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EDGEWORTH EXPANSION OF A FUNCTION
OF SAMPLE MEANS!

By Z. D. Ba1 anp C. RADHAKRISHNA Rao

Temple University and Pennsylvania State University

Many important statistics can be written as functions of sample means
of vector variables. A fundamental contribution to the Edgeworth expan-
sion for functions of sample means was made by Bhattacharya and Ghosh.
In their work the crucial Cramér c-condition is assumed on the joint
distribution of all the components of the vector variable. However, in many
practical situations, only one or a few of the components satisfy (condition-
ally) this condition while the rest do not (such a case is referred to as
satisfying the partial Cramér c-condition). The purpose of this paper is to
establish Edgeworth expansions for functions of sample means when only
the partial Cramér c-condition is satisfied.

1. Introduction. Suppose that {Z} is a sequence of iid (independent and
identically distributed) random k-vectors and H is a real-valued Borel measur-
able function defined on R*. Consider the statistic

W, = Vno~Y(H(Z,) - H(n)),

where

M=

— 1
Z, =—

nj
and o > 0 is a normalizing factor which will be specified later.

It is well known that many statistics have the form H(Z), for instance, the
sample mean, variance, correlation coefficient and studentized ¢-statistic and
so on. If Z, has finite second moment and H is continuously differentiable in a
neighborhood of its mean p, then W, is asymptotically N(0, 1) if we choose
(1.1) o? =131,
where 1 = ({,,...,1,) = grad[H(p)] # 0 and 3, is the covariance matrix of Z,.
A fundamental contribution to the Edgeworth expansion of W, was made by
Bhattacharya and Ghosh (1978) and Bhattacharya (1985). Recently, Hall
(1987) considered the Edgeworth expansion of student’s ¢-statistic under
weaker moment conditions. In all these papers, a basic assumption is made
that the underlying distribution (or a certain number of convolutions of itself)
has an absolute continuous component in its Lebesgue decomposition. How-
ever, this assumption is not satisfied in many practical situations. For exam-

Z,= (Zy,....Z), w-EZ,
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1296 Z.D. BAI AND C. R. RAO

ple, in the area of survival analysis, one or more components of Z, are
counting numbers (such as those dead or alive at a given time). Babu and
Singh (1989a, b) considered such a case and got a one-term Edgeworth expan-
sion. In this paper, we shall consider the general form of Edgeworth expansion
of W,. We do not assume the Cramér c-condition on the distribution of Z, as a
whole; instead we make assumptions on the conditional c.f. (characteristic
function) of only one component of Z,. It is easy to see that this assumption is
generally weaker than the Cramér c-condition on the joint distribution of all
the components of Z.

Suppose o2 is chosen according to (1.1) and denote by F, the distribution
function of W,. In the present paper we shall prove the validity of the
Edgeworth expansion of F, under the following assumptions.

AssuMPTION 1. H is m — 1 times continuously differentiable in a neigh-
borhood of p, where m > 3 is an integer.

AssumpTION 2. 1=(I,,...,1,) = gradlH(pn)] # 0. Without loss of general-
ity, we assume that [, > 0.

AssuMPTION 3. Z; has finite mth moment, where m > 3 is a known

integer.

Write
(1.2) v;(2) = v;(t, Zaj» - - Zy;) = E|exp(itZ, )|, . .., Z,],
where Z;;, Z,;, ..., Z,; are components of Z;.

ASSUMPTION 4.
(1.3) limsup E|v,(¢)] < 1.

|| >

Let
a;k = E(Z].J|Z2J’ ceey ij),

B = Var(Z1j|Z2j, cees ij),

B? = Zlﬁ; and B = EB7}.
=

REMARK 1.1. From Assumption 4, it is not difficult to prove that g > 0,
where B = EB}.

In this paper we prove the following main theorem.

