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LARGE SAMPLE THEORY OF A MODIFIED BUCKLEY-JAMES
ESTIMATOR FOR REGRESSION ANALYSIS
WITH CENSORED DATA!

By Tz LEUNG LAI AND ZHILIANG YING

Stanford University and University of Illinois

Buckley and James proposed an extension of the classical least squares
estimator to the censored regression model- It has been found in some
empirical and Monte Carlo studies that their approach provides satisfactory
results and seems to be superior to other extensions of the least squares
estimator in the literature. To develop a complete asymptotic theory for
this approach, we introduce herein a slight modification of the
Buckley-James estimator to get around the difficulties caused by the
instability at the upper tail of the associated Kaplan-Meier estimate of
the underlying error distribution and show that the modified Buckley—
James estimator is consistent and asymptotically normal under certain
regularity conditions. A simple formula for the asymptotic variance of
the modified Buckley—James estimator is also derived and is used to study
the asymptotic efficiency of the estimator. Extensions of these results to the
multiple regression model are also given.

1. Introduction. Consider the linear regression model
(1.1) yl=Bxl+£l, i=1,-..,n,

where ¢, £, €,,... are i.i.d. random variables with a continuous distribution
function F' such that Ele| <  (but E¢ need not be 0) and the x; are either
nonrandom or are independent of {¢,}. Suppose that the responses y; are not
completely observable and that the observations are (z;, §;, x;), where

(1.2) z; = min{y;, c;}, 6, =1y .,

and (c;, x;) are independent random vectors that are independent of {¢,}. We
call ¢; censoring variables and (1.1)-(1.2) the censored regression model.

When the y; are completely observable, the least squares estimate b, of B is
the solution b = b,, of the equation

n

(1.3) gl(xi -%,)(y; —bx;) =0,

where X, = n !X ?_,x,. In the case of censored data (z;, §;, x;) with nonran-
dom x; and c;, Buckley and James (1979) proposed to modify (1.3) as follows.
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Let
(1.4) yi(b) =y, — bx;, ¢;(b) =c¢; — bx;, z;(b) = min{yi(b)’ ci(b)}‘
Noting that o

E(y,06;,2;) = 8,;2; + (1 - 8,)E[e — (c; = Bx;) +c)le > ¢; — Bx;]

-z +(1- Bi)f:_ﬁx.(l — F(s))ds/(1 - F(z; - Bx;)),

the Buckley—James method is to replace the y, — bx; in (1.3) by the following
estimate yF*(b) of E(y,l5;,2;) — bx;:

(15) 7 () =2(b) + (1= 8) [ ‘:b)(l — B, ,(s)) ds/{1 - B, ,(2:(8))},

where F,, , is the Kaplan-Meier estimate of F based on {(z,(b),,): i <n},
that is,

(1.6) B, (u)=1- ) g (1-1/Z,(b,2(0))}",
(1.7) Z,(b,t) = #{j <n:z;(b) 2t} = 211(z,~(b)ztr
iz

Thus, the Buckley—James estimator is defined by the equation
n
(1.8) Y (% — %,)yf(d) =0,
i=1

or more precisely, is defined as a zero-crossing of the random function
X7 (x; — x,)yf(b). We say that b is a zero-crossing of a function ¥(b) if the
right- and left-hand limits (b + ) and ¢( 5 — ) do not have the same sign, that
is, if y(b +)y(b -) <o0.

Buckley and James (1979) and Miller and Halpern (1982) have reported
satisfactory performance of the Buckley—James estimator in some simulation
and empirical studies. In particular, Miller and Halpern (1982) compared the
performance of the Buckley—James estimator with two other extensions of the
least squares method to censored data by Miller (1976) and by Koul, Susarla
and Van Ryzin (1981) and with the Cox (1972) regression analysis that
assumes a proportional hazards model instead of the linear regression model
(1.1). From the results of these different methods applied to the Stanford heart
transplant data, Miller and Halpern (1982) concluded that the Cox and the
Buckley-James estimators are ‘‘the two most reliable regression estimates to
use with censored data’ and that ““the choice between them should depend on
the appropriateness of the proportional hazards model or the linear model for
thé data.” Leurgans (1987) recently proposed an improvement of the Koul,
Susarla and Van Ryzin approach and found it to be competitive with the Cox
and Buckley—-James estimators in her analysis of the Stanford heart trans-
plant data.
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While there is now a complete asymptotic theory for the Cox regression
method in the proportional hazards model, a corresponding theory for the
Buckley-James estimator is lacking. As a first step towards such a theory,
James and Smith (1984) studied the weak consistency of the estimator.
Assummg that F~1(1) < , that c¢; and x; are nonrandom w1th T (x; —

%,)? > o and L7 (1 - F(c — Bx; ))Ix —-x,|=0X" (x;—%,)%) as n > »
and that Z,(B,t) >p ® as n > o for every ¢t < F~(1), their main results are
that

(1.9) Z(x—x,,)y (B) Z(x £,)"—p 0

and that under considerably more stringent assumptions,

(1.10) P{Enl (x; — x,)y¥(b) has a zero-crossing in (B — §,B8 + 3)}

— 1 forall > 0.

An important step in their proof of (1.10) is to show that under these
assumptions, one of which is that H(u) = lim, . n ‘Y7 ], _,, exists for
every u,

(1.11) sup
u<F~Y(1)

see James and Smith [(1984), page 594]. They obtained (1.11) by regarding
F,, » as the usual product-limit estimator based on i.i.d. random variables
e¥ = ¢, — (b — B)x; censored by independent random variables ¢} = c; — bx;
when the x; are i.i.d. with a common distribution function H. However, the
usual independence condition between {¢}} and the censoring sequence {c}} to
guarantee consistency of the product-limit estimator is not satisfied unless
b = B. We shall show in Section 3 that (1.11) in general does not hold unless
b =B and that the limit of Fn,b is in fact considerably more complicated
when b # B. Our derivation of this limit is based on a direct asymptotic
analysis of (1.6) using the approximation lemmas developed in Lai and Ying
(1988) for stochastic integrals of empirical-type processes.

Making use of the approximation lemmas of Lai and Ying (1988), we also
establish in Section 3 the asymptotic linearity of a slightly modified form of the
random function £¥(b) = L 7_,(x; — X,,)y¥(b) in some neighborhood of B. The
idea behind our modification £,(b), whose premse definition will be given in
Section 2, of the Buckley-James statistics £,(d) is to get around the difficul-
ties caused by the instability of the Kaplan-Meier estimate F, »(u) at the
upper tail where n~'Z, (b, ) is small. In Section 2, we also develop a stochas-
tie integral representation of ¢,(b). Making use of this stochastic integral
representation and martingale central limit theorems, we establish in Section
4 the asymptotic normality of £,(B). Combining the asymptotic normality of
£,(B) with the asymptotic linearity of ¢,(b) established in Section 3, we obtain

B, 4(u) = [F(u - (B - b)x) dH(x)| -
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in Section 4 the asymptotic normality of the modified Buckley—-James estima-
tor and use this result to study the asymptotic efficiency of the estimator in
Section 5, where extensions to multiple regression models are also given.

2. A modification of the Buckley-James estimator and related
stochastic integral representations. Throughout the sequel we shall
assume knowledge of an upper bound p > |B| and restrict & to a bounded
interval [—p, pl. An earlier modification of the Buckley—-James estimator has
been given in Lai and Ying (1988) under the assumption that sup,|x,| <  and

n

1
(2.1) F71(1) <», liminf — Y P{c, > F (1)} > 0.

BT
The basic idea is to introduce a smooth weight function of the form
(2.2) p.(t) =p(n*(t—cn™?)), 0<t<l1,

with ¢ >0, 0 <A <1, and p being a twice-continuously differentiable and
nondecreasing function on the real line such that

(2.3) p(u)=0 foru<0, p(u)=1 foru=x=1.

The weight function p, is used in Lai and Ying (1988) to redefine the
Kaplan-Meier estimator Fn’ » in (1.6) as

24) F () =1- T1 {1-p.(n 2.5, 2(b)))/Za(b, 2:(5))),

i:z(b)<u

and to replace the y*(b) in (1.8) by

(1 = F, 5(5))Pou(n7'Z,(b, 5)) ds
1 - F, ,(2,(b))

As shown in Lai and Ying (1988), the weight function p, smoothly removes
the instability associated with small value of n~'Z,(b, s). However, the bias it
introduces into yi(b) as an estimate of E(y;l$;, 2;) — bx; causes additional
difficulties without the assumption (2.1). In particular, since we would like our
asymptotic theory to be applicable to unbounded ¢;, as in the Gaussian case for
which the classical least squares estimator based on completely observable y;
is known to be asymptotically efficient, we do not assume (2.1) herein and
therefore have to further modify (2.5) to remove the bias caused by introduc-
ing the weight function p,,.

