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TREND-FREE BLOCK DESIGNS FOR VARIETAL AND
FACTORIAL EXPERIMENTS

By MEIL.Y LiN anD A. M. DEAN

The Ohio State University

Some general results on the existence of trend-free and partially
trend-free designs are given for both varietal and factorial experiments. In
particular, trend-free properties of cyclic and generalized cyclic designs are
investigated. It is shown that, for factorial experiments, certain designs
which are not completely trend-free are nevertheless trend-free for estimat-
ing a subset of the main effect and interaction contrasts.

1. Introduction. In many industrial and agricultural experiments, treat-
ments (or factorial treatment combinations) are applied to experimental units
sequentially in time or space. It is sometimes preferable in such situations to
use a systematic, rather than a randomized, ordering of the treatments [see
Daniel and Wilcoxon (1966) for discussion). It is often possible to find an
ordering which will allow estimation of treatment effects independently of any
polynomial time trends or spatial trends that might be present in the experi-
ment. Such an ordering of the treatments is known as a trend-free design.

The study of trend-free and nearly trend-free designs was begun by Cox
(1951, 1952) and has been addressed by a number of different authors, for
example, Box (1952), Hill (1960), Daniel and Wilcoxon (1966), Draper and
Stoneman (1968), Dickinson (1974), Bradley and Yeh (1980), Yeh, Bradley and
Notz (1985), Cheng (1985), Chatterjee and Mukerjee (1986), Cheng and Jacroux
(1988) and Coster and Cheng (1988).

In this article we shall be concerned with multireplicate varietal and facto-
rial experiments arranged in blocks. Bradley and Yeh (1980) gave a necessary
and sufficient condition for a binary block design with equal-size blocks to be
trend-free for a common within-block polynomial trend. Lin (1989) showed
that this condition also holds for designs which are not necessarily binary and
which do not necessarily have equal-size blocks. The optimality results of
Bradley and Yeh (1980) and many of the existence results of Yeh and Bradley
(1983) also hold in this general setting. In Section 2 we discuss further
existence results for trend-free block designs of given sizes.

In Section 3 we investigate the trend-free properties of three well-known
and efficient classes of designs, namely, cyclic designs, generalized cyclic
(GC/s) designs and generalized cyclic incomplete block (GCIB) designs. Com-
plete cyclic and GC /s designs are always trend-free before the treatment labels
within blocks are randomly ordered. It is shown that fractional cyclic designs,
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fractional GC/s designs and GCIB designs possess an arrangement of treat-
ment labels within blocks so that the design is trend-free for odd-degree (i.e.,
linear, cubic, etc.) components of a within-block polynomial trend. A limited
randomization of labels within blocks can be performed

Multireplicate factorial experiments arranged in blocks are considered in
Section 4. It is shown that certain arrangements of treatment combinations
within the blocks of a non-trend-free design allow the design to become
trend-free for estimating a subset of the main effects and interactions. Specific
results for factorial experiments in GC/s designs are given.

2. Conditions for trend-free designs. Let 9(v,b,k,,..., ky,1q,...,1,)
be the class of block designs with v treatments and b blocks where the ith
treatment is observed r; times and the jth block is.of size k;, i =1,...,v,
j=1,...,b. We consider the problem of estimating treatment contrasts in the
presence of a polynomial trend of order p; (< k; — 1) over the jth block,
j=1,...,b. We assume the trend can be expressed as, or approximated by, a
linear functlon of the orthogonal polynomials ¢, (t b1l<a;<p;,l<t;<k;
on k; equally spaced points, satlsfymg

(2.1a) Z b (t;) = 0,
ti=1
k; 1, ifa;=85;
1 e P
(2.1b) tjgl’d’aj(tj)d’aj(tf) {0, ifa; +9;,

fOl‘all aj,aj'—‘- 1""’pj'

ReMARK 2.1. Let s, s,,...,5, be the distinct values among %,,...,k,.
Partition the blocks of the design § € 9(v, b, k4, . k,,, ry...,r,) into d sets
of blocks S, S,,..., S;, where the blocks in S; are of size s;. If the blocks in
S; have a common w1thm-block trend of order pi<s;—1, J ,d, then
it can be shown that § is trend-free if and only if each of Sl, Sd forms a
trend-free design. Consequently, we need only consider designs in
D(v,b,k,ry,...,r,), that is, designs with equal block size 2 and with a
common within-block trend.