THEOREM 1. Suppose that the Assumptions 1-4 are true. Then we have
(1.4) |F, — U,,|l = sup|F,(x) — U, ,(x)| = o(n~m=2/2),
x
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where

m—2
Una(2) = ®(x) + L n/Q(x)¢(%),
. v=1
®(x) and ¢(x) are the distribution and density functions of the standard
normal variable, Q,(x) is a polynomial of degree not exceeding 3v whose
coefficients are determined by the first v + 2 moments of Z, and the partial
derivatives of H at p.

As an example, we give the expression of the term of order O(n~1/2) as

follows: The coefficient of n~1/2p(x) is

(1.5) ~ (20) Y1, EZ2 + 21,,EZ,, Zy, + 1,,EZ2)
and the coefficient of n™1/2H,(x)¢(x) is
— 307361y, EX(1, 22 + 1,21, 25,) + 613, EX(1,21,2,, + 1,23,)
(1.6) +1203, E(1,Z3 + 1,212 E(1, 2112y + 1,23)
+E(1Zy; + 1,25)°).

REMARK 1.2. If the Assumption 4 is not true, but the conditional character-
istic function of some linear combination aZ';, with al' # 0 satisfies a similar
condition as the Assumption 4, then Theorem 1 is still true. The proof of this
easily follows from that of Theorem 1.

REMARK 1.3. It may be noted that the structure of the expansion obtained
by us is the same as that of Bhattacharya (1985), but under a weaker condition
to cover a wider set of practical situations, as in survival analysis [see, for
instance, the recent paper by Babu, Rao and Rao (1989)]. We hope to consider
an application of Theorem 1, in a forthcoming paper, to obtain the asymptotic
expansion of the distribution of a statistic connected with the Kaplan—-Meier
estimator in survival analysis. It is also hoped to develop some formal rules for
obtaining the expansion as was done by Bhattacharya (1985) and Chibisov
(1972, 1980c). _

Some earlier contributions which are related to our discussions on H(Z,)
are the results on stochastic expansions given in review papers by Pfanzagl
(1981) and Chibisov (1984) and those of Chibisov (1980b) where one-term
Edgeworth expansion is obtained under only the nonlattice condition on the
first component. Some other relevant references are Babu (1990) and Bai and
Rao (1989).

2. Lemmas. To begin with, we present some notations for the formal
Edgeworth expansion. Let X, X,,..., X, be independent random variables
with mean zero and variances o7, j = 1,2,...,n. Write B2 =X"_,0? and

denote by F, the distribution function of B, 'L”_,X;. Assume that the mth
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moments of X’s are finite and denote by y;, the vth cumulant of X i
v=3,. mJ—12 ., n. Write

(2‘1) Avn = p(v_z)/zB;V Z Yjv9

Jj=1
(2:2) Q,.(x) = E (-1)"" ¢+ (x)h,,,
(2.3) = —<o(x)z yr20-1(%) B,

where

k;
hvs=hvs(A3n,' v+2 n) Z ].—I( z)_l((ll_::zz’;') ’

the summation ¥’ running over all possible nonnegative integers with the
restrictions
ki+ky+ - +k, =5,
ki+2ky + -+ +vk, =v,

®(x) and ¢(x) are distribution and density functions of the standard normal
variable and H,(x) is the Chebyshev-Hermitian polynomial of degree v. Then
the formal Edgeworth expansion of F, is defined by

m-—2
Upn(x) = ®(x) + L n7772Q,,().
v=1
Then we have the following lemma.

LemMMA 1. With the above notation, assume that there are positive constants
a, < a, such that

na, < B? < na,,.
Then, we have
”Fn - Umn" = SupIFn(x) - Umn(x)l
N x

< C(m){ ntBriin 71 ]'[llvnj(t)ldt},
e

A <ltl<A,

where

n
A,,=B;™ Y E|Xj|"‘1[|Xj| > \/E],
j=1

Bp.in =By Y EIX, ™[] X,| < Van],
Jj=1
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A, is a constant such that E}‘_IEIXJ-IZI[IXJ-I >1/12A,1 < B2/8 and

Ay=(B,B,.1,) "

I[ A] denotes the indicator functwn of the set A, v, (t) is the characteristic
function of X;I[|X;| < Van], a is a positive constant and C(m) is a constant
which may depend on the distribution through a, a, and s, only.