Useful insights into such modification and its analysis are provided by
certain stochastic integrals with respect to empirical-type processes and by
Lemma 1 for these integrals. With z,(b) defined by (1.4), define the empirical-

(25) yi(b) = 2,(b) + (1 - 5))
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type processes

n n
Zn(b’t) = Z I{zi(b)zt)’ Z:(b’ t) = Z (xi - gn)I(zi(b)zt)’
i=1 i=1
n n
(26) Jn(b’t) = Z Iz,~(b)2t,5,»=0)’ Jrf(b’t) = z (xi - fn)Izi(b)zt,S,:O)’
i=1 i=1

n n
N,(b,8) = ¥ Iy<t,5i-1p  Na(b,8) = X (% — %) Iy <es-1)
i=1 i=1

In view of (1.5) and (2.6), the Buckley-James statistics = 7_,(x; — X,,)y*(d) can
be written in the form

— [ tdzi(b,t)

t=—oo

—ft:’ _m{ft”[@ — B, 4(5))/(1 - B, o(0))] ds} dJE(b,¢).

For b = B, replacing Z* and J? by their expected values and F‘n,b by F in
(2.7) leads to the integral on the left-hand side of (2.8) below with I(¢) = 1.
The following lemma suggests that if we suitably modify the term z,(b) in
(2.5), then we may be able to remove the bias caused by introducing the weight
function p,(n~'Z,(b, s)) into the last term of (2.5).

(2.7)

LEMMA 1. Let I(t) be a function of bounded variation on the real line. If
[Z LIt dF(t) < w and [% |t|dI(¢)| < «, then

- f:_;d[l(t)EZ:(ﬁ,t)]
(28 i
_L—w{ft [(1 - F(s))/(1 = F(£))]i(s) ds} dEJ(B,1) = 0.

PROOF. Let Zi(t) = I(zi_BxiZt), Jl(t) = I(zi—Bxizt,8i=0)' Let X = (xl, ey xn).
It suffices to show that for : = 1,...,n,xp

oo . o tao 1 _F l d .
- [t EE@ @) - [ ( 1_(?()t)(s) > dE(J(1)[x)
(2.9)

_ —f:td[l(t)(l - F(1))].
Let G,(t) = Plc; — Bx; > tlx;). Since z; — Bx; = min{s;, ¢; — Bx;},
dE(JT(t)[x) = (1~ F(£)) dGi(t) and E(Z'(t)[x) = (1~ F())Gi(0).
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Integration by parts gives

- [talin (@ - FO)G0] = [[{ [0 = F))is) ds) dGi(o)

Gi(u){ul(u)(l — F(u)) + fu°°(1 — F(s))I(s) ds}

+[TU)(1 - F(£))Gi(t) dt + [ Gy(6)[- (1 - F(2))i(t)] dt

~Gi(w) [(sd[(1 - F(s))i(s)]

for every u that is a continuity point of both G; and [. Letting u —» —« gives
the desired conclusion (2.9). O

Setting I(¢) = p,(n~'Z,(b, 1)), Lemma 1 suggests the following modification
of the Buckley-James statistics (2.7):

£(0) = = [~ td[p,(n7Z,(5,0))Z2(5,1)]

@10) [ Jo(1 = F,,0(8))Pu(n"'Z,(b, 5)) ds 45, 8)

1- Fn,b(t)

n

= z::l(xi -x,)5:(b) - Z zi(b)zrf(b’zi(b))APn(n_lzn(b’ zi(b)))’

i=1

where
3:(b) = zi(b)pn(n_lzn(b’ zi(b)))

(2.11) f1-8) (1 - Fn,b(sg)pn(n‘lzn(b, s))ds
1 - F, 4(2,(b))

Apn(n—lzn(b> t)) =pn(n—lzn(b’t +)) _pn(n_lzn(b’t))'

Throughout the sequel we shall consider £,(b) instead of the previous modifi-
cation L 7_,(x; — x,,)yi(b) [with yi(b) given by (2.5)] in Lai and Ying (1988). By
a modified Buckley—-James estimator we mean a zero-crossing of £,(b).

It is well known that the classical Kaplan-Meier estimator F, ,() of F(¢) is
quite unstable when n~'L?_,(1 — F(¢))G,(?) is near 0. Replacing the unknown
B by b in F, , causes additional difficulties. Because of this instability, the
integral [7[(1 — F, ,(s))/(1 — F, ,(¢))]ds that appears in the Buckley-James
statistic (2.7) is an unreliable estimate of [°[(1 — F(s))/(1 — F(¢))]ds when
n~1L? (1 — F(t))G«¢) is small, as reflected from the sample data by a small
value of n~1Z,(b,t). Our idea to circumvent this difficulty is to multiply the

I
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integrand (1 — F’n, »(8))/(1 — ﬁ'n’ »(t)) by a smooth weight function

1 ifZ,(b,s) = (c+1)n'H,

2.12 -17 (b,5)) =
(212) P28 ) = G e (b sy < et

Lemma 1 suggests that we can compensate the bias due to introducing this
weight function into the second term of (2.7) by also including the same weight
function in the first term. This is the heuristic idea behind our modification of
the Buckley—James estimator. Moreover, instead of straightforward trimming
lie, with Iz 4 2cnt-y in place of p,(n~'Z,(b,1))], we use here a smooth
version analogous to the kernel method in density estimation. Since a key idea
of our analysis is to approximate the random function £,(b) by a nonrandom
function ¢,(b) [which basically replaces the empirical-type processes Z,, Z7,
J, and JZ that appear in £,(b) by their expectations], our use of a smooth
trimming function leads to smooth ¢,(b) which is essential to the asymptotic
linearity result in Theorem 1(ii) of the next section. Making use of asymptotic
linearity and other asymptotic properties of £,(b), it will be shown that the
modified Buckley-James estimator is asymptotically efficient when F is nor-
mal and therefore the estimator is indeed a natural extension of the classical
least squares method to censored data.

3. Consistency of the modified Buckley-James estimator and
asymptotic linearity of £,(b). The following assumptions will be made in
the sequel for the analysis of the modified Buckley—James statistics £,(b):

(3.1) |x;| < B for all i and some nonrandom constant B,
F has a twice-continuously differentiable density f such that

(3.2) f_:tZ dF(t) < »and f_:( () /£(£))2 dF(t) < o,

(33) [ sup {If'(t+h)|+|f"(¢+h)|}dt <= forsomed >0,
—® |h|<8

E exp(0ey) + sup Eexp(6c,) <» for some 6 > 0,
n

(3.4)
where a~ denotes the negative part of a (i.e., a”=lall, 50)),
n
sup Y P{t<c,—bx;<t+h}=0(nh)
(3,5) lbl<p, i=1
—o<t<®o
as h » 0 and nh — =,
n
. n_l Z (xi - En)rp[ci - Bxi = slxi] —~p F,.(S),
(3.6) i=1

some nonrandom function, for r = 0,1, 2
and for every s with F(s) < 1.
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The following lemma approximates £, »(t) and £,(b) essentially by replac-
ing Z,, Z%, J,, J* in (1.6) and (2.10) by their expectations. Its proof is given
in Appendix A and depends on the approximation lemmas for stochastic
integrals of empirical-type processes developed in Lai and Ying (1988), where
assumptions of the type (3.1), (3.3) and (3.5) are discussed and play a basic role
in the development of the stochastic integral approximation lemmas.

LemMA 2. Under the assumptions (3.1)-(3.5), define

dEN,(b,u)
(37) Fn(b,t) =1- eXp{—/;stW},

0,(8) = = [ td[pu(nTEZ,(5, 1)) EZ;(, )]

o [*(1 - Fyb,s))p,(n"'EZ,(b,s))ds
—‘/;=— 1—Fn(b’t)

(3.8)

dEJE(b,t).

