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GENERALIZATIONS OF JAMES-STEIN ESTIMATORS
UNDER SPHERICAL SYMMETRY

By ANN COHEN BRANDWEIN AND WILLIAM E. STRAWDERMAN !
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This paper is primarily concerned with extending the results of Stein
to spherically symmetric distributions. Specifically, when X ~ f(| X — o1,
we investigate conditions under which estimators of the form X + ag(X)
dominate X for loss functions |5 — 6||> and loss functions which are
concave in |5 — 6]|%. Additionally, if the scale is unknown we investigate
estimators of the location parameter of the form X + aVg(X) in two
different settings. In the first, an estimator V of the scale is independent of
X. In the second, V is the sum of squared residuals in the usual canonical
setting of a generalized linear model when sampling from a spherically
symmetric distribution. These results are also generalized to concave loss.
The conditions for domination of X + ag(X) are typically (a) [Igl|® +
2Ve g < 0, (b) Ve g is superharmonic and (¢) 0 < @ < 1/pE0(1/||XII2), plus
technical conditions.

1. Introduction. This paper is concerned with estimating a location
vector perhaps in the presence of an unknown scale parameter. The underly-
ing distributions for the location estimator are assumed to be spherically (or
elliptically) symmetric. The loss functions are either quadratic, or a concave
function of quadratic loss. Information about the scale parameter is either
independent of the location information, or in the form of the squared norm of
a residual vector. The estimators considered are of the form X + ag(X),
where g satisfies the inequality ||gll?> + 2V < g < 0. In the unknown scale case
where V is the estimator of scale, the estimators are of the form X + aVg(X).

The paper is concerned with extending the results of Stein (1981) to the
spherically symmetric case and the case of concave loss.

Specifically, we show that the estimator X + ag(X) dominates X for
quadratic loss ||& — 6]|%, where X has a spherically symmetric density f(|X —
6/1%), when satisfying (a) ligll® + 2Vo g < 0, (b) Vo g is superharmonic and (c)
0 < a < 1/pEy1/||X|?), plus technical conditions. Stein’s (1981) result for a
normal distribution with identity covariance is equivalent to (a) and (c) 0 <
a < 1. Since, in this case Ey(1/||X|1?) = 1/(p — 2), our result gives 0 <a <
(p — 2)/p.

The present results then, for the additional price of superharmonicity of
Vo g and a slight reduction of the range of shrinkage values, extend the class
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1640 A. C. BRANDWEIN AND W. E. STRAWDERMAN

of distributions for which such estimators dominate X. Section 2 is concerned
with these results.

We also consider extensions in two other directions. First, we consider loss
functions which are monotone-goncave functions of squared error and show
general dominance results for estimators of the form X + ag(X). These
results then are extensions of both Stein (1981) and Brandwein and Strawder-
man (1980). Results of this type are developed in Section 3, where we also
consider elliptically symmetric distributions and general quadratic loss.

Second, we consider the case of unknown scale in two different settings. In
Section 4 we consider the case where an estimator of scale is available which is
independent of X. In Section 5 we consider the canonical form of a general
linear model in which case the estimator of scale is the squared norm of the
residual vector and hence is not generally independent of the estimator of the
mean. In both these eases we consider estimators of the form X + aVg(X),
where V is the estimate of scale. The loss functions considered include concave
functions of squared error loss.

Hence, the results are quite general from the perspective of underlying
distribution, estimation procedure and loss function.

The risk function of an estimator X + ag(X) is given by

E| X + ag(X) — 6] = E,IX — 6I* + a®lg(X)I?
+ 2aE,(X - 0) g(X).

(1.1)

The main difficulty in proving dominance results is handling the cross-prod-
uct term E (X — 0)g(X). Stein’s (1981) beautiful solution in the normal case
is to use integration by parts to show E(X — 0Yg(X) = E,V o g(X). The main
idea in the present paper is to evaluate (1.1) conditionally on || X — 6|l = R and
to apply the divergence theorem to the cross-product term. This gives an
expression of the form

R 1%
E[(X-6)g(X)|IX -6l =R] = mg?g[g(v+ 0)]'(3;) dA(V)