Proor. This lemma can be proved by following the same lines as in Bai
and Zhao (1986). One only needs to note that when |¢| < A,B,,,

TT[o.,(t/B.)| < exp{~ £¢7,

j=

which has been proved in page 42 of Hall [(1982), page 42]. Therefore, the
quantity of (B, B ,)~! used in Bai and Zhao [(1986), page 19] can be replaced
by A;. O

LEmMMA 2. Suppose that y(x) = V(x/b), where V is the standard normal
distribution function or its derivatives and b # 0 is a constant. Then we have

* — mn( ) —-2m m+1 Bm+1,n(x)
2 (B, = Uy )(o)] = OOm) | 720 + (72 o™ ) 28,

where C(m) is a constant depending on m only and

A(x) =B;™ Z E|X;|"I[|X;| > B,(1 +Ix))],

j=1

m+1 n

(x) = B;™1 Z E|X;|""I[|X;| < B,(1 + lx])].
Jj=1

where § * F denotes the convolution of the functions ¢ and F.

The proof is given in Bai (1989).

LEMMA 3. Suppose a and b are nonzero constants. Then we have
a*b!

o (x —by) x
(O] PN (O) = (G )]
f_wq) ( o )dcb () (a2 + bz)(k+z)/2q) (\/az + b2 )

Proor. Noting that ®®((x — by)/a) = a*(d*/dx*)®(x — by)/a), the
lemma follows by direct computation and the details are omitted. O

LEmma 4. Suppose X, j = 1,2,...,n, are independent random variables
with mean zero and variances of. Write B =17 0% and define Y; =
X1 [Ix jl < aB, ], where a > 0 is a constant. Then for each integer m > 0, there
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is an absolute constant C(m) (which may depend on a) such that
n m
j=1

E < C(m).

Proor. The proof of this lemma can be found in Lemma 1 of Bai and Zhao
(1986) or in Corollary 14.4 of Bhattacharya and Rao (1976). O

Lemma 5. Suppose that {X;, j =1,2,...} is a sequence of iid random
variables with mean zero and finite mth moments and m > 3 is an integer.
Then for any 3 < b < a < 1, we have

p{ 5 X,
Jj=1

The proof is routine using the truncation technique and applying the
Bennett inequality to the sum of the truncated variables. The result also
follows from Corollary 17.12 of Bhattacharya and Rao (1976) or the arguments
contained in Nagaev (1979) and Chibisov (1980a).

> en"} = o(n"bm=2),

LEMMA 6. Suppose that {(X;y,..., X;,), j=1,2,...} is a sequence of iid
random p-vectors with mean zero. Suppose that X,,, ..., X,, have finite second
moment and that X, . ,,..., Xy, have finite m/2 moment, m > 3. Then for
any B; > 0 and for any integers a;,i = 1,...,p, suchthat y =a,,; + *** +a,
is even or is not equal to (m — 2) if odd, we have

@

p 1 r
(24) @, =EJ]|=X X;;| I[A]l <Cn~*/3(n""/2 + o(n~("~2/2)),

i=1 nj=1
where A={X;I<ynB;, i=1,...,s |X;|l<nB,, u=s+1,...,p, j=
1,...,n}, a = a; + -+ +a,, and C is a positive constant.

PROOF. As an illustration, we only give the proof for the case where s = 1,
p=2,B;=1,j=1,2. For ease of notation, redenote a = a;, y = a,, X; = X,
and Y; = X;,. Then for any even integers a and vy, we have

LY,
Jj=1

Led Y

E I|X;| <Vn,|Y;| sn,j=1,2,...,n]

n
Y X;
j=1

T S
(2.5) < Z*nT"S*Kt:]_IllEX{'tI[IXll < vn]| ];IIIEY{SI[IYII <n]|

K
X IT|EXtYg|I[| X, | < Vn,|Y| <n],
k=1

where the summation ©* run over all possible integers such that i,, j;, h,,
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g,>land i, + 3h, = a and 3j, + 2g, = v. Now we have the following:
()  |EXHI[|X,| < V]| <Cn@?% forallt=1,...,T,
|EXPsy g |I[| X, | <V, |Yy | < n]