Then for every € > 0,
sup{| £, ,(¢) — F(b,)|: bl <p,Z,(b,t) = n~%}

(3.9)
—0(n~V2+4) q.s.,
(3.10) sup |£,(b) — £,(b)| = O(n/2*4+¢) g5,
lbl<p
1-F, (s) 1-Fy(b,s) .
(3.11) Sup{ 1-F, (t) 1-F (b1 1t <s,lbl <p,Z,(b,s) 2

= O(n~1/2+3A+e) g

where 0 < A < 1 and ¢ > 0 are given in (2.2). Moreover, for every 0 <y <1
and € > 0,

sup  |£,(0) — £.(B) — £u(B) + £(B)]
(3.12) l6—pl<n=
— O(n(l—'y)/2+4)\+s + pl/2-v+6r+e 4 n7)\+5) a.s.

foo(s)  1-F, 4(s) 1-F(bs) 1-F(s)|
“F,. () 1-F, ,t) 1-F(b,t) T1-Fo) |

(3.13) en'* }

b—Bl<n™7,t<s,min(Z,(b,s),Z,(B,s)) =

— O(n—(1+7)/2+3A+5 + pl/2-y+BA+e 4 n—1+6/\+e) a.s.
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Furthermore, with probability 1,
£(8) = = [* td[p(n'Z,(5,1))Z:(b,1)]

(3.14) "f {L 'Iffiflé?% n(n—Hlxb,s))dk}de(b,ﬂ

for all large n,

£,(8) = ea(8) = [ td[pu(n'EZ,(b,1)) EZ3(b,)]

b,s
019 - R nUB2,(5,0)) ds | dBU(5,),

with sup |e,(b)|-0.
lbl<p

ReMARks. (i) Let G,(x, s) = P{c; — Bx; > slx; = x}. Suppose that the x; are
ii.d. with a common dlstrlbutlon functlon H. Then in view of (2.6), we can
express (3.7) in the form

F.(b,t)
[7f(u + (b - B)x)
) ft . XG(x,u+ (b—B)x)dH(x)
=1-—exp{— ————e—— — ———du,
—o f—w[l:F(u + (b - B)x)]
G, (x,u+ (b—-B)x)dH(x)

where G, = n™'L7_,G; and f=F'. When b = 8, F(b,t) = F(¢t). When b # 8,
even if llmn_,co G, = G exists, the right-hand side of (3.16) with G, replaced
by G cannot be simpliﬁed to the expression of James and Smith in (1.11),
noting that

1- [j F(t + (b — B)x) dH(%)
=exp{ ft J2of(u + (b — B)x) dH(x) du}.

(3.16)

w1 = F(u + (6 - p)x)] dH(x)

(i) Since F(s) = F(B, s), it follows from (3.1), (3.3), (3.5) and (3.7) that
sup{|F,(b,s) — F(s)|: |b — Bl <n3% EZ (b,5) = n'~% = 0(n~?) as., for ev-
ery 0 <6 < 1. Combining this with (3.9) and (3.4) shows that if
liminf, ., n7'E7_Plc; — Bx; > F~'(1)} > 0, then for every 0 < y < 3,

sup IF 5(t) — F(t)| = 0(n"7/3) as,

[b—Bl<n~”
- - ["a- di
g - fora= [ -rensl

_ { f_"mﬁ,,,b(t) dt - [_"mp(t) dt}i 0(n") as.
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Therefore, in this case [* tdﬁ' »,5,(£) provides a strongly consistent estimate
of the common mean [*_tdF(¢) of the &, if B, — B = o(n"7) a.s. for some
y > 0. Theorem 3 in the next section gives such consistency results (with
y =3) for the modified Buckley-James estimator Bn On the other
hand, if limsup,_.(c; — Bx,) < F~(1) as., then it is not possible to
estimate [*_ tdF(¢) consistently from the censored data (1.2) even when B
is known, since the sample contains little information about F(¢) for ¢ >
lim sup; _, (c; — Bx,).

Lemma 2 shows that the modified Buckley-James statistics £,(b) can be
approximated by their nonrandom counterparts ¢ n(b) with two kinds of error
bounds for the approximation. The first kind, given by (3 10), implies the
uniform strong law (3.17) in Theorem 1(i) below if A < 3. To establish the
asymptotlc normality of the modified Buckley-James estimator Bn, which is a
zero-crossmg of £,(b), we need the result (3.12), which implies in the case
A < i the asymptotic linearity result (8.20) of Theorem 1(ii). It will be shown
in Section 4 that n~/% (B) has a limiting normal distribution. Combining
this with (3.20) gives the asymptotic normality of Bn, as will be discussed in
detail in Section 4.

THEOREM 1. Define £,(b) by (2.10) and {,(b) by (3.8).
(i) Suppose that A > 0 in the weight function (2.2) is so chosen that A < 3.
Then under the assumptions (3.1)—(3.5),

(3.17) sup n *|¢n(0) — £(B)| > 0 a.s.

lbl<p

(i) Suppose that A >0 in (2.2) is so chosen that A < & and assume
(8.1)-(3.6). Defining the T,(s) forr = 0,1,2 as in (3.6), let

r = sup{t: (1 — F(£))To(t) > 0},

. M) | (L= F(s))ds (£1(8)  f(2)
A= {Fz(”)‘ ro(t)} T-F(2) {f(t) *1-F®

Assume furthermore that

}dF(t).

(3.19) hm n~-a- )‘)Z P{c,—Bx;>7+¢e} =0 foreverye>0,ifF(7) <1.
i=1

Then with probability 1,

' £,(b) = £,(B) — An(b — B) + o(max{n'/?, nlb — BI})

(3.20)
R uniformlyin |b — Bl <n

—A

REMARK. Note that A defined by (3.18) is indeed finite. Since I', and I'? /T,
are bounded by 4B? and since [*_{(f'/f)? + f%2/(1 — F)}}dF < « by (3.2)
and Lemma 2 of Lai and Ying (1989), the finiteness of A follows from the
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Schwarz inequality and the finiteness of

lim faT[ftT(l — F(s)) ds] (1— F()) 2 dF(t)

Ttr

lim {—[/:(1 — F(s)) ds] (1 - F(a))™!

TTr

+2jaT(1 - F(t))_l[ftT(l — F(s)) ds](l — F(t)) dt}

2[;(3 —a)(1-F(s))ds - [[;(1 — F(s)) ds] (1-F(a))™},

noting that [% [ (1 — F(s)) ds}? dF(t) < = by (3.2) for every a € (—x, 7).

The proof of Theorem 1(ii) makes use of (3.12) and the following lemma,
whose proof consists of an asymptotic analysis of the nonrandom function
¢,(b) and is given in Appendix A.

LEmma 3. With the same notation and assumptions as in Theorem 1(ii), as
n— o,

(i) Suplb|$p,|b'—b|5n_7|{n(b,) - {n(b)l = O(n1_7+4)‘) fOr any 1> Y > A
(i) ¢,(B) =0 and ¢, (b) ~ —An(b — B) uniformly in |b — Bl <n~*.
(iii) If furthermore F(7) <1, then {,(b) ~ —An(b —B) as n - » and
b - B.

ProoF oF THEOREM 1(ii). In view of (3.12) and Lemma 3(ii), (3.20) holds in
the interval |b — 8| < n=1/2%% for 6 > 0 with 4\ + 6 < 1. To establish (3.20)
in the interval n=1/2*% < | — B| < n~*, take any 0 <y < 1. For |b — 8| >
n7"% nlb—Bl=n"""?% with 1 —y—8>max{(1—17v)/2+4A,% -y +
6A, A}, slince 40+ 86 <7 and 1 — y > ;. Hence (3.12) implies that for any
0< Y < 2

sup {|€.(B) = £,(B) = £,(B) + £(B)|/(nlb - BI)} = 0 as.

nTY%<|b—Bl<n™”

Combining this with Lemma 3(ii) then shows that (3.20) holds in the interval
n~1/2%% < |p — B| < min{n=1/2*0*D% n=Mfor j=1,2,....0

4. Asymptotic normality of £,(B) and of the modified Buckley-
James estimator. In this section we prove the asymptotic normality of the
modified Buckley—James estimator ﬁn by first establishing in Theorem 2 the
asymptotic normality of £,(B8) and then combining this result with Theorem
1(ii) on the asymptotic linearity of ¢,(b) — £,(B).
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THEOREM 2. Suppose that A > 0 in the weight function (2.2) is so chosen
that A < }. Define F, , by (1.6), £,(b) by (2.10) and let

fn,l == gl(xi - fn){f_o;td[pn(n_lEzn(B’t))I(zi—ﬁxizt)]

o[ ol — F
(4.1) +/—w[‘/tl I__F'((—.:)lpn(n_lEZn(B’ s)) ds] dI(ci—ﬁxizt,ci—Bxi<si)} ’
(£.,5(t) = F(1))
(4.2) Wn(t) = (1 _ F(t)) ’

§n,2 = f_nnA[EE (xi - En)I(ci-Bxizt)]
(4.3) =t

X [j;nA(l — F(s))p(n"'EZ,(B,s)) ds] dW,(2).

() Under the assumptions (3.1)—(3.5),

n=YV2E(B) = (£n1 + £n2)) =5 O.

(ii) Under the assumptions (3.1)—(8.6) and (8.19), n~1/2¢,(B) converges in
distribution to a normal random variable with mean 0 and variance

1 2
w8 o-f {rz(t)_rf(t)}{ft(l F(s))ds} aF o),

To(2) 1-F(¢t)
where 7 is defined in (3.18) and the T',(s) are defined in (3.6).