Let X, =[1,® ®,] and X; =[], ® 1,] where 1, is a n X 1 vector of unit
elements, I, is an b X b identity matrix, ® denotes a Kronecker product and
®, is a k X p matrix with element ¢,(¢) in row ¢ and column a, ¢ =1,..., &,
a=1,...,p. Then listing the response variables in the vector Y in order of
plot position within successive blocks, the standard model for a block design
under a common within-block trend is

(2:2) E[Y]=X,u + X7+ X8 + X,0,

where 6 =[0,,0,,...,0,] is the vector of regression coefficients for
&8, ...,6,(t), B is the b X 1 vector of block parameters, 7 is the v X 1 vector
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of treatment parameters, u is a constant, X, = 1,, and X =[A,,...,A,],
where for j =1,...,b, A; is a & X v matrix whose (¢, i)th element is unity if
treatment i is applied to plot position ¢ of block j, and zero otherwise. The
following definition for a block design to be trend-free was given by Bradley
and Yeh (1980).

DEFINITION 2.1. Under model (2.2) a design d € 9(v, b, k,ry,...,1,) is
trend-free if the block sum of squares and adjusted treatment sum of squares
may be calculated as though the trend effects were omitted from the model.

Bradley and Yeh (1980) proved that a necessary and sufficient condition for
a binary design d € 9(v,b,k,ry,...,1,) to be trend-free for a common
within-block trend of order p under model (2.2) is that

(2.3) X X, =0;
that is,
b ,
(2.4) (,§1 A |®,=A,9,=0.

Note that (2.3) gives the ‘time-count,”” which was discussed by Draper and
Stoneman (1968) for p = 1 and subsequently used for p > 1 in several of the
references listed in Section 1 in the context of single replicate and fractional
factorial experiments. Yeh and Bradley (1983) and Stufken (1988) have given a
number of interesting results concerning the existence of trend-free binary
incomplete block designs (some of which are applicable to m-dimensional
trends). The following existence theorem and its corollaries are needed in
Sections 3 and 4.

THEOREM 2.1. Let P denote the set of vectors {¢,, a =0,1,...,k — 1},
where ¢, =[1,1,...,11. For p <k — 1, let Py = {¢;, ¢3,...,¢,} so that Py
contains those vectors in P corresponding to the columns of ®,, and let
Py ={dg,dp11,---»Pp—1}. Then under model (2.2) there exists a trend-free
block design d € 9(v, b, k,ry,...,r,) if and only if there exists a matrix A,
with nonnegative integer elements satisfying A,1, = bl, and 1,A, =
[ry,...,r,] and such that each column of A, is a linear combination of vectors
in Py,

COROLLARY 2.1.1. A block design d € D(v, b, k,ry,...,r,) which is trend-
free for a (B — 1)th order polynomial trend exists if and only if it is possible to
arrange the treatments so that the ith treatment occurs k~'r; times in each plot
position, i = 1,...,v.

Corollary 2.1.1 is a generalization of Theorem 2.4 of Yeh and Bradley
(1983), which was proved for binary designs. Bradley and Odeh (1988) provide
a computer algorithm which reorders the treatments within the blocks of a
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binary incomplete block design to give a linear trend-free design if it can be
achieved, and otherwise to give the arrangement which minimizes the sum of
squares of the elements in X/ X,. When p > 1, this minimization produces a
nearly trend-free design of type A as defined by Yeh, Bradley and Notz (1985).
These authors also discuss nearly trend-free designs of type B where they
sequentially minimize the sum of squares of the elements of X' X" and
X, XP, where X, = [X{", X®] = [1, ® ®,_;, 1, ® ¢,]. If the trend is believed
to be of order p — 1 but one wishes to guard against a trend of order p, then
type-B minimization is more useful than type A. A generalization of type-B
minimization is to set X’ =1, ® ®%, i = 1,2, where ®{" contains those
orthogonal polynomial components of trend believed to be nonnegligible and
<I>I‘,2) contains the remaining components (of order p or less). With this in mind
we define the classes of odd- and even-degree trend-free designs as follows.

DEeFINITION 2.2. Under model (2.2) a design d € 9(v, b, k,rq,...,1,) is
odd-degree (even-degree) trend-free if (2.3) holds for X, = 1, ® ®,, where the
columns of ®, represent the odd-degree (even-degree) polynomial components

of trend (2.1).