(ii) Cnhe/2+8:=3/2 if g, <m/2,
<
o(nhe/2t&r-m/2)y  if g >m/2,

CnJs—2 if2<j,<m/2,

s <

(1) |EY i, | n]l = { (nfs~m/2) if jo=1or >m/2.
Thus, if in a term on the right-hand side of (2.5) there is at least one g, or j,
greater than m/2 or one j, equal to 1, then this terms is dominated by
o(n~/2-(m=2/2) If all g, and j, are less than or equal to m/2 and all j,
greater than 1, this term is dominated by Cn=%/275/2-K < Cn=(**7/2, And
we proved the lemma for the case where a and y are even.

Now we assume a = 260 + 1 and ¥y is even. Then by what we have proved we
obtain

20+1 Y

J 1

Y

I[AE'?

Y

<EV? 1[A]

17 '1 » 1 ‘=1 »
PR ;§ R LS R LY

< C{n—O(O(n—(m—Z)/2) + n—y/Z)n—(0+1)(o(n—(m—2)/2) + n_7/2)}1/2
< Cn—a/2(o(n—(m—2)/2) + n—‘y/2).

This proves the lemma for any integer a and even y. Using the similar
approach, one can prove the lemma is true for any integers a and y. O

3. Proof of the main theorem. Without loss of generality, we can
assume that p = 0 and H(0) = 0. For simplicity of writing, we give the proof
only for the case of k£ = 2. It is easy to see that the proof for the case £ = 2 can
be extended to the general case although it may involve complicated notations.
Since H is m — 1 times continuously differentiable in a neighborhood of 0 and
1, =0H /dz|,-0 > 0, by inverse function theorem there is a constant § > 0
and an open interval ® = (a, b) containing zero as an inner point, such that
for each z € D = {|z;| < §,|2,| < 8} and x € O, the equation x = H(z) has a
unique solution z, = g(x) [here x = (x, z,) € D* = {x € 0, |2,| < 8}] satisfying
the following:

1. g is m — 1 times continuously differentiable on D* and its partial deriva-
tives at 0 can be expressed as functions of those of H at 0. For some
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examples, we have

og

_7-1
9x |x=0 ll‘ ’
g I,
923 | _o A
o’g I
axz x=0 h l? ’
d%g .
9% 02, = _11_3(11112 —1l3l11),
x=0
g —-3(72 2
55 = -l (11122 — 2l4l5l + 12111)7
2 |x=0
where
; oH ’H 19
i azi z=0: ij - aziazj . tL,J =1,
(3.1) H(z) < x is equivalent to z; < g(x).
Note that

P{]Zijl > y/np forsomei=1,2, j = 1,2,...,n} =o(n~(m=2/2)

We can replace Z;; by Z;;I[|Z;;| < VnBlin Z,. For simplifying our notations,
we still use Z;; for denoting the replacement variables Z; ;I [1Z; jl < \/ﬁ ]. The
reader should remember this replacement in the proof.

Define the following events

(3-2) & ={Z,| <on%7},
(3-3) & ={|Z,| <on=%7",1al < 60737},

where @ = (1/nXaf + -+ +a}) and af = E(Z,;|Z,)).
Now we assume first that xon /1% € 0. Write