Note that v < = (see Remark following Theorem 1). The definition (4.1) of
£, 1 corresponds to substituting the terms p,(n~'Z, (B8, u)) and F, ,(u) in the
definition (2.10) of £,(B8) by the nonrandom functions p,(n~'EZ,(B, u)) and
F(u). As will be shown in the proof of Theorem 2, n~ /2%, | has a limiting
normal distribution with mean 0 and variance

: 7(1-F(s))ds)®
(4.5) 5= f_wf‘z(t){f (1 _;(i))) s} dF(t),

see (4.23). Making use of the limit in (1.11) and under more restrictive
assumptions, Smith (1988) recently concluded from certain variance computa-
tions that ©?_,(x; — £,)y*(B) [the left-hand side of the Buckley-James equa-
tion (1.8)] is asymptotically equivalent in probability to

: i - N fexe(1 — F(s)) ds
(46) iz=:1(xi xn){zi(ﬁ) + (1 81) 1 — F(z;(B)) }7

which is tantamount to replacing Fn’ g(s) in (1.5) by F(s) and which by the
classical central limit theorem is asymptotically normal N(0,n{) under the
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assumption (3.6) and is therefore asymptotically equivalent to ¢, ;. However,
Theorem 2 and its proof suggest that, except in the special case I';(¢) = 0 for
almost every t (with respect to F), we need to add another term that is
asymptotically equivalent to ¢, , when we replace F, ,8(8) in (1.5) by F(s) to
approximate L 7_ (x; — %,)y*(B). Indeed, ¥ is larger than the variance (4.4) of
the limiting normal distribution in Theorem 2 unless I'; = 0 a.e. (F), which is
essentially the setting considered by Smith (1988).

Under the additional assumption that (c;, x;) are i.i.d., Ritov (1990) recently
proved the asymptotic normality of a class of statistics ¥,(B) that look similar
to £,(B). Specifically, let ¢ be a real-valued function on the real line such that
[2$%(t)dF(t) < o and such that there exist K > 0 and § > 0 for which (i)
Y(t) = Y(min(¢, K)) for all ¢, (ii) P{min(y,,c,) —bx; <K} <1lforall b€[B —
8, B + 8], (Giii) im; _, , [ sup{ly(¢ + u) — ¢())?%: lul < d} dF(¢) = 0. Define

fz,(b)w( t) dF, o(t)
n,b(zi(b))

By establishing in his Proposition 4.1 that ¥,(8) can be approximated by
certain censored linear rank statistics I, in the sense that [¥,(8) — I,| =, 0,
he then obtained the limiting normal distribution of ¥,(B8) from the corre-
sponding well known results for T,; see Gill (1980). For the function ¢(¢) = ¢,
which clearly violates condition (i), n'/2¥,(b) reduces to the Buckley—James
statistic X 7_,(x; — Xx,)y*(b). It is natural to ask whether the proof of Ritov’s
(1990) Proposition 4.1 can be modified to make it also work for the function
¥(t) = t. We have looked into this possibility and have found the answer to be
negative; see Lai and Ying (1991).

We preface the proof of Theorem 2 by the following three lemmas. Making
use of the approximation in Theorem 2(i) and Lemma 6, we obtain the
asymptotic normality result in Theorem 2(ii). To prove Theorem 2(i), let
Pnp(8) = p(n"'EZ, (B, s)) and p, ,(s) = p,(n"'Z,(B,s)). By (4.2) for s > ¢t,

—Fp(s)  1-F(s)  (Wi(s) - Wu(8))(1 = F(s))

—F,,(t) 1-F(@t) 1-F, 4(t)

V,(b) =n71/% Z (%; = %,)18:4(2:(0)) + (1 - &)

b

and therefore

— B, 5(s)
/; A—(t) Dr,p(s) ds — f - F(t) Dn,p(s)ds
(4.7 - _(1 - Fn,p(t))_lj;"a(l - F(s))ﬁ,,’p(S)j: dW,(u) ds

(1= Fop(®) [T [~ F(9)) b p(5) dsdWi(u).

For notational simplicity we let ZZ(¢), J*(¢), N,(¢) denote Z3(B,t), J3(B,1)
and N,(B,t). From (3.14) and (4.7), it follows that with probability 1, for all
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large n,

(48) fn(B) = én,l + é\n,2"

where

e

— F(s
——[ td[ b p()23(8)] - [ j — Fit)) Pn.p(s) dsdJZ(t),

bun= [" (1= Fup®) 7 [ [ - F(5)) By 5(s) dsdW,(w) dT3()

= [ (L g(0) T () [T (1~ F(9))Bap(5) dsdWi(u).

Lemma 4 shows that we can approximate p, ,(#) in fn 1 by p,, p(#), leading to
the term ¢, 1 defined by (4.1). Lemma 5 shows that we can approximate

p,, p(t) in f,, 2 by p,g(t) and a further approximation of [ (1 —
F, (1)~ 1dJ}(¢) in Lemma 5 leads to the term ¢, , defined by (4.3). From

Lemmas 4 and 5, whose proofs are given in Appendlx B, Theorem 2(i) follows.
LEMMA 4. With the same notation and assumptions as in Theorem 2(i),

n_1/2(£n,1 - gn,l) -p 0.

LEMMA 5. With the same notation and assumptions as in Theorem 2(i), let

T, = max; _, z;,(B) and let A(t) = —log(1 — F(¢)). Let Ft) be the complete
a—ﬁeld generated by
Xi, I(zi(B)st)’ 5; I(z,(p)st)’ zi(B)Iz,-(B)st)’ i=1,...,n

Then {(W,(t), Z(t), —» <t < T,} is a martingale with predictable variation
process

2 dA(s)
Z,(s)
In fact, {N,(¢) — [t .Z,(s) dA(s), Z(t), —o <t < T,} is a martingale and

(4.9) W) = [

— 00

e [1—F, 5(s-)
1-F(s)

n, B(s

(410)  Wy(t) = f_‘w(l _F( SO )[d W(8) = Z,(s) dA(s)].

Moreover, letting C,(t) = L?_,P{c, — Bx; > t}, we have for every 6 > 0,
sup (1 = F())"™/*C/2(1)| W (2) ]

t<T,

(4.11)
+sup (1 = F(2))C,(2) /Z,(2) = O,(1),
t<T,

(4.12) nV2(E, .~ &, 2) ~
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LEMMA 6. With the same notation and assumptions as in Theorem 2(ii), let
Cx(t) = E[Z:L_l(x Ic BxiZt)]’ Cn(t) = E?=1P{Ci - ﬁxi 2 t}. FOI‘ u 2
—n" define

£na(w) = [* CHO)| [ (1= F())py,o(5) ds | aw, o),

3 (L = F(8)) P, p(s) ds
§n,2(u) - f_nACn(t) (1 _ F(t))C’n(t)
where M,(¢) = N(t) — [.Z,(s) dA(s).
() For every t* <,

dM, (1),

sup n~2|¢, o(u) — &, J(u)| -5 0
u<t*

(ii) For every € > 0,

lim lim sup P{ sup n V3¢, o(u) — £, (4| 2 5} =0

T now t*<u<n*
Proor. Take any t* < 7. In view of (4.10),
£ua(0) = o) = [* CHO|[71 = F(5))pu,o(5) s
(4.13) 1 Fn,p(t )
{(1 N OZCH Ezn(t)}dM"”)'

Since {M,(¢), #,(t), —» <t < »} is a martingale with predictable variation
process (M, )(t) = [L.Z,(s)dA(s) [cf. Gill (1980)], {¢, ,(u) — £, o), F(w),
u < t*} is a martingale with

(o= &)t = [° (Cx())[f (I—F(s))p,,ﬁ(s)ds]

(4.14)

1- ﬁ'n’ﬁ(t -) n n ;
1-F(t) Z,(t) EZ,(t)

X Z,(t)(1 = F(t)) "'dF(¢)=0,(1),
noting that [2(1 — F(s)) ds + [" u? dF(u) < » and that
E__li’ﬁ___). n_o_ n _ -1/2
1-F(t) | |Z,(t)  Ez,(1) } = Op(n).

From (4.13), (4.14) and Lenglart’s inequality [cf. Gill (1980)], (i) follows.
To prove (ii), note that by (3.6) and the dominated convergence theorem,

(4.16) lim n=1C,(t) = To(t),  lim n~lCE(¢) = Ty(¢).

(4.15) sup{

t<t*
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> ]

By (4.9) and Lenglart’s inequality, for every n > 0,

P{ sup n~ 12 ft:‘+C,f(t)[/;nA(1 = F(s))p,, s(s) ds] aw,(¢)

t*<u<n

£

< +P{ft* (Cx(t)) [“a-Fe)s., p()ds|

1-F,,¢-)\" n dF(®)
NTIZF®) [ Z ) 1-F@) "

asn — o,

* To(2) F(2)

by (4.11), (4.15), (4.16) and the finiteness of [ .[[ (1 — F(s))ds/(1 —
F())P? dF(¢) (see Remark following Theorem 1), noting that sup,_r{(1 —

5t =)/ = F®)} = 0,(1) by Theorem 3.2.1 of Gill (1980). Letting "ty
and then 71 | 0 gives the des1red conclusion. O

_,:—2+ {Trlz(t)[[ I_F() ]dF(t)>n

Proor oF THEOREM 2. (i) follows from Lemmas 4 and 5. To prove (ii), we
shall show that for every u < r and every a,

(417) P{n"V3(¢, 1 + &, 0(u)) <alzy,..., %.) =p P{N(0,0?) <a},

where

0'2_ Fz( )[[ F(t) ] dF(t)

/- ) [ L= F(s)
o To(?) f 1-F(2)

From (4.17) and Lemma 6()), it follows that lim , _,,, P{n~/2(¢, | + £, ,(u)) <
a} = P{N(0, 0?) < a} for every u < 7 and for every a. Comblmng this result
with Lemma 6(u) and Theorem 2(i) and noting that 02 — v as u 1 7, we then
obtain N(0, v) as the limiting distribution of n~1/2( [3)

To prove (4.17), let Z'(t) = I, _p.,250 J°@®) = L, _psi st ci—pa, <oy @0d define

] dF(t).