The class of odd-degree trend-free designs includes the important class of
linear trend-free designs. An even-degree trend-free design would be used
when a symmetric within-block trend is suspected due to, say, the symmetrical
placement of heating and lighting elements in a laboratory, in a commercial
oven or in a greenhouse, or due to the use of a symmetrical piece of equipment,
such as a fertilizer spreader or water sprayer with a row of nozzles fed from a
central pipe.

The following corollary to Theorem 2.1 gives a necessary and sufficient
condition for the existence of odd-degree trend-free designs. [The sufficiency
was also noted by Mitra and Saha (1983, 1987).] Some even-degree trend-free
designs are discussed in Section 4.

CoroLLARY 2.1.2. A block design d € 9(v,b,k,ry,...,r,) which is odd-
degree trendfree exists if and only if it is possible to arrange the treatments so
that treatment i occurs s, times in plot positions t and (k —¢+ 1) for
nonnegative integers s,;,i = 1,...,v,t = 1,2,...,[(k + 1)/2], where the square
brackets denote integer part.

3. Classes of trend-free and odd-degree trend-free designs. In this
section we show that designs which are based on the cyclic method of construc-
tion are trend-free or odd-degree trend-free when the treatment labels are
systematically ordered within the blocks. The construction of efficient block
designs using the cyclic method dates back to the 1930’s [e.g., Bose and Nair
(1939)]. A catalogue of cyclic designs with high average efficiency factors was
provided by John, Wolock and David (1972) and updated by John (1981).

There are two generalizations of cyclic designs in common use. The first
generalization involves the representation of treatment labels by s-tuples
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(s > 1), whilst the second generalization essentially involves selecting every
mth block (m > 1) of a cyclic design. Designs produced under the first
generalization have been called generalized cyclic designs [John (1971), Chap-
ter 15], GC/s designs [Dean and Lewis (1980)], s-cyclic designs [John (1987)]
and Abelian-group designs [Bailey (1988)]. In this article we shall use the first
two of these terms. A cyclic design is merely a GC/1 design, and therefore no
results for cyclic designs will be given explicitly.

DEeFmNITION 3.1. Let T be the set of v = m;m, -+ m, lexicographically
ordered treatment labels {a: @ = a,a,...a,; 0 <a; < m; — 1}. A generalized
cyclic (GC/s) design consists of a selection of & labels from T' (not necessarily
distinct) to form the generating block. The jth block of the design (j = 1,...,v)
is obtained by adding the jth label in T to each label in the generating block,
where addition of @ and b in T is defined as

aay...a,+bby...b,=cicy...cq,

where a¢; + b, =c;, mod m;, i = 1,2,...,s. Duplicate blocks are ignored.

The set T forms an Abelian group. The generating block B can be ex-
pressed as B = S[+]R, where [+] denotes the set of all elements a + b,
a € S, b € R, including repetitions, S is a subgroup of T of order d and R is
a subset of T of size k/d. Dean and Lewis (1980) show that if S is the largest
subgroup that allows B to be expressed in the form S[+]R, then the GC/s
design has v/d distinct blocks. If d = 1, we shall call such a design a full
GC /s design, and if d > 1 we shall call the design a fractional GC/s design.

We allow a random ordering of treatment labels within the generating block
B unless otherwise stated. It is understood that if @ € T is in position q in B,
1 < g <k, then in the jth block treatment label a + bV’ is in position ¢,
where 5V is the jth ordered label in T, j = 1,...,v. Duplicate blocks are
ignored and the distinct blocks are arranged in a random order. The order of
treatment labels within blocks remains fixed. The following theorem follows
from Corollary 2.1.1.

THEOREM 3.1. All full GC/s designs are trend-free.

Theorem 3.1 would also hold for fractional GC/s designs if duplicate blocks
were retained. However, designs with duplicate blocks would not normally be
used in practice for efficiency considerations. The following theorem shows
that many fractional GC/s designs are odd-degree trend-free.

THEOREM 3.2. If k/d is even, there exists an arrangement of treatment
labels within the blocks of any GC/s design so that the design is at least
odd-degree trend-free.