(3 4) Fnl(x) = P{Zl sg(xo-/\/rT,Z;);fl, 52}:
Foo(x) = P{Zl = g(xa/\/;,z_z);@}.
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Then by Lemma 5, we have
sup  |F(x) — Fop(x)]

xon~/14co ,
(3.5) < sup  {|F(x) = Fu(x)| +|F,(x) — Foa(x)]}
xon"V4e®
< 2P(&]) + P(£5) = o(n™m7272),
where £; denotes the complement of the event ¢,, [ = 1,2.
Let D, ={Z,;, j =1,2,...,n}, P*, E* denote the conditional probability
and expectation given D,. Denote the conditional variance, »th cumulant and
the c.f. (characteristic function) of Z;; given D, by B¥, v and v} (¢), respec-

tively, and write :
n

(3.6) B = ¥ B},
j=1

ji=

n 1
3.7 FX(y) =P* Z,;—a*)<B,y| =P*|Z, <a+ —B,y|.
— AT n n

j=
Define the events

(3.8) és = {|B72t - nB| < %nB},

(3.9) §4 = {AI > A3},

where A, is such that ©7_,E*|Z,; - a}‘IZI[IZIj —a¥| > 1/12A,]1 < B2/8, A4

is some suitably chosen positive constant and g8 = EB}, which is positive by
assumption. We have

(3.10) P(&) =o(n~m-2/2) | =34

Here the proof for ! = 3 is trivial and for / = 4 follows from the same lines in
Hall (1987).

When IT;_,¢; occurs, using B, v%, v=38,...,m; j=1,...,n, we can
construct the conditional formal Edgeworth expansion of F, denoted by
U, .(x). Denote the conditional c.f. of Z;;I[|Z;; — af| < VnB1 given D, by
vy (). Now we proceed to prove

(3.11) sup =o(n~(m=2/2)

xon~1/%e®

where y = y(x) = (n/B,)g(x0/ Vn,Z,) — (n/B,)a. Then by Lemma 1, we
have

4

IF = U, |l = sup| Ff () — Uno(9)|
Yy

(3.12)

< COm) |+ B+ [ 17 T oiy(0)] ),
’ A Jj=1

1<ltl<A,



1304 Z.D. BAI AND C. R. RAO

where

(3.13) A%, =B;™ z E*|z1j -t ["1[| 2y - | > YnB],

(3.14) Bj..,=B;"" IZE*IZIJ of "1 2,; - af| < VnB],

j=1
(3.15) = (B,B} Ly n) A2 (M/2)n(m=2/2

and C(m) is a constant depending on m only. By the existence of the mth
moment of Z,, one can easily prove that

4
EA%I[ nfi] < (2B)"*n~m-D72E|Z, f, — af|*1[|Zy; — o | > YnB]
i=2

= o(n~(m-2/2)

and
4
EB} .1, [ I 5,-] < (2B) "V Pnmovr2

XE|Zy, — of |m+lI[|Z11_a1| <yn ]
=o(n~m~2),

By Assumption 4, for |¢| > Aj, there exists a constant « < 1 such that for all
large n,

Elviy(2)| < E|vi(t)] +P(|Z11 —af| > Vnﬁ)
<Elv 1(t)|+P(|Z11|>V )+P(|Z11_a1|>v B)SK-
Hence by Assumption 4 and (3.10), we obtain

4
E sup|Ff(y) — Ux (I { l_szi}
y =

<o(n=m=2/2) 4 C(m)f l¢]~* ﬁE|v,",‘j(t)|dt

Ag<l|tl<A,

<o(n~"=2/2) + C(m)(log n) sup (E| nl(t)l)

t|> 3

(3.16)

= o(n_(m_z)/2).
Substituting y = y(x), we obtain
4
(317) E  sup |F¥(y(x)) - U,i',‘n(y(x))ll[l—[éi} = o(n~(m"2/2),
i=2

xon~V"%e@

Note that F,,(x) = EF}(y(x)I[£,] = EF}(y(x))ITT}_¢,]1 + o(n=(m=D/2) g0
that from (3.5) and (8.17) we obtain (3.11).



EDGEWORTH EXPANSION 1305

By Lemma 4, there is an absolute constant C(m) such that

|Una(y(2)) 1[£5] < C(m).