Ui = [ ]2 p(O{Zi(8) ~ E@(O)]22, -, 2,)]

+ [ { [ = F@) (o) ds/ (1 - F))

xd[Ji(t) — E(J(t)|x1, %))
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By (4.1) and (2.9), noting that X?_,(x;, — %,) =0

(4.18) 1= 7, 2 (5= %) Vs
i=1
Let G,(x;, 1) = Plc; — Bx; = tlx;). By (2.2), (2.3), (3.6) and (3.19),
. 1 ift<n,
(4.19) lim p, 4(£) = {o if t > 7 and F(r) < 1.

Conditional on x,,...,x,, the U,;(i = 1,...,n) are independent zero-mean

random variables with
2
—{—f;td(l ~ F(t)) + (1 - F(T))}2

[as n — «, by (4.32) and (2.9)]

Var(U,;|x,...,%,)

- E Jo—pz(1 — F(s)) ds}

{min(zi - Bxi, 'T) + I(ci—ﬁx,-<min(5,-,1)) 1-— F(C _ Bx)
i i

(4.20) _ _{ [ taF(e) + (1 - F(T))}z + [ £26,(x,, ) dF(2)

+ 72 [ Gy(x;,t) dF(2) - 72[”(1 — F(t)) dGy(x;,t)

_f_‘r;{t + ,/; 1-— F((t)) } (1 F(t)) dGi(xi’t)

F
[ {f 1—F((:)) }G(x,,t)dF(t)

The last equality can be shown by applying integration by parts to the last two
terms of the preceding expression and noting that G; is left continuous and

that

lim {t + f:(l — F(s))ds/(1 - F(t))} = (1 - F(r)) + f_’wde(s).

t—> —o

Moreover, the convergence in (4.20) is uniform in i < n and the last term in
(4.20) is bounded by (" .{//(1 — F(s))ds/(1 — F@t))}>dF(t) <  (cf. Remark

following Theorem 1).
Let N(8) = I, <4, <c,-pxy Fix u <7 and define

S (1 = F(s)) Py p(5) ds

Vulw) = [ GO =G rayo e LNV'®) ~ 2 daw),
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where C7 and C, are defined in Lemma 6. Then
n
(4.21) no(u) = X Viu(u).
. i=1

Conditional on x,,..., x,, the V,;(x) (i = 1,..., n) are independent zero-mean
random variables with

Var(V, (u)ly, ., 2,)

(1-F ) asl?
- s T o) ancs
(4.22) . TCso Pl - F AT
— L {Cn((:))] [f ( 1(_83;?(1;;"3(8) - Gi(x;,t) dF(2)

<4B(1 - F(u))_zf_:[f:(l — F(s)) ds + ItlrdF(t) <.

Since n"1L7_(x; — %,)?G{(x;,t) —p Ty(2), it follows from (4.18) and (4.20)
that

n

n~1Var(¢, i|xy,...,%,) =n""! Z (x;, — %,)° Var(U,;|xy, ..., x,)

=5 [ rz()[j F(t) }dF(t).

Since n 1L ,G(x;,t) =p [o(t) by (3.6), it follows from (4.21), (4.22) and
(4.16) that

(4.23)

n‘lVar(f,,,z(u)lxl,...,x )=n"" Z Var(V,,; ()%, ...,%,)
(4.24)
F(s) T(t)
[f 1-F() ] r()

It will be shown later that
2n~! Cov(gn 1 En o(u) 2V xn)

(4.25) Z:: (2; = %) E(U, Vi) s, - - - %1)

— F(s 2r2(¢
f f ( ) 1(2) dF(t).
—w|l 1 — F(t) To(t)
In view of (4.18) and (4.21), we can apply the central limit theorem for sums of
(triangular array of) independent random variables to conclude that the
conditional distribution of n~'/%(¢, | + §n o(u)) given x,,...,x, converges to
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the normal distribution with mean 0 and variance

(¢ )[ [ TFa F(t) ] dF(t)
«[ P1=F(s) |, ') .
_f_m[f TFD ds] 0 dF(t) = a2,

given by (4.23)—(4.25), thus establishing (4.17).
To prove (4.25), we note that similar to (4.20), for any u < r, as n — «,

E[U,V,(u)|xy,..., %, ]

J5-p={1 = F(s)) ds
1 - F(z — Bx;)

(4.26) E[{min(zi - Bx;,7) + (1-8,)
u Ci(t)[/(1—F(s))ds
" {f-m C.(t)(1 ~ F(2))

|

(dN(t) - Zi(¢) dA(t))}

|
|

uniformly in i < n. For ¢ < 7,

E[Ni(t) {min(z,- - Bx;,7) +(1-9;) fzzl_p_xi(;(; f(;i))ds}

(4.27)
- E[Ni(t)eilx;] = f_‘ sGy(x;,s) dF(s),

E[Z"(t){min(z,- = Bxi,7) +(1-6) f;i1_ Bj(l:(; Ii(;l?)ds}

—/:tmin(s,'r) d[(1 - F(s))Gy(x;,s)]

G OL
(4.28) u=t 1= F(u)

(1= F(m)Gi(x,7) = [ sd[(1 - F(5))Gi(x,9)]

(1 - F(u)) dGi(x;, u)

-[a- F(S))[fulthi(xi,u)] ds

8(1 ~ F(£))C(%:,t) + Gy(x,,1) [ (1 - F(s)) ds.

The last equality in (4.28) follows by applying integration by parts to the
second term of the preceding expression. In view of (4.27) and (4.28), the
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right-hand side of (4.26) can be expressed as
fu Cr(t)/i(1-F(s))ds
—»  Cy(t)(1 = F())

{tGi(fci’t) dF(t)

. dF
(4.29) —Gi(xi,t)[t(l - F(t)) + [t (1-F(s)) ds]__1 - ;'t()t)}

u CH(#)Gy(x;,t) [ [7(1 — F(s)) ds ]?
=f_m a0 [ =0 ] dF(t).

Since n 71X 7_(x; — %,)G,(x;,t) —p T\(¢), (4.25) follows from (4.16), (4.26) and
(4.29). O :

Combining Theorems 1 and 2, we obtain the following theorem on the
consistency and asymptotic normality of the modified Buckley-James estima-
tor B,,.

THEOREM 3. Under the assumptions (3.1)-(3.6) and (3.19), define £,(b) by
(2.10) and ¢,(b) by (3.8) and define the modified Buckley—James estimator as
a zero-crossing of &,(b) in the interval [—p, p] with p > |B|. Suppose that
A > 0 in the weight function (2.2) is so chosen that A < 5. Assume that

(4.30) lim n‘3/4{ inf Ig"n(b)l} =,
n— |bl<p,
[b—Bl=n"*

and that A # 0, where A is defined in (3.18). Then B, —B=o0(n"% a.s.
and n'/%(B,, — B) has a limiting normal distribution with mean 0 and vari-
ance

T(t) |\ [ /7 (1 — F(s))ds
I‘o(t)>{ 1 - F(t) }dF(s)‘

Proor. Putting vy = 1 — A(> A) in Lemma 3(i), we obtain that
(4.32) Cosup [{,(b) = £u(8)] = O(n®) = o(n¥*).

b,b’e[-p,p],
[b—b'|<n~1*4

Since 4\ < %, it follows from (8.10) that
(4.33) sup |£,(b) — £, (b)| = 0o(n%*) as.

|bl<p
In view of (4.30), (4.32) and (4.33),

P{¢,(b) does not have a zero-crossing on |b — | > n~

431)  a2f {I‘2(t) -

A

(4.34)
and b| < p for all large n} = 1.

From (4.33), (4.34) and Lemma 3(i), it follows that 8, = B + o(n~/%) as.
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Hence by Theorem 1(ii), given 0 < ¢ < 1, there exists n, such that P(Q,) >
1 —¢ for all n > n,, where

Q,- { sup  |£,(b) — £,(B) + An(b — B)| < £*max(n'/?, nlb — BI)

[b—Bl<n~1/%
and |4, - | Sn—m}.