Proor. Let the generating block be B = S[+]R, where S is the largest
subgroup of T that allows B to be expressed in this form, |1S| = d, |R| = k/d
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and k/d is even. Let the cosets of S in T be S+ h,S + hy,..., S+ h, ;.
The distinct blocks of the generalized cyclic design are B + k;,i=1,...,v/d
[see Dean and Lewis (1980), Theorem 1]. Without loss of generality suppose
that the elements of B are in the order S + k%, S + h%,..., S + A} 4, where
hieH={hyhy,...,h,,;} and where S+ h] =S8 +a; for some a; €R,
t=1,...,k/d. Now consider the first d positions in block j, 1 <j <v/d.
These contain the treatment labels in one of the cosets of S. Since the set of
cosets of S is itself a group, every coset appears in the first d positions in
some block of the design. Similarly, the treatment labels in each coset occur in
the set of positions P,, = {md +j; j = 1,...,d} in some block of the design,
for every m = 0,1,...,(k/d) — 1. Now, suppose that the treatment labels in
the coset S + &; occur in the set of positions P,, in some block of the design
(for fixed m). Find the occurrence of the same coset.- S + A; in P, x, where
m* = (k/d) — m — 1. Randomly order the elements of S + k; in P,, and
reverse the order of these elements in P,«. Repeat this procedure for every
coset and every m = 0,1,...,(k/2d) — 1. The result follows from Corollary
21.2. 0

ExampLE 3.1. Consider a GC/2 design with v = 3 X 6 = 18 treatment
labels in six blocks of size & = 6. The design listed in Table 3 of Dean and
Lewis (1980) has generating block B = {00 12 24 01 13 25} = S[+]R, where
S ={00 12 24} and R = (00 01). The design constructed by the method
described in Definition 3.1 is shown in Table 1(a), and an odd-degree trend-free
arrangement of the design is shown in Table 1(b). In each case, rows denote
blocks.

As mentioned earlier, a different generalization of a cyclic design is that of
using every mth block of the design, where the cyclic design is generated as in
Definition 3.1 with s = 1 and m, = v. Such a design exists if v = nm for some
integer n and is called a generalized cyclic incomplete block (GCIB) design by
Jarrett and Hall (1978) and Hall and Jarrett (1981). The construction of a
GCIB design is given precisely in Definition 3.2. We use the notation GCIB,,
design. Note that a cyclic design is a GCIB, design.

TABLE 1
A GC/2 design with v = 3 X 6 treatment labels in six blocks of size 6

(a) Generated design (b) Odd-degree trend-free design

00 12 24 01 13 25
01 13 25 02 14 20
02 14 20 03 15 21
03 15 21 04 10 22
04 10 22 05 11 23
05 11 23 00 12 24

00 12 24 25 13 01
01 13 25 20 14 02
02 14 20 21 15 03
03 15 21 22 10 04
04 10 22 23 11 05
05 11 23 24 12 00
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DerFiNiTION 3.2. A GCIB,, design consists of a selection of %2 treatment
labels (not necessarily distinct) from T = {0, 1,...,v — 1} to form the generat-
ing block. The jth block of the design is obtained by adding (modulo v) jm to
every label in the generating block, j = 0,...,n — 1. The value of m is known
as the incrementing number.

In general, a GCIB,, design has n blocks. We consider only the case where
these n blocks are distinct, and we call such a design a full GCIB,, design.
The following theorem shows that certain full GCIB,, designs are odd-
degree trend-free. Divide the v = mn treatment labels into m groups of n
labels using the residue classes modulo m; that is, S, = {a,a + m,...,
a+(n—-1m},a=0,1,...,m — 1. Then the following theorem follows from
Corollary 2.1.2. '

THEOREM 3.3. A full GCIB,, design is odd-degree trend-free if the treat-
ment labels in positions q and k — q + 1 of the generating block belong to the
same residue class, forall q =1,2,...,k.

GCIB,, designs tend to be small in terms of the number of blocks. Jarrett
and Hall (1978) give examples of efficient ‘‘composite’’ designs formed from g
(g = 2) GCIB,, designs. These GCIB,, designs need not have the same value
of m nor the same block sizes. We call the resulting composite design a
composite GCIB (m,...,m; ky,...,k,) design and, if m; =m,= -+ =
m,=m and k, =k,= -+ =k, =k, we abbreviate this to a composite
GCIB (m; k; g) design. If each GCIB,, design is odd-degree trend-free, i =
1,...,8, then the composite GCIB (my,...,m,; ky,...,k,) design is also
odd-degree trend-free (see Remark 2.1). If m;=m and k; =% for all i =
1,..., g, more flexibility in constructing odd-degree trend-free composite GCIB
designs is obtained as detailed by the following corollary to Theorem 3.3.