= ijvog(o +V)dM(V),
where S and B are the sphere and ball of radius R respectively and dA and
dM are differential “surface area’ and ‘ volume’ elements. This device gives
the conditional expected value of the cross-product in terms of Ve g as in
Stein; however, the expected value is now over the ball (*‘volume”) instead of
the sphere (“surface area’). Superharmonicity of Veg (or |lgll> or some
function related to g) is then used to obtain an inequality relating the
conditional expected value on the ball to the conditional expected value on the
sphere. The basic fact here is that if A(X) is superharmonic, its average over
the ball (“‘volume’) is greater than its average over the sphere (‘“surface
area’’). These ideas are more fully developed in succeeding sections.
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It is worth noting that the results using the techniques here typically
require at least four dimensions instead of three. This is related to the fact
that if X ~ 2{||X — 60|l = R}, the James-Stein type estimators will not im-
prove X unless the dimension is at least four [see Brandwein (1979)].

2. Minimax estimators with respect to quadratic loss. Consider a
p X 1 random vector X = [X,, X,,..., X,]' having a p-dimensional spheri-
cally symmetric distribution about 8 [ X ~ s.5.(6)]. The problem of estimating
the mean vector 8 with respect to quadratic loss

(2.1) L(5,0) =115 — 8lI° = Zp‘, (8; = 6,)%,
i=1

where 6 = [8,,8,,...,8,] and 0 =[6,,6,,..., 6,1’ has been studied by many
[see Brandwein and Strawderman (1990) for a review and references].
In this section we will look at estimators of the form §,(X) = X + ag(X),
when X is one observation from a s.s.(8) distribution, and the loss is (2.1).
The following lemma, which is necessary for the main theorems of this
section, is well known and follows immediately from du Plessis (1970), page
54,

LEmma 2.1. If h(X) is a superharmonic function [V2h(X) =
Y (d/dX?)h(X) < 0] and X has a uniform distribution on the sphere centered
at 9 with radius R, denoted X ~ 2{|| X — 6||> = R%, then

E,h(X) <E,h(Y),
where Y ~ 2{||Y — 6||> < R2). That is,

! ! h(Y)d
A5y QX dA(X) < 3 [ R(Y) dM(Y),

where A(S) and M(B) represent the areas of the sphere and ball, respectively.

The importance of this lemma in the present study stems from the fact that
if X ~ s.5.(6), then XIR ~ 2{| X - 6II> = R?.

The following theorem presents minimax estimators which are better than
X with respect to quadratic loss.

THEOREM 2.1. If X ~ 8.8.(0) and 6,(X) = X + ag(X), then with respect to
quadratic loss (2.1), 6 (X) has smaller risk than X provided:

@ llgl?/2 < —h < —Vog,
(ii) — h is superharmonic and E,[ R2h(W)] is a nonincreasing function in
R, wherée W ~ 2{||W — 6||> < R%} and
(i) 0 < a < 1/pE,(1/1X|?).
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Proor.
R(5,,6) = E,|5, - 0|*
= Ell(X - 6) + agl X) |’
— E,[R* + o g(X)| + 2a(X - 0) g(X)]
= E[R? + a®E, | g(V + 0) I’|R] + 2aE,[V'g(V + 6)|R]],

where R = | X — 0|, V= (X — 6) ~ 5.8.(0) and thus VIR ~ 2{|[V|* = R%.
By the divergence theorem and assumption (i),

E[V'g(V + 6)|R] = )gbg (V+ 0)o—dA(V)

A(S

M(B)
~A(S) R'[BM(B)

Vog(V + 6)dM(V)

R2
BM(B)

Vog(V+ 0)dM(V)

R 1
—p—jBM(B) h(V +6) dM(V),

where B is the ball of radius R centered at the origin.
Moreover,

Eo[lg(V+0)|PR] < —2E0[h(V+ 9)|R]

A

-20 = A(S) h(V + 6) dA(V)

< —2[BM(B)h(V+ 9) dM(V).

The first inequality follows from assumption (i); the second inequality is true
by assumption (ii) and Lemma 2.1. Therefore,

2aR?
R(5,,0) <E|R%+ (—2a2 + )Eo[h(V+ B)IR]]

-E

) —-2a%2 2a )
R +( =2 +7)E0[R h(W)lR] ,

where WIR ~ Z[|W — 6|1*> < R?). Clearly, by assumption (i), E,[ R2A(W)IR]
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is a nonincreasing function of R, and since (—2a%/R? + 2a/p) is nondecreas-
ing in R, we have

R(5,,60) - R(X,0) = R(3,,6) — ER?
I 1
< Za(; - aE(F))E[EO[th(W)lR]].