On Q,,if |b — Bl <&~ 'n""/% then |£,(b)] > 3|Ale"'n'/? — |£,(B)| for all large
n and sufficiently small ¢. Since |3, — Bl < n~'/* on Q, and since g, is a
zero-crossing of £,(b), the desired conclusion then follows from the limiting
normal distribution of n~1/2%¢,(B) established in Theorem 2. O

ReEMARK. Note that condition (4.30) of Theorem 3 is satisfied if for some
6 >0,

(4.35) liminfn-0( inf  |2,(8)[} >0,

n—x n=r<|b—-Bl<é
(4.36) liminfn-l{ inf |g,,(b)|} > 0.
n—o |bl<p,|b—Bl=8

Suppose that F(7) < 1. Then by Lemma 3(iii), {,(b) ~ —An(b —B)as n -
and b — B. For A # 0, this implies that (4.35) holds for all sufficiently small
8 > 0. When (x;, c;, ¢;) are i.id., n=¢,(b) - {(b) as n >  under (3.1)-(3.5),
the convergence being uniform in |b| < p, where

[(b) = E((x1 - Bx){Elmin(er, ¢, - ) - (5 - B

_[_w h(t) dP[e, + (B — b')x1 > ¢, — bx, > t|x1]}),
o s E[f(u+ (b—-B)xy)P(c; > u + bxy|x;)]
h(t) = f, exp{—ft E[(1 - F(u + (b—B)x,))P(c; > u + bayxy)]

Moreover, {(b) is continuous for |b| < p. Hence if {(b) # 0 for b # B (with
|b| < p), then (4.36) holds for all 6§ > 0.

du} ds.

5. Extension to multiple regression models, asymptotic efficiency
of the modified Buckley-James estimator and concluding remarks.
Suppose that the B and x; in (1.1) are replaced by (p X 1) vectors B =

(By,...,B,)T and x; = (x;,,...,x;,)7 and that by Bx; we mean B”x,, where

BT denotes the transpose of B. Let X, = n"'L7_,x; = (Z,,...,%,,)". As in

Section 1, the observations are (z,,8,,x7), i = 1,...,n, where 2, and §, are
12 13 13 12 12

defined in (1.2) and (c;, x7) are independent random vectors that are indepen-
dent of {¢;}. For b = (b,,..., b,)7, define y,(b), c,(b) and 2,(b) by (1.4) in which
bx; refers to b”x; and define scalars Z,(b,?), J,(b,?), N, (b, ) and vectors

Z(b, t), J*(b, t), N*(b, ¢) as in (2.6). We also use |a| to denote VaTa for the
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vector a. Finally define the modified Buckley-James statistics ¢, (b) =
(£,1), ..., &,, )T by (2.10) and define {,(b) by (3.8). As before, it will be
assumed that an upper bound p > max; _ ,IB,| is known so that the b; can be
restricted to [—p, p]. The multivariate version of assumption (3.6) takes the
following form:

For j,k €({1,..., p} and for t < F~1(1),

n
n~tY) P{ci -BTx; > tlxi} —-p Io(2),
i=1

(5.1) nTt Y (% - fnk)P{ci -B7x; > tlxi} -p LL(2),
i=1 .

n
nTt Y (% = %,,) (% — Xp) Ple; — BTx; > t‘xi} —-p [p(2),
i=1
where T(¢), I,(¢) and T,
FEDTL(E) > 0}, as in (3.18).
Following James and Smith (1984), we shall define the multivariate
Buckley—Ja.mes estimator B, as a minimizer of |£,(b)l. By using the same
arguments in their proofs, Theorems 1-3 can be extended to the multiple
regression setting. This is the content of:

(¢) are nonrandom functions. Let 7 = sup{t: (1 —

THEOREM 4. Assume (3.1)-(3.5).

(i) Suppose that A > 0 in the weight functzon (2.2) is so chosen that A < %.
Then supy <, .. 1b,1<p ™ '1|§n(b) — £p(b)| =5 0.

(ii) Suppose that 0 < A < + and that (5. 1) and (3.19) also hold. Then with

probability 1,
(52) £a(b) = £,(B) — An(b — B) + o(max{n'/?,n|b - Bl})
. uniformlyin |b — Bl <n™*,

where A = (a;;); . ; 1 <p is defined by
. L)1) | (1~ F(s)) ds
au= [ { (8 = To(2) } 1-F(2)
f'(2) f(t)
X{ o T 1-F@

Moreover, n~Y%_(B) converges in distribution to a normal random vector
with mean 0 and covariance matrix V = (v;;); . ; 1 <, defined by

r T()Tu(2) )\ ( f7(1 = F(s))ds\®
(5.4) vjk=[_w{r}k(t)_ J(rj(:)( )}{f (I_F((st;) s} dF ().

(iii)) Suppose that 0 <A < & and that (5.1) and (3.19) hold. Assume
furthermore that the matrix A defined by (5.3) is nonsingular and that (4.30)

(5.3)

} dF(t).
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also holds. Then B, — B = o(n='*) a.s., and n~ % B, — B) has a limiting
normal distribution with mean 0 and covariance matrix A~'VA™L

We now apply Theorem 4(iii). to study the asymptotic efficiency of the
modified Buckley—James estimator Bn To begin with, consider the univariate
case p = 1. Application of the Schwarz inequality to the integral in (3.18)
defining A gives

. T2(¢) ) [ [7(1 - F(s))ds)>
55 AzSDf_m{FZ(t) - 1"08}{/ (1 —F((i;) s} aF(),
' . )\ () . f@) \°
D=[_ { T,(¢) - F(t)}{f(t) + 1—F’(t)} dF(t).

Consequently, the variance (4.31) of the limiting normal distribution of
n'/%(g8, — B) is bounded below by D~1. The inequality in (5.5) is strict unless
there exists a # 0 for which

/(1 —F(s))ds f'(?) f(?)
1-F() =a{ 70 + 1—F(t)} a.e. (F).

When f(¢) = 2mo?) 2 exp(— 2(t — u)?/0?), the normal density, and 7 = o,
(5.6) holds with a = o2 Hence in the normal case with 7 = «, the variance of
the limiting normal distribution of n!/%(3, — B) attains the lower bound D~ '.
The lower bound D~! for the asymptotic variance of the modified
Buckley—-James estimator derived from the Schwarz inequality in (5.5) is in
fact an asymptotic lower bound for the variances of the limiting normal
distributions of regular estimators [cf. Begun, Hall, Huang and Wellner (1983)],
for the semiparametric problem of estimating B in the censored regression
model (1.1)-(1.2) when the common distribution of the ¢; and the distribution
of the censoring variables c¢; are unknown. In the case of iid. (c;, x;), the
general theory of asymptotic lower bounds in semiparametric estimation devel-
oped by Begun, Hall, Huang and Wellner (1983) can be applied to the present
problem. More generally, for i.i.d. (c;,x7) in the censored multiple regression
model with p-dimensional vectors S and x;, define D = (d ), 1<, bY

. L()Tu(t) \ [ F/(2) (&) \*
f Tin(2) - To(0) }{ 0 +1_F(t)} dF(t),

where T}, T, and T, are given by (5.1), the results of Begun, Hall, Huang and
Wellner’ (1983) show that the limiting distribution of n!/%(T, — B) for a
sequence of regular estimators {7} is a convolution of N(0,D~ 1) with some
distribution. Extension of this theory to the setting of Theorem 4, in which
(c;,xT) need not be identically distributed, together with estimation methods
that attain the asymptotic N(0, D~!) distribution, will be presented elsewhere.
Note that if (5.6) holds for some a # 0, as in the case of 7 = © and normal f,
then D~! = A~'VA~! equals the covariance matrix of the asymptotic distribu-
tion of the modified Buckley—James estimator B in Theorem 4(iii).

(5.6)

(5.7) dj; =
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APPENDIX A

Throughout the sequel we shall let p, ,(s) = p,(n"'EZ(b, s)) and
Pn.o(8) = p,(n"'Z,(b, ). .

Proor oF LEMMA 2. By Lemma 4 of Lai and Ying (1988), with prob-
ability 1,

Z (b,s) 2cn'™* = EZ, (b,s) >cn'™*/2,
a1 (5,9) (b,5) 2 et/
EZ,(b,s) 2cn'™* = Z (b,s) = cn'™*/2

for all large n. From (3.1), (3.3), (3.5), (8.7) and the mean value theorem, it
follows that

{ 1-F,b,s) 1-F,(B,s)
sup :
(A.2)

1-Fb,t) 1-FBt)| "

<s,b-Bl<n?,

1-2

min(EZ,(b,s), EZ,(B,s)) = e } =0(n" ") as.

Note that F,(B, s) = F(s). Making use of (A.1), (A.2) and an argument similar
to the proof of Theorem 3 of Lai and Ying (1988), we obtain the desired
conclusions (3.9), (8.11) and (3.13).