COROLLARY 3.8.1. Consider a composite GCIB (m;k;g) design & with
generating blocks By, By, ..., B,. If treatment labels ay,a,,...,a, are in
position q of the g generating blocks, then & is odd-degree trend-free if the
treatment labels in position k — q + 1 of the generating blocks can be matched
in pairs with a,, ..., a, so that the pairs are in the same residue class, and if
this holds for all ¢ = 1,..., k.

ExampLE 3.2. Consider the composite GCIB (8; 6;2) design in Table 2.C1
of Hall and Jarrett (1981) with eight blocks of size 6, made up from the two
GCIB, designs with generating blocks (0 1 2 3 4 7) and (0 3 5 8 10 11),
respectively. The residue classes are S, ={0,3,6,9},S; ={1,4,7,10} and
S, = {2,5,8,11}. It can be verified that if the generating blocks are reordered
as (0124 73)and (53 10 8 0 11), Corollary 3.3.1 is satisfied and the
design is odd-degree trend-free.
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REMARK 3.1. In a full GC/s design, if the treatment labels in any two plot
positions are interchanged in every block the design remains trend-free. In a
fractional GC/s design, if treatment labels in plot positions j;, and j, are
interchanged in some block, the design remains odd-degree trend-free provided
that the matching treatment labels ih plot positions 2 —j, + land 2 —j, + 1
are also interchanged in some block. Thus some limited randomization of
treatment labels within blocks can be performed. Similarly, if treatment labels
in positions j; and j, of a GCIB,, or a composite GCIB (m; k; g) design are
interchanged in every block, the design remains odd-degree trend-free provided
that treatment labels in positions 2 —j, + 1 and 2 —j, + 1 are also inter-
changed in every block.

4. Designs for factorial experiments. Consider a factorial experiment
with s factors where the ith factor has m; levels, i = 1,..., s. Let the vector 7
in model (2.2) represent the effects of the v = m;m, - -+ m treatment combi-
nations in lexicographical order. Suppose that the experiment is arranged in b
blocks of size k subject to a common within-block polynomial trend (see
Remark 2.1 for more general designs).

Let x = (x,x,...x,) denote a binary vector where x, = 0 or 1 and let a*
denote the effect of the interaction between those factors for which x; = 1,
i =1,...,s. Throughout this section it will be convenient, when considering
an f-factor interaction a*, to temporarily reorder the labels -on the factors so
that a* represents the interaction between the first f factors (1 < f <s). To
avoid confusion, we label a* as a ;) and 7 as 7, after such a reordering. If a
design is to be used for an s-factor factorial experiment, then its treatment
labels can be written as s-tuples, so that T'={a; a = a,a, *** a,, 0 <@a; <
m;—1,i=1,...,s}. We denote by T, s, the group of treatment labels T after
deleting the last s — f digits from each treatment label. Similarly the design
d s, is obtained from the design d by deleting the last s — f digits from each
treatment label, and X, /, is the corresponding X matrix.

Let K* be a matrix whose rows are orthonormal and span the vector space
of contrasts associated with «*; that is, a®* = K*r. It is well known [cf.
Kurkjian and Zelen (1962)] that for any given order of the factors, K* can be
expressed as K* = K{* ® K32 ® --- ® K¥ when the treatment combinations
are listed in lexicographical order, where K} is a constant row vector of m;
elements equal to (m;)"/2 if x; = 0, and K% is an (m; — 1) X m, matrix K,
with orthonormal rows and zero row sums if x;, =1, i =1,...,s. Let the
vectors ¥y, ¥s, - - -, ¥, denote the distinct possibilities for the binary vector x. If
K=[KY, K, . ..,K’”Y, then K is a v X v orthogonal matrix. Let ¥ = K7
denote a vector of factorial contrasts (including the general mean); then
7 =KV and, as in (2.3), a design is trend-free for estimating ¥ if and only if
(X.K'YX, = 0. Using (2.4) this occurs if and only if
(4.1) KX X, =KX,®, = 0.

It follows that a design is trend-free for estimating a* = K*r if and only if
(4.2) K*K X, =K*A,®, = 0.
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REMARK 4.1. We have not discussed the issue of estimability of contrasts
here. If k' is nonestimable, where %’ is some row of K*, then it may be

irrelevant whether or not the design is trend-free for that contrast. In this case
the row &' could be deleted from K~ in (4.2).