Thus E|U}, (y(x)I[£3£5] < C(m)P(ES) = o(n~™~2/2), Therefore, we can re-
move ¢, from (3.11). Namely, we have

= o(n-(m-2/2),

3
(3.18) sup | F,(x) — EU,,(y(x))] in]

xon~" €@

Write x, = xo/ Vn, B(n) = (nB — B2)/(nB). Assume IT3_,¢; occurs. Since

y(x) = n/B(g(x,, Z,) — a1 — B(n))~'/2, by (3.1) and Taylor expansion for
a multivariate function, we can write

m-—1 N
(3.19) y(x) = Z_‘,lyw(x) + Ry(x),

n —
yi(x) = V E (mx, + nyZ, —a@) or
B _ _

yal®) = 2-2<w-1>( 2w-1) )yl(x)B(n)"’ 1

where

(3.20)

w-1
(321) ﬁ SRR nl u-l —2w-uw) 2w — 2u ..l Fu-1 w—u
w=2,....,m—1,
|Ry(x)| < ex(n)Vr (|2, " 7" 4|23 + (|2,] +] Z,]) B(n) " 7Y)
1 m-—1
< CVnie(n)||=o(x)| +|Zp -t +lamt
Vn
(3.22) )
+[‘/—;‘|y1(x)| +|5|+|Zz|]|3(n)|m_l},
1 ly
77 - ll ’ 172 - ll )
and
‘g
nl,u—l = ax’azé‘" x=o, l= 0, 1,.. U

which can be determined by the partial derivatives of H at 0, as mentioned in
(8.1), and by Assumption 1, ¢,(n) = 0 as n — «, depending on n and H only.
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By (3.20) and the relationship between 7’s and {’s, we can rewrite (3.21) as

il B il—i Fig+i is
(3.21) Yu(%) = \/EZ *ni1i2i3i4i5(\/;yl(x)) a2Zp B(n)",

w=2,....m—1,

where the summation L** is taken subject to i; +i, +i5+ i, +i5=w,
iy <w, and

e lysi (20
nfli2i3i4i5 = (ll! L2! l3! 14!) llil+lzl§3ni1+i2+i3xi42 2l5( i55).
Now we begin to eliminate R,(x) from y(x). We shall prove
3
(323)  sup  E|UL(y(x) - Ubn(y'()I [ ng,-] = o(n=-2/%),
xon~V14e@® i=2

where y'(x) = y(x) — R(x). Consider the term
3
(3:24) J,, = n""2E[QC2(y(x)) — @C ) (y'(x)) || B, | I—.[fi]’
i=2

where A}, =h,(X5,,...,X5,5,), h,, is defined in (2.3), while A} ’s are
similarly defined as in (2.1). Now assume that [13_,¢; occurs and xon~1/1* e

0. Then we have the following:
(3.25) y,(x) =0, R,(x) — 0; w=2,3,...,m — 1, uniformly,
(3.26) |h*,| < Cn*/?, by Lemma 4,

where C is a constant which may depend on v, s and B. (Hereafter we shall
use the same symbol C to denote constants with the similar properties, but
may take different values at different appearances). If |y,(x)| < 1, then by
(3.25) for all large n, |y(x)| < 2 and |y'(x)| < 2. Hence by the mean value
theorem

|@C+2)(y(x)) — ¢+2(y'(x))]
=[@@*2+D(£(x)) || Ry(2)|
(3.27) < C{sl(n)[n'(’"_z)/2 + \/IT(IZZ”‘_II +|&|m_l)]
+(1+ Vnlal + ﬁlZzl)lB(n)lm_l]},
where ¢(x) lies between y(x) and y'(x). Hereafter ®®*2%) with v =s =0 is

used to denote ®. If |y,(x)| > 1, then by (8.22), when n large, |y,(x)/é(x)| > 271
for any ¢(x) that lies between y(x) and y'(x). Hence by the mean value



EDGEWORTH EXPANSION 1307

theorem,
| B¢ 20(y(x)) — BC+2(y'(x))]
=[@C+2 D (g(x)) || Ry(x)| -
< Cey(n){n==D/2|g(2)" 10O 2D g(2)) || y(w) /(x) [
+¢E[|Zg'—1| +1al™ ™t + (nT 2 E(x) @O D(£(x)) |