Since 1 — F(n?*) < n‘z"/,,At2 dF(t) = o(n=2*) by (3.2), we can apply (3.1) to
conclude that sup, ., n~'Z,(b,n*) < 1 — F(n* — Bp) = o(n~?"). Therefore by
Lemma 4 of Lai and Ying (1988), P{sup, ., Z,(b,n*) <cn'~* for all large
n} = 1. From (3.4), it follows that T%_,Plinfy _,,;., 2:(b) < -nt <
r%_in max;_, Plc; > n* — Bp} + nP{e; > n* — Bp}] < ». Hence, applying
the Borel-Cantelli lemma, we obtain that P({,) = 1, where

Q, = { inf 2,(b) > —n* for all large n}
|bl<p,i<n

(A.3)

n{ sup Z,(b,n*) < cn'~* for all large n}

[bl<p

On Q,, for all large n, p, ,(t) = 0 for ¢ > n* by (2.12) and therefore (2.10)
reduces to the desired representation (3.14) for £,(b). Similarly, making use of
(3.4) and the fact that n~'EZ (b, n*) = o(n~2%), it can be shown that (3.8) can
be rewritten as (3.15). For —n* <t < n*, define

%Aﬂ=£—%4§%ndﬂa,

F,(b,
Un,p(8) = f W((bj))p" 5(8) ds.

(A.4)
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It follows from (1.6) [cf. Appendix 4 and Lemma 3.2.1 of Gill (1980)] that
au, o(t) = —bn () dt

dk, 4(¢) i A
T )@ ot ) P Pale) s
dN,(b,8) cp1—F, ,(s)

BPr,5(s) ds.

P+ e T

Therefore applying integration by parts to both integrals in (8.14) gives for all
large n,

£u(b) = —n*B, y(~1")Z3(b, —n*) + U, ,(~n")J3(b, —n*)
+ ™ Bus(8)(Z3(b,8) = JE(b, 1)} dt

AN
+/n n( )
- Z,(b,t)
Similarly, applying integration by parts to (3.15) gives
gn(b) = 8n(b) - n/\pn,b(_n)‘)EZ:(b’ _nA) + un,b( _n/\)EJ:(b’ _n)‘)

(A.5)

Un,b(t) dNn(b’ t)’

(A.6) * f_n;l’n,b(t){EZ:( b,t) — EJ*(b,t)}dt

o EJE(b,t)
f_,,A EZ,(b,t)
By (4.7) and (2.17) of Lai and Ying (1988), for every ¢ > 0,
sup ~ Iﬁn,b(s) _ﬁn,B(s) _pn,b(s) +pn,[3(s)|
(A7) a0
=0(n—(1+7)/2+2).+s) a.s.

Moreover, making use of (2.2) together with (3.1), (3.3), (3.5) and Lemma 4 of
Lai and Ying (1988), it can be shown that

Sup | P, 4(5) = Pae(5)| = O(n*7),

n,b(t) dENn(b’ t)‘

(A.8) A —1/2+A+
sup [P, 5(5) = Pn,s(s)| = O(n7¥/2*4*¢) as.

|bl<p
—o<sg<w

Combining (3.11), (3.13) and (A.2), (A.7), (A.8) via the identity
a1b; —azby —agzby +ab, = (a; —a, —az+a,)b; +ay(b; — by — by +by)
+(az —ay)(b; — by) + (a3 —ay)(by — by),
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and making use of (2.12) and (A.1), we obtain that

1-F, (s), 1 — F,(b,s)
ml’n,b(s - mpn,b(s)

nA

sup
1b—Bl<sn~7, t
ltl<n?

(A.9) 1- B, 4(s) 1 - Fy(B,s)

C1-F, (1) Prp(s) * 7 —F,(B,t) Pr.p(8) |5

— O(n—(1+'y)/2+4/\+s + n—1/2—~/+6/\+e + n—1+7A+e) a.s.,

nA

sup
(A.10) lel<p, "t

ltl<n*

1- Fn,b(s) N 1- Fn(b’ 5)

1_—%(7)17",1,(8 - ml’n,b(s) ds

— O(n—1/2+4/\+s) a.s.,

nh 1 —Fn(b,s) 1 _Fn(ﬁ,S)
(A.11) Ib—itl:‘?,'/t- 1-F,(b,¢) Pn,5(8) 1-F,(B,¢) Pr,p(8)
ltl<n*

= 0(n™7*3%),

In view of (2.12), U, ,(¢) = 0if Z,(b,#) < cn' ™ and u,, ,(¢) = 0 if EZ,(b,?) <
cn' . Moreover, by (3.1) and (2.6), JZ/Z, < 2B. Hence, by arguments similar
to those in the proof of Theorem 3 of Lai and Ying (1988), we obtain from
(A.4)-(A.6) and (A.9)—(A.11) the desired conclusions (3.10) and (3.12). O

ds

Proor oF LEmmA 3(i). The desired conclusion follows from (A.6), (A.8)
together with (A.12) and (A.14) below. By (3.1), (3.5) and the boundedness of f
implied by (3.3), as ~ - 0 and nh — o,

sup  n Y|EZ,(b,¢t) — EZ,(¥,¢)| +|EZ(b,t) — EZX(V,t)|
|6'—bl+|t' —tl<h
(A.12)
+|EJZ(b,t) — EJZ(¥, )|} = O(h).

As shown in the proof of (3.4) of Lai and Ying (1988), there exists K > 0 such
that

sup
16’ —bl<n~7,

(A.13)
< K( sup |h(s) |)n1‘7
S

" h(s)d(EN,(b,5) — EN,(¥,5))

for all bounded functions h. Noting that y > A and that u, () =0 if
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EZ (b,t) < cn'™*, it can be shown from (A.4) and (A.11)-(A.13) that

+ nT1EJ*(b,¢)

Sup f_,,a n1EZ(b,?)

|6'=bl<n™”

un,b(t) dENn(b’ t)

(A.14)
w 0BT

f ,\n—lEZ (b' t) Unp, b’(t) dEN, (b' t)

O(n'~7**). D

Proor or LEmma 3(ii). Let ¢, = inf{t: 1 - F(t) =clb — Bl/2}. Since by
3.2),

o o 1/2
f(x) Ifx f'(t) dtl < {/x (F/F)? dF} (1 - F(x))"?

o((1 - F(x))"?)
as F(x)11 and since 1 — F(¢,) = c|b — B|/2, we obtain by (3.1) that

(A.15)

n

1
sup n"'EZ,(b,t,) < sup ~ Y {1-F(t, + (b — B)x;)}

n i=1
cldb - Bl
-2 o -p)
2
as b - B, and therefore by (2.12),
(A.16) sup Pn,5(u) =0 foralllarge n.

b-Bl<sn ™ uxt,

Let Gt) = Plc, — bx, > tlx}). By (2.6), (3.7, (3.8) and (A.16), {,(b) =
{0 b —B,b) + ¢, o(b—B,b) for |b — Bl < n™* and all large n, where

(A.17)

{n,l(a’ b) = _f_tbmtd[l’n,b(t) iIE{(xi - fn)Gib(t)[l - F(t+ axz)]}]’

e | 1t s L2 E{G;y(u) f(u + ax;)}du
{n,2(a, b) = _f—oo('/; eXp{— ; Z?=1E{Glb(u)[1 —F(u + axl)]}}

i=1

XPn,5(8) ds) Zn: E[(x; - %,)(1 - F(t + ax;)) dG,,(t)].

Moreover, the same argument as that used in the proof of Lemma 1 shows
that £, 0,b) + ¢, 5(0,b) = ’

Making use of (3.1), (3.3), (3 4), (A.15), (A.17) and Taylor’s expans1ons for f
and 1 — F, it can be shown by arguments similar to those given in the
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Appendix of Lai and Ying (1989) that as b — 8,
{n,Z(b - ﬁ’ b) - {n,Z(O’ b)

=(b- B)E{f_t:(/:b(l - F(Qs))pn,b(s) ds)

@) &
F(t) Z (x n)xi dGlb(t)

“ (i o(f(w) | f(u) \Ti.ExGy(x) dF(x)
) ”‘F(s”[ft(f(u) * 1—F(u)) L7 EGoy(u) 1—F(u)]

XPn,p(8) ds Z:ll(xi —%,) dGib(t)} +o(n(b - B)),

uniformly in 7. As in (A.15), f(t) = O(F(¢))'/?) as F(t) — 0, and therefore by
(8.2), tf(t) = O({t?F(#)}'/*) - 0 as t —» —. Noting that L?_,(x;, — X,) = 0, we
can apply integration by parts to the first integral and interchange the order of

integration in the second integral ([’ _.[%,[5_, = [k _Jf, [ _.) to rewrite
the previous expression as

£,2(b = B,5) = £,,(0,b) — o(n(b - B))
- (-PHEL { [ (5 = 22 Ga()[Pa(t) = (O] (8)

(A-18) +f_t:(xi —x,)x,Gp(u)d, o(u)

iGip(1) Z EG;b(u)]dF(u)}

i=1

where ¢, () = {[o(1 — F(s))p,, ,(s) ds) ') /f(®) + f(&)/(1 — Fe)]/(A —
F(#)). In view of (3.3), integration by parts and (A.17) give that