Since (2.3) implies (4.2), all trend-free designs are also trend-free for esti-
mating factorial contrasts. Therefore, in this section, we will only consider the
case of designs which do not satisfy (2.3). For an unblocked single replicate or
fractional factorial design, X, K' represents a reordering of rows (or subset of
rows) of K'. This is the starting point for the construction of trend-free
designs for factorial experiments in the articles by Daniel and Wilcoxon (1966),
and Cheng and Jacroux (1988). A different method of construction is described
by Coster and Cheng (1988) and Coster (1988). This method, which they call
the generalized foldover method, produces a special case of the class of GC/s
designs when applied to single replicate and fractional factorial experiments
arranged in blocks. In this section we consider general multireplicate factorial
experiments in blocks where the ith treatment combination is observed r,
(= 1) times,i=1,...,v.

As in Section 3, if (4.2) holds when ®, contains only the odd-degree (linear,
cubic, etc.) orthogonal polynomial components of trend, we will call the design
odd-degree trend-free for estimating a*. Similarly, if ®, contains only the
even-degree (quadratic, quartic, etc.) orthogonal polynomial components of
trend, we will call the design even-degree trend-free for estimating a”.

REMARK 4.2. Using (4.2), it is easy to show that a design d is completely
(odd-degree/even-degree) trend-free for estimating contrasts associated with
the interaction between the first f factors if and only if d;, is completely
(odd-degree/even-degree) trend-free, where d , is defined above.

DEFINITION 4.1. The interaction a” is called an odd-factor (even-factor)
interaction if x = (x,x,...x,) is such that X {_,x; is odd (even).

Consider now the case of estimating « ) in a 2° factorial experiment. Then
K, is the row vector 27 1/%2(—1 1) for i = 1,..., f. It is easy to prove by
induction that K ;)= K; ® :- ® K, is a symmetric row vector if f is even
and antisymmetric if f is odd. Also, it can be verified that if element g of K/,
is indexed by a € T ), then element w — g + 1 is indexed by @ € T, for all
g=1,...,w, where @ =(a@,a@,...@;) and a@;=1-gq,; for i=1,..., f and
w = 27, Similarly, if column g of X, ;, is indexed by a € T(;,, then column
w—q+1of X, isindexed by @ € T,

THEOREM 4.1. Let d € 9(2% b,k,r,,...,1,) be a block design for a 2°
factorial experiment, with the property that for every occurrence of treatment
label a in position t of some block of d, treatment label @ also occurs in position
t of some block of d, for alla € Tand t =1,...,k. Then d is trend-free for
estimating every main-effect and odd-factor interaction.
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Proor. Without loss of generality consider the f-factor interaction «f,

1 <f<s, and the corresponding design d ). From the description of the
design d, the rows of A, are symmetric. If f is odd, the vector K(; is
antisymmetric and hence A, /K, = 0. The result follows from Remark 4.2.
O

ExaMPLE 4.1. Consider the following design in four blocks of size 5 for a 23
factorial experiment with each treatment combination occurring either two or
three times. (Rows denote blocks.) The design is connected and satisfies the
conditions of Theorem 4.1 and thus the design is trend-free for estimating
each main effect and the three-factor interaction.

111 110 101 001 000
100 101 010 011 111
000 010 111 100 011
011 001 000 110 100

If the third digit of each treatment label is deleted, then Corollary 2.1.1 is
satisfied. Hence the design is also trend-free for estimating the interaction
between the first two factors.

THEOREM 4.2. Let d € 9(2°,b,k,ry,...,r,) be a block design for a 2°
factorial experiment with the property that for every occurrence of treatment
label a in position t of some block of d, treatment label @ occurs in position t of
some block of d and in position k — t + 1 of some block of d, for all a € T and

=1,...,k. Then:

(i) d is trend-free for estimating every main-effect and odd-factor interac-
tion;
(ii) d is odd-degree trend-free for estimating every even-factor interaction.

Proor. Without loss of generality consider the f-factor interaction a( £y
1<f<s, and the corresponding design d ). Let X, ;) =[&;),..., Xy f)]’
and A, = =y 14;r)- From the description of the design, the elements in
row ¢ of A, are repeated in reverse order in row k£ — ¢+ 1 of A, .
Consequently, if f is even, the ¢th element of the vector A,/ K/, is identical
to the (¢ — ¢ + 1)th element, for all ¢ = 1,..., k. Since the columns of @, are
antisymmetric for all odd-degree trends, result (ii) follows from Remark 4.2.
Result (i) follows from Theorem 4.1. O

EXAMPLE 4.2. Modifying the treatment labels in the design of Example 4.1
we obtain the following design, which satisfies the conditions of Theorem 4.2.
Consequently, the design is trend-free for estimating the three main-effects
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and the three-factor interactions, and odd-degree trend-free for estimating the
three two-factor interactions.