Since £ < 0, R(5,,0) — R(X, 6) < 9 provided
1 1
a< = -
PE(1/R%)  pEy(1/1XI?)

0< O

ComMeENT 2.1. If g(-) is homogeneous of degree —1, h can typically be
chosen to be homogeneous of degree —2. The monotonicity part of condition
(ii) may then be replaced by E,h(W) is nondecreasing in 6 for R = 1. If —h is
unimodal (either globally or one variable at a time), this monotonicity will
follow from Anderson’s theorem.

We now indicate some applications.

ExampLE 2.1 (James—Stein estimators). Theorem 2.1 and Comment 2.1
give a brief and elegant proof of Brandwein’s (1979) result on minimaxity of
James—Stein estimators in the spherically symmetric case. Here

-b
2.2 X)=X+a|l==|X
(22) 5.(X) = X + o 2]
so that g(X) = —b/X’'X, where b must be chosen to satisfy 0 <b <p — 2in
order for condition (i) of Theorem 2.1 to hold. It is easily seen that g(X) is

homogeneous of degree — 1, and that — V- g is unimodal and superharmonic if
p > 4. Hence choosing h = Vo g, it follows that §,(X) dominates X for

2(p — 2) 1
P E(1/IXI?)°

In addition, using Theorem 2.1 when 0 < r(-) < 1 and r(|X|?) is nonde-
creasing and concave, the estimator

0<ab<

[, abr(1XIP)
(2.3) 8(X)—(1 X )

is minimax for 0 < ab < 2(p — 2)/p(1/E,1 /I X|[?).

ExampLE 2.2 (Nonspherical shrinkage estimators).
2.4 5.(X) =X il B
(2.4 {X) =X+ )X,

where A and B are positive definite matrices.
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Here we use Theorem 2.1 and Comment 2.1 with g(X) = (-bA/X'BX)X.
Note that
—-b2X'AAX -b%W2 1

> = 2h,
(X'BX)? by X'BX

(2.5) - lgli? =

where b, is the minimum eigenvalue of B and a, is the maximum eigenvalue
of A. Clearly, g is homogeneous of degree —1, and it is easily shown that —h
is superharmonic if tr B > 4b;, where b, is the maximum eigenvalue of B. An
easy calculation shows that it is possible to choose b to satisfy condition (i) of
Theorem 2.1. It follows that §, is minimax provided

(tr A - 2aL)bM‘
PEo(1/IIXI)a2

(2.6) 0<ab<2

and tr A > 2a,,.
It is interesting to note that we may obtain a different result using
-b%? 1

(2.7) 2h= = %%

Here the condition for minimaxity becomes
(tr A —2a;) b2
PE,(1/1X1?) bral

Although this is a smaller bound than (2.6), it holds for p > 4 regardless of
whether tr B — 45, > 0.

To our knowledge, this is the first general minimaxity result for estimators
of the form (2.4) with B not equal to a multiple of the identity matrix. In any
event, the ease of proving minimaxity in this example illustrates the utility of
this approach.

0<ab<2

ExampLE 2.3 (“‘Limited translation rule” for spherically symmetric distribu-
tions). Suppose we consider the ‘limited translation” rule based on order
statistics given by Stein (1981), for X ~ s.s.(8) with respect to quadratic loss
(2.1).

For k a positive integer, let 6(X) = X + ag(X), where

Tz’ =
(28)  g&(X)= L
(X7 A Z3) Zao o0 Koy VL > Zew
J

where Z; = |X;| and Z,, < Z, < - - < Z,, are the order statistics and ¢ A
d = min(c, d). It can be checked that this example satisfies the conditions of
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Theorem 2.1 and so, §(X) is minimax if
2(k — 2) 1

provided & > 4.
P Ey(1/IXIF)

0<abx<

3. Minimax estimators with respect to nonquadratic loss functions.
When considering estimators of the James—Stein type for spherically symmet-
ric distributions, there are two major lines of development relating to general-
izations of quadratic loss.

The first is to consider general quadratic loss given by

(3.1) L(5,6) = (6 — 6) D(6 — 6),

where D is a given p X p positive-definite matrix. This problem was consid-
ered in Brandwein (1979).
The second relates to nonquadratic loss of the form

(3.2) L(5,0) = f(lls — 6l%),

where f(-) is a nondecreasing concave function. Brandwein and Strawderman
(1980) and Bock (1985) have results for losses of this form.