Lni(b — B,b) = £, (0,b)

[ as) T B{( = £) GO F(e) ~ B + (b - B))])

~(=8)[* o) T Blas(x - £)Gu(D}(0)

o(n(b - B)?).
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Combining this with (A.18) and the identity ¢, (0, b) + ¢, 50, ) = 0 gives
{n,l(b - B, b) + gn,2(b - B, b) + o(n(b - B))

n

= —n(®-8)[" w,,,b(t)E{n'-l L (% = %,)"Gi(t)

i=1

(A.19) 11T (%, — £) Gu(8)F,
i=1

< Li1Ex,G(2)
—(n U Y (2 - E,)Gay(t) | SR (e,

[ igl( %) Gl )] L7 1EG,u(t) ()
By (3.6) and (38.19) together with (3.1) and (3.5), as n - wand b - B,

pn,b(t)—)lift<7,and "‘)Oift>TandF(T)<1’

n~l Y G(2) —=p To(2),
i=1

n

n! gl(xi —X,)G(t) —p Tu(2),
(A.20) -

n

o g’l(xi - %,)°Gy(t) >p Ta(2),

n

n 1Y BxGuy(t) =n ' Y E{(x; — £,)Gip(t) + T,Gin(8))

i=1 i=1

=TIy(t) + Ex,Ty(t) + o(1),

where the last equality follows from the dominated convergence theorem since
lx;] < B. From (A.19) and (A.20) and the definition of ¢, ,(¢), Lemma 3(ii)
follows. O

Proor or LEMMA 3(iii). Since F(7) < 1, (3.19) implies that for every £ > 0,
there exists & > 0 such that sup,_g .5 ;5.4 Pn,s(u) =0 for all large n.
Using this in place of (A.16) and replacing ¢, by 7 + ¢ with F(r + ¢) <1 in
(A.17)-(A.20) give the desired conclusion. O

APPENDIX B
As in Lemmas 4 and 5, we shall denote ZX(B,t) by Z:(t), etc.

Proor oF LEMMA 4. Applying Lemma 1 with I(¢) = p, z(¢) — p, g(¢) and
making use of an argument similar to the proof of (3.14) and (3.15) in
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Appendix A, it suffices for the proof of Lemma 4 to show that

_n—1/2{f_";td[(ﬁn,,3(t) = Pa,p(8))(Z5(2) - EZi(t))]

- F(s
" [[ = Fit)’ p,,,,;(s)—p,.,,,(s))ds]d(J:(n—EJ::(t))} -

Integration by parts then reduces the problem to showing that

2 [ (Bas®) = B s(0)
x[(Z:(t) — EZ(t)) — (J3(t) — EJZ(t))] dt

(B.1) +f_";[f,"‘<1 — F(5))(Bna(5) = Pr,a(5)) ds]

X (J3(t) — ET3(t))(1 - F(t))_zdF(t)} -

From (2.2), (2.3), (2.12) and (A.1), it follows that with probability 1, for all
large n,

Sttlp Iﬁn,B(t) - pn,B(t) |

= sup|p,(n7'Z,(2)) — pu(nEZ,(2))]
(B.2) !

< n*(sgplp’(x)l)

xsup{n~!|Z,(t) — EZ,(t)|:cn'*/2 < EZ,(t) < 2(c + 1)n**}.
By Lemma 4 of Lai and Ying (1988), for every ¢ > 0,

sup |Z,(t) — EZ,(t)| = O(nO~Y/2%%) as.
EZ,(t)<2(c+1nt=*

(B.3)
SuP{IZx(t) — EZ;(2)| +|J3(¢) — EJ; ()|} = O(n'/?**) as.

Since [;_psysen—t/al — F(t))‘2 dF(t) = O(n*) and [°_|¢| dF(t) + [ -

F(s))ds < o, we obtam the desired conclusion (B.1) from (B.2) and (B.3),

noting that 32 /2 < 3 and that 1 — F(¢) > n"EZ,(¢). O

Proor oF LEMMA 5. For the martingale structure of W,(¢) and the formu-
las (4.9) and (4.10), see Gill [(1980), pages 26-27 and 34-38]. To prove
(4.11), first note that since Z,(¢) = L]_1linince, c,—psp=y has expectation
1 = F@)C(2), sup, . r{(1 — F@))C,(8)/Z,(¢)} = O,(1), by Theorem 1.1.1 and
Corollary 1.3.1 of van Zuijlen (1977). Moreover, since (1 — F(£))1+9/ 2Cl2(t)
is nonnegative and nonincreasing in ¢, we obtain by Lemma 2.9 of Gill (1983)
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that for every a > 0,

P sup (1= F(6) 7200 Wi 1) = 20)
t<T,

4

< P{ sup

t<T,

>l

' (1= F(s)™P2Ck2(s) dW,(s)

(B.4) r, (1 = F(5))**2C,(s)

<a! +P{[_m Z05)

1 —Fn,ﬁ(s =) 2
X[ 1- F(s)

dF(s)
1-F(s) =

a}—>0 as a — x,

where the last inequality follows from (4.9) and Lenglart’s inequality [cf. Gill
(1980), page 18].

To prove (4.12), let 1,(¢) = p, z(¢) — p,,, s(t) and use integration by parts to
obtain from (4.8) that

b= [" )0 (1= B p(8) ATz [M (1 = F()py, p(5) ds dW,(u)

A » dd;
@5 -/ ww{[ a —F(s))zn(s>ds}——1 - I;I;f) 5

w [ e dX()
+f_nA{f_nAm;}Wn(u)(1 ~ F(u))(x) du.

Letting s, = sup(s: EZ,(s) > cn'~* /2}, it follows from (B.2) that {,(s) = 0 for
s > s, and all large n. By (4.11), sup,_, IW()I(1 — F(s))* = O,(n~1~2/%)
for every £ > 0, and therefore

(B.6) sup |W,(s)| = O,(n~@~2/2+%) forall 6 > 0,

s<s,

noting that 1 — F(s) > n"'EZ,(s). In view of (3.4), there exists ¢* with
F(t*) <1 such that inf,,, n7'C,(#*) > 0. Since dN,(s) < —dZ,(s) and
ldJZ(u)| < —2BdZ,(u),

jj;(1 — B, () |ddE(w)|

S, u dZn s)/n
(B.7) =0(f exp(— —(L)IdJ,’f(u)l)

—w —w Z,(8)/n
s, dZ,(u)/n
—w Zy(u)/n
by the definition of s, and (A.2). Noting that sup, _ .« |W,(w)| = O,(n"'/2) by

= O(—n ) =0O(nlogn) as.,
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(4.11), that sup, |1,(s)| = o(n~1/2+/2%¢) a 5 for every € > 0 by (B.2) and (B.3)
and that [%(1 — F(s))ds < », we obtain from (B.5)-(B.7) that

bun= |7 (1= Fup®) i)
(B.8) X ["(1 = F(5)) by, o(s) dsdW,(x)

= 0,(n®/%*) for every & > 0.

Since 3A < 1, (4.12) follows from (B.8) and (A.3) [with P(Q,) = 1] if it can be
shown that

n=1/2 f_”;{fu_(l - ﬁ'n,,;(t))_ldef(t) - Ef‘(xi - En)I(Ci—Bxizu)}

(B.9) o -
< { [ = F@) s p(5) ds| aWi(w) =5 0

To prove (B.9), note that since dEJ*(¢) = (1 — F(¢)) dE[L7_(x; —
fn)I(c,-—Bxi > t)]’ :

(B.10) f“—(l - F(t))_ldEJ,’f(t) =K };l(xi - En)I(ci—px,-zu)}

Since (1 — F, ;&)™ — QA - F@) ™! = W, (t)/(1 — F, ,(t), it follows from
(B.6), (B.7) and (B.3) that

[ (1= F, i(0) T daz(e) - [ a- F(t))_ldEij(t)’

sup
u<s,|”—®
u- Wi(?) Ja(u—) — EJ7(u —)
= sup — =T dJE(¢t) +
u<s, '/—m l_Fn,B(t) ( ) l_F(u)

f J"(t) — EJx(t)
- F(t))*
= 0,(n'/2***¢) for every £ > 0.
Since p, 4(s) =0 for s >s, and [2(1 — F(s))ds + [“.u® dF(u) < «, it fol-
lows from (4 11) that
_ _ u— 2
n'lanA{/u (1-8,,0) arz) - [* (1 —F(t))'ldEJ,f(t)}
n* 21_An,(u_)2
(B.11) x{ju (1 —F(s))pn,ﬁ(s)ds} {—IT;(T)—}

y dF(u)
(1= F(u))Z,(u)

dF(t))

-p 0.
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Since {W,(¢), #(t),t < T,} is a martingale with predictable variation process
(4.9), the desired conclusion (B.9) follows from (B.10), (B.11) and Lenglart’s
inequality. O
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