101 011 111 000 110
010 100 000 111 001
110 000 100 011 101
001 111 011 100 010

REMARK 4.3. Designs which satisfy Theorem 4.2 are odd-degree trend-free.
If the polynomial trend is expected to be of degree p > 2, then an arrangement
of treatment labels within blocks should be sought which not only satisfies
Theorem 4.2 but also minimizes the dependence of the odd-factor interactions
on the even-degree polynomials, and also produces an efficient design for the
estimation of the even-factor interactions. It is possible that, by sacrificing the
. trend-free properties guaranteed by Theorem 4.2, a design could be found
which performs better under some average optimality criterion such as the
type-A criterion mentioned in Section 2. However, it is not obvious which
optimality criteria are the most suitable in the present setting. The minimum
time count alone is not sufficient since it ignores the efficiency of a design. The
class of designs satisfying Theorem 4.2 is large and we conjecture that the
“best’’ of these designs will be among the best possible under a criterion that
is concerned with efficiency of estimation of factorial effects. Similar remarks
apply to the designs in the remainder of this section. We leave a thorough
discussion of optimality criteria for future work.

Now consider a general m; X m, X --- X m factorial experiment. For
x; = 1, the contrast matrix K; has (m; — 1) orthonormal rows. If the levels of
the ith factor F; are quantitative, the contrasts of interest are often the
orthogonal polynomial trends in the levels of F;. In order to avoid confusion,
we will call these orthogonal polynomial contrasts the first, second, ...,
(m; — Dth order contrasts in F;. Thus the odd-numbered rows of K; corre-
sponding to the odd-order contrasts are antisymmetric and the even-numbered
rows of K; corresponding to the even-order contrasts are symmetric. It can be
verified that, as for the 2" case, if column q of K ;) and X, ) are indexed by
a € Ty), then column w — q + 1 of K4, and X, are indexed by @ € T,
for all ¢ =1,...,w, where @ = (a,a,.. af and @, =m;—1—a; for i =
1,....,fand w=mm, -+ m;, We call @ the complement of a.

LEMMA 4.1.  Consider the design d ;, corresponding to factors Fy, F,, .. ., Fy.
The row of K, corresponding to the (q,th order contrast in F; X q,th order
contrast in Fy X -+ X q,th order contrast in F;) is:

(i) symmetric if L [_,q; is even;
(ii) antisymmetric if L [_,q; is odd.

The following lemmas follow from Remark 4.2, Lemma 4.1 and Theo-
rem 2.1.
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LEmMA 4.2. Letd € D(mymgy -+ m,,b,k,r,,...,r1,) be a block design for
anm; X mgy X -+ X m, factorial experiment with the property that for every
occurrence of treatment label a in position t of a block of d, treatment label @
occurs in position t of some block of d, foralla € Tand t = 1,..., k. Then the
design is trend-free for estimating the (q,th order contrast in F; X --- X g th
order contrast in F,) if ¥;_,q; is odd, where q; is set to zero if F, does not
occur in the interaction of interest.

LEMMA 4.3. Letd € 9(mym, - m,, b, k,rq,...,r,) be a block design for
anm; X mg X +++ X m, factorial experiment with the property that for every
occurrence of treatment label a in position t of a block of d, treatment label a
occurs in position k — t + 1 in some block of d for alla € Tand t=1,...,k.
Then: .

(1) d is even-degree trend-free for estimating (q.th order contrast in
F, X -++ X q,th order contrast in F,) if Li_,q; is odd;

(ii) d is odd-degree trend-free for estimating (qth order contrast in
F, X -+ X q,th order contrast in F,) if Li_,q; is even;

where q; is set to zero if F, does not occur in the interaction of interest.

The results of Corollary 2.1.2, Lemma 4.2 and Lemma 4.3 can be combined
to provide the stronger result given in Theorem 4.3.

