4) is greater than O has a
positive Lebesgue measure. Therefore, I > 0 and p; > p,(H). Similarly, we
can obtain the reversed strict inequality if |[H(-)| is decreasing and not equal to
a constant. The result for the zero-crossing rate follows from the cosine
formula. D

Based on Theorems 1 and 2, we can also compare the effect of two different
filters on a time series. For convenience let .#, and .#; be two linear
time-invariant filters with transfer function H(w; @) and H(w; ). We denote
the first-order autocorrelations and zero-crossing rates, respectively, by
pa), p(B) and y(a), y(B). Then we have the following corollary.

CoroLLaRY 2. Consider two filters £,(-) and £4(-), and assume that
Z(+) has a well-defined inverse £ ().

(a) If the function

|H(w;B) [
|H(w;a)|*

is monotone increasing in o € [0, 7], then p(a) = p(B). If, in addition,
{Z,} is Gaussian, then y(a) < y(B). The inequalities are reversed when
G(w; a, B) is monotone decreasing in w € [0, 7].

(b) If G(w;a, B) is strictly monotone, the inequalities in part (a) are strict
unless {Z,} is a pure sinusoid with probability 1.

(c) Suppose that {Z,} has an absolutely continuous spectral distribution F and
that its density f is positive almost everywhere with respect to Lebesgue
measure. If G(w;a, B) is monotone and not equal to a constant almost
everywhere, then the inequalities in part (a) are strict.

G(w;a,B) =

Proor. The results follow immediately from Theorems 1 and 2 upon
noting the fact that G(w; a, B) is the squared gain of the filter £; £ 1(-) and

24,47 LA2)), = Z(2).. o
3. Applications.

3.1. Ideal low-pass filters. Let us first consider the ideal low-pass filter
Z,(+) which has the gain function |[H(w; A)| = 1 if lw| < A, and |[H(w; A)| = 0 if
A < lo| <7, where A € (0, 7). The first-order correlation of the filtered pro-
cess is denoted by p,(A), and the corresponding expected zero-crossing rate is
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denoted by y(A). A slight modification of (4) shows that p,(A) is monotone
decreasing in A. In the Gaussian case y(A), is monotone increasing in A.

3.2. Exponential smoothing. The exponentially weighted moving average
(EWMA) filter .Z(-) is defined by
Z(Z);=2,+aZ,_+a’Z,_,+ ‘-,
where a € (—1, 1). The squared gain is given by
1

H(w;a)[® :
[H(w;a)] 1 - 2acos(w) + a®

Since
1 — 2acos(w) + a®
1 — 2B cos(w) + B2

is strictly decreasing in @ €[0,7] for any —1 <a <B <1, we have the
following corollary.

G(w;a,B) =

CoroLLARY 3. Let p,(a) and y(a) be the first-order correlation and zero-
crossing rate of the process -£.(Z),, respectively. Then it follows that p(a) is
strictly increasing and, in the Gaussian case, y(a) is strictly decreasing in
a € (—1,1) unless {Z,} is a pure sinusoid with probability 1.

Proor. See Corollary 2. O
Corollary 3 was applied in a detection problem in Kedem and Li (1989).
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