For the general estimator §,(X) = X + ag(X), Chou and Strawderman
(1990) have studied the case when X has a distribution which is a mixture of
normals and the loss is general quadratic loss (3.1).

Here is our result for loss (3.1).

THEOREM 3.1. If X ~ s.5.(0) and the loss is (3.1), then 6, (X) = X + ag(X)
has smaller risk than X provided the conditions of Theorem 2.1 hold with (i)
replaced by

(') gDg/2 < —h < Vo Dg.

ExamMpLE 3.1 (An extension of Example 2.2 to general quadratic loss).
Consider §,(X) defined by (2.4) and 2k = (—a%d /b, X1/X'BX) analogous to
(2.5). If tr B > 4b;, and tr AD > 2a,d;, then §, is minimax for 0 <ab <
(tr AD — 2a,d;)by/pE,1/11X|?)a’%. Moreover, if we use 2h =
(-a%d./b%X1/X'X), analogous to (2.7), we have minimaxity for p > 4 when

(tr AD - 2aLdL)b12u
PE(L/IXIP)a%b,

0<abx<

ComMENT 3.1. Note that when X has an elliptical distribution about 6
there is a natural extension of Theorem 3.1 which can be proved by standard
invariance arguments.

We now look at generalizations of the results of Section 2 when the loss is a
nondecreasing concave function of quadratic loss given by (3.2).
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THEOREM 3.2. Suppose for the p X 1 random vector X ~ s.s.(8) conditions
(i) and (ii) of Theorem 2.1 are satisfied, where 5 (X) = X + ag(X) and the
loss is given by (3.2). Then §,(X) is better than X for 0 < a < 1/pE,(1/R?),
where H(R) = [Ff'(S®)dG(S)/[5f(8?) dG(S), G is the cumulative distribu-
tion function of R, Ey denotes the expected value when R has cdf H and
0<E;f'(R? <o,

Proor. If A(X) =16,(X) — 6l> — |X — 6]|® then, as shown by Brandwein
and Strawderman (1980), E,f(16,(X) — 0l®>) — E,f(IX - 6l*>) <
E, f'(R®A(X).

The result then follows from the proof of Theorem 2.1 with respect to the
new distribution on R. O

CoMMENT 3.2. Note that for loss (3.2), Examples 2.1, 2.2 and 2.3 will work.
As an indication of the possible amount of shrinkage in the case when the loss
is L(5,0) =16 — 6l and X ~MVN(,I), E;(1/R®» =1/(p — 3). In all of
these examples, the ratio of the maximum shrinkage factors is (p — 3)/(p — 2).

4. The unknown scale case with an independent estimate of scale.
Suppose the p X 1 random vector X has a density (1/a?)f.(lx — 6/1>/c2),
where o is unknown, and consider the random variable V, with density
1/0®f,(v/0?), independent of X. In this section we will find minimax
estimators of § which are better than X with respect to three types of loss
functions: a scaled quadratic loss

(4.1) L(5,0) =I5 - 6l* /o2,

nondecreasing concave functions of this scaled quadratic loss and a general
scaled quadratic loss

(4.2) L,(5,0) =(8—6)D(6—6)/d2.

Bravo and MacGibbon (1988) have given results for this problem in the
“variance mixture of normals” case for the loss ||5 — 6/ /c2.

For the general spherically symmetric problem, we will consider estimators
similar in form to those in Sections 2 and 3. Specifically, estimators

8, v(X) = X + aVg(X).

These estimators will dominate X not only for the scaled losses just given,
but will also dominate X for quadratic loss 16 — 6||® since E, (|6 — 6||*) =
o2Ey(I8 — 611 /o).

We now present without proof the conditions under which 6, (X) domi-
nates X and is minimax.
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THEOREM 4.1. Suppose X, a p X 1 random vector, has a density (1/
o?) f.(lx — 01?/02), where o is unknown. Moreover, suppose the random
vector V has a density (1/0%)f(v/c?) and X and V are independent. If
8, v(X) =X + aVg(X), then with respect to scaled quadratic loss (4.1),
8, v(X) dominates X provided g satisfies conditions (i) and (ii) of Theorem 2.1
and

14
(i) 0<a o=l ]

PEo.r 1(1/"XII )[ E,_\v*

A similar result holds for nondecreasing concave functions of scaled
quadratic loss (4.1) and general scaled quadratic loss.(4.2).