THEOREM 4.3. Letd € 9(mymgy - m,, b, k,ry,...,r,) be a block design
for an m; X my X -+ X m, factorial experiment with the property that for
every occurrence of treatment label a in position t of a block of d, treatment
label @ occurs in position t in some block of d and also in position k — t + 1 in
some block of d foralla € Tand t =1,...,k. Then:

(i) d is odd-degree trend-free for estimating every factorial effect;
(ii) d is even-degree trend-free for estimating (q,th order contrast in
F, X -++ X q,th order contrast in F,) if ¥¢_,q, is odd.

Note that an alternative phrasing of (i) and (ii) in Theorem 4.3 is that the
design is completely trend-free for estimating (q,th order contrast in
F, X .-+ X q,th order contrast in F,) if ¥{_,q; is odd, and odd-degree trend
free for X {_,q; even. An example of a design which satisfies Theorem 4.3 is
given in Table 2.

Any block design can be used for a factorial experiment by putting the
treatment labels of the design into one-one correspondence with the treat-
ment combinations of the experiment. Generalized cyclic designs, whose treat-
ment labels are s-tuples, are natural choices for s-factor factorial experiments
[see,.e.g., John (1981, 1987)]. Although there is evidence to show that the
obvious correspondence between treatment labels and factor levels may not
lead to the most efficient designs [see Bailey (1985)], the trend-free properties
of such designs are straightforward as shown in Theorem 4.4. First we need
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TABLE 2
A GC/2 design for a 3 X 6 factorial experiment
which satisfies Theorem 4.4

00,12 24 01 13 25
25 13 01 20 14 02
02 14 20 21 15 03
03 15 21 04 10 22
22 10 04 05 11 23
23 11 05 24 12 00

the notion of complementary cosets. As in the proof of Theorem 3.2, let the
cosets of a subgroup S of order d in T be S+ h;, S +hy,...,S+ k-
Consider the coset S +h;={a, +h;;a,+h;,...,a,+h;} and let u =
(1,1,...,1). Then the complement of a; + h, € S+ h; is (~u —a; —h;) =
(-a))—-(h;+u)=a,+h,€S+h, forsomel <w<dandl<g=<v/d.
Consequently the complements of all treatment labels in any given coset
S + h; all belong to the same coset S + h, (where S + h, may or may not be
different from S + h;). The pair of cosets (S + &;, S + h,) will be called
complementary cosets and if S+ h; =S + h,, then S + h; will be called a
self-complementary coset.

THEOREM 4.4. Ifv/d and k/d are both even, there exists an arrangement
of treatment labels within the blocks of any GC/s design so that, if the
treatment labels represent the treatment combinations of an m; X mgy X +++ X
m factorial experiment, the design satisfies the conditions of Theorem 4.3,
provided that the subgroup S in the generating block S[+]R has no self-com-
plementary cosets.

ProoF. Arrange the treatment labels in the generating block as in the
proof of Theorem 3.2. Then every coset of S C T occurs in the set of positions
P,={md +j; j=1,...,d)} in some block of the design, 0 < m < (k/d) — 1.
Order the cosets in P,, so that complementary treatment labels occur in the
same plot positions, and correspondingly order the matching cosets in P, . in
reverse order where m* = (k/d) — m — 1. Repeat this procedure for all com-
plementary pairs of cosets and every m = 0,1,...,(k/2d) — 1. Theorem 4.3 is
then satisfied. O

ExamMpLE 4.3. Consider the GC/2 design of Example 3.1, and let the
treatment labels represent the treatment combinations of a 3 X 6 factorial
experiment. The cosets form complementary pairs as follows {(00, 12, 24);
(25,13, 01)}, {(02, 14, 20); (23,11, 05)}, {(03, 15, 21); (22,10, 04)}. If the treat-
ments within the blocks of the design shown in Table 1(b) are reordered as in
Table 2, then the design is odd-degree trend-free for estimating all factorial
effects and, in addition, is even-degree trend-free for estimating linear F;,
linear F,, cubic F,, quintic F,, linear F; X quadratic F,, linear F; X quartic
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F,, quadratic F; X linear F,, quadratic F; X cubic F, and quadratic F; X
quintic F, (that is, the design is completely trend-free for estimating these
nine factorial effects).

Note that if v/d is odd but k/d is even, a GC/s design can always be
arranged so that either Corollary 2.1.2 is satisfied (as shown by Theorem 3.2)
or Lemma 4.3 is satisfied (by modifying the proof of Theorem 3.2 to focus on @
rather than a in position P,.). However, Theorem 4.3 can never be satisfied
since the subgroup in the generating block must have at least one self-comple-
mentary coset.
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