X |yy(x)/£(x)| + lal +] Z.)) B(n)[" ']}
Note that the same bound as in (3.27) can be obtained here. Thus (3.24)—(3.27)
imply that .
J,s < Cey(n){n~"272 + Yn E(| 25| + @™ "))

(3.28) +CE{[1+x/r7|a|+x/r7|22|]|B(n)'"_1|}

<o(n~(m=2/2)
where the last step follows from the following facts:
1. E|Z§"‘1| = O(n~(m-1/2)
2. Ela™ 1 = O(n~-(m=1/2)
3. E|B(n)" Y = o(n~(m~2/2)
4. ElC__!_B(n)”‘_1| = o(n~(m=1/2)
5. E|Z23(n)m—l| = o(n=(m=1/2),

Recalling the definition of U, from (3.24)-(3.28), we obtain (3.23).
By Taylor expansion, we have

q)(v+2s)(yr(x)) = q)(v+2s)(y (x))
(w,u) m-1

(3.29) Z Z PUHETI(yy(x)) X H —yz‘(x) + Ry(%)

w=1u=0
& QU2(y,(x)) + ¥, ,(x) + Ry(x),
where the summation ¥ * is taken subject to
lg+ig+ - +i, =u<w,
ig+2ig+ - +(m—-2)i,_ ;=w<m-—2

and the remainder term satisfies

. .
|Ry(x)| < Cln= D72 4+ ¥ ne/¥|Zp+e1 + @™ !

u=1

(3.30) . -
+(Z,| +1a*+n"*/®|B(n)|" N
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Now we proceed to eliminate R,(x) from ®**29)(y'(x)). By Lemma 6, we
have

(331) n(u_v)/2E|ht,s ”sz+u—1 LI[f:-)] < Cnu/ZElzzm+u—1 l
= O(n—(m—l)/Z) = o(n‘(’"‘z)/z),

Similarly we have

(3:32) P 2B | @] 4] = o(nD/2).

By Lemma 6, we have

n(u—v)/ZE ht s Z‘u B n m—lI f
(3.33) | . | I 2 I I ( )l [ 3]‘
< Cn*/?E|Z§||B(n)|" " = o(n~("=2/2),

Similarly we have

(3.34) n@=2E| k% 1@ B(n)|" T 1[£5] = o(n=™=2/2),
(8.35) n=*2E|K% | | B(n)[" " I[£5] = o(n (™ =/2).
By (8.30)-(3.35), we obtain

(3.36) E|Ry(x)n™" %R (|I[¢5] = o(n~("7P/%),

which shows that R,(x) in ®®*29)(y'(x)) is negligible.
Substituting (3.21') into the expression of ¥, (x) in (3.29), we rewrite
¥, (x) as a linear combination of terms of the form

n"”/Z(yl(x))ilfb(”"’”")(yl(x))(\/ilal)iz(\/ﬁzz)ia((nﬁ _ Brzz)/‘/;B)i4’

iy tigtigtigz=w+u, 1<u<w, iy<w<m-—v-—2 Note that
x2'®U(x), j > 1, can be written as a linear combination of ®®X(x), u =1V
(j —1),...,i +j, where a V b = max(a, b). Thus ¥, .(x) can be rewritten as a ‘
linear combination of terms of the following form:

(337)  n w200 (y(x))(Vrlal) '(Vr Z,)*((nB - BZ) VR )",

m—-v—22w2ux=2li,tig+ig<swtu, v+2s—w+i; +iz+tig<v
<v+2s+2u+w—iy —iy—ig iz <w. The coefficients of terms of (3.37)
may depend on the partial derivatives and B.

For given v < m — 2, write

B;” = (nB)"’*(1 - B(n)) ™"

m-—2

(3:38) = (nB)""*{ ¥ ¢(i,v)B(n)' + Ry,

i=0

=B(n,v,w) + (nB)"*R,,,
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where
, (2j - 2 +»)!
W) G-

and
Ry, | < CIB(n)Im_l, when ¢; occurs.