5. The unknown scale case with scale estimated from the residual
vector. Consider the problem of estimating the mean vector 6 =
[6,,65,...,6,]' when X, a p X 1 random vector, and U, an m X 1 random
vector, are distributed such that X* =[X,, X,,...,X,,U, U,,..., 0, ]'/a
has a spherically symmetric distribution about 6* = [01, 02, .5 8,,0, 0 .,0l.
We say X* ~ s.5.(0%, o2I).

The assumptions on the distribution of X* coincide with the canonical form
of the general linear model [see Scheffé (1959)].

The improved estimators will be of the form §,(X*) = X + aU'Ug(X), but
unlike the estimators considered in Sections 2-4, the bounds of §,(X*) will
not depend on the distribution of X*. This type of robustness phenomenon
has been observed by Cellier, Fourdrinier and Robert (1988) for the James—
Stein estimator.

As we discussed in the previous section, these improved estimators will
dominate X with respect to quadratic loss |5 — 6]|* and general quadratic loss
(6 — 0)D(5 - 0).

The following theorem makes similar assumptions to those of Theorem 2.1
about the improved estimators.

THEOREM 5.1. Suppose X is a p X 1 random vector and U is an m X 1
random vector and X* = [5] ~ 8.8.(0*, 0*I), where
0* =[6,,05,...,6,,0,0,...,0|
and o? is an unknown scale. If 6 (X*) = X + aU'Ug(X), then with respect to

scaled quadratic loss L(8,0) = |I6 - 0|? /0%, 8,(X) dominates X provided
conditions (i) and (ii) of Theorem 2.1 hold and

1(p-2)
(lll) 0<acx< ;—’n—;—z—
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Proor.
A =R(5,,9) - R(X,0)

1 2 )
= —E,[a*(U'V)*|g( X)) + 2aU'U(X - 0) g(X)]

QMI —

Eo[a(U'U)?g(V + 0)I° + 2aU'UV'g(V + 0)]
(where V=X -0)

1
—E[E[a*U'U)lg(V + o) |IVIl = &, IUIl = S|
+ 2eE[U'UV'g(V + 0)|IVIl = R, Ul = S]].

By the divergence theorem,
E[U'Ug'(V+6)V|IVI=R h,|lU 2|=S]

A(S)¢g(v+ 0)~dA(V)

2

— 2R
=8 TM(B) ]Bvog(v+ 9) dM(V)

2

g2
< TM(—B)—fh(V+ 0) dM(V),

where B is the ball of radius R centered at the origin.
Moreover, by assumption (i),

E[(U'UYle(v + o) "] IVI= R, IUI = 5]

< —28*E[h(V + 0)|IVI =R, IUIl = S]
= -28 ¢A(S)h(v+ 9) dA(V)
_oQ4
< 2SfM(B)h(V+0)dM(V)
by Lemma 2.1, since —h is superharmonic. Therefore,
A 2 EF a’S* aS? G(R?
<7E|\® ~ 5 /O
5.1
(5-1) 2a [(a(T?2-R%* (T?-R? .
= ;—5 R2 - G(R ) ’
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where G(R) = E,[ R?h(W)] is a nondecreasing function of R? by assumption
(ii) and T2 = RZ + S2.
Let

a(T%+R%® (T%-R?
H(R’T) = R2 - D

T? r 1 E* + L
77 a-gz|at ]|
Now G(R2) is nondecreasing in R and H(R,T) >0 if R? < b(T?) and

H(R,T) <0 for R?>b(T? and crosses 0 when R2Z = b(T2). Thus,
H(R,T)G(R?) < H(R, T)G(b(T?2)). Therefore, (5.1) becomes

A< %E E[a(;—: - 1)(a - -1;—:(0; + %))TzG(b(Tz)) T”
(5.2) . .
(e e o,

since T2 and R2?/T? are independent.
So, since E(T2G(b(T?))) > 0, A < 0 if

T2 1 R? 1
— — —_— —— + —_—
R? R p
Returning to the original notation, put T2 = R2 + S2. Then using the fact
that R%2/T? ~ Betalp/2, m /2], it follows that

a<0 ita|| || o || < 2B
R | 7Rl | el | el e

E <0.

IE S2
=0<aZl 'p R+ S7 '=l(p_2) O
- 82 82 p m+2°
= [EoE=
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