Now we proceed to eliminate R, from B, ”. Consider a term of form (3.37),
denoted by T'(v, w). Then following the steps in the proof of (3.33), we have, by
Lemma 6,
n~"/2E| T (v, w) k3%, Ry, 11£5] < CE|Zpa@=B(n)" """

—(m+i1‘+i2—2)/2)
b

(3.39)
=o(n

where A% = Bk} .
Then by (3.11), (3.23), (3.33) and (3.39), we have

(3.40) sup F (x) — EU,’,,“t(yl(x))I[ f[zgl,” = o(n=(m=2/2),

xon~1/14e®

where U**(y,(x)) is obtained from U, (y(x)) by substituting y(x) with y'(x),
®@*29(y(x)) with ®¢*+29(y,(x)) + ¥, (y(x)) and B.” in the terms associ-
ated with w and A*_ with (B(n, v, w). Note that the leading term of U, *(y(x))
is ®(y,(x)). The other general terms in U}%(y,(x)) with suitable coefficients,
depending on the partial derivatives of H and B, have the following form:

n—(v+w)/2q)(v)(y1(x))(‘/zzz)il(‘/;a)iz

(3.41) v (1 k;

(8 =BT [ £ o)
i=1\ M ;1

where
ki +ky+ - +k, =5,
ki+2ky+ - +vk,=v<m—2,
m-v—22w>uzx>1, i tigtig<w+u, ig<u,
IV(r+28s—wHig+ig+ig) <v<v+2s+2u+w-—i;—i;— i

Now we proceed to eliminate ¢, and &5 from (3.40). Denote the general
term of (3.41) by W(x). B Lemmas 4, 5 and 6,

E|W(x)|I[£565] < C(m)ENnZ, | Vaal™(|Zy| +1a™) = o(n==272).
Hence ¢, can be removed from (3.40). By Lemma 6, we have
E|W(x))I[£] < CE[VnZ,["|Vral"| B(n)[*(B2/n) 1[£5]
< CE|Z|i1|c_v|i2|B(n)lm—l(Bﬁ/n)s =o(n~(m=2/2),
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This proves ¢; is removable from (3.40). Therefore, we proved

(3.42) sup | F,(x) — EU*(yy(x))| = o(n~"=2/2).
xon~1/14e®
Recall that )
o Iy
(3-43) (%) = m(x - ;Fn),

where T, = (1/6Vn)L"_(1,Z,; + ;o) and 62 = I3 —(g g)]l' =o2% - 128.
Since the summands in I, has finite mth moments, we can construct the
formal Edgeworth expansion of the distribution function of T, say, V,,,(y).
Then we have .

m-2 v _ v+2s
(844)  V,.(0) =2(») + X n7” 21(7) C+29(y)
v=1 s=

ths(A3’ e A1/+2)’

where A’s are cumulants of [,Z,; + /,af, whereas the function A, is defined
in (2.3).

REMARK 3.1. Because of truncation, the expectation of I, may not be zero
and the variance and cumulants of the summands of I, may depend on n.
However, if we substitute those quantities by the corresponding values of the
untruncated case, then following the steps of Bai and Zhao (1986) or Bhat-
tacharya and Rao [(1976), Section 14], one can prove that there is only a
difference of order o(n~(™~?/2) between the Edgeworth expansions when the
summands of T, are truncated or not.

First, we consider the leading term ®(y,(x)) in U}*(x). By Lemmas 2 and
3, we obtain that

m—2 v _ v+2s |
Eq)(yl(x)) = q)(x) + ;l n_V/2 ;1 (_0_) q)(v+2s)(x)

Xh,s(Ags .o Ayig)-

Now we consider the integral of the general terms given in (3.41). Expand
the product

224/ o] A5 0]

(3.45)

i—-1

appearing in a term of (3.41). Then we make integration for each term after
the expansion. Consider a term and to each index j, j=1,2,...,n, give a
score d;, which is defined to be the sum of the multiplicities of appearance in
this term of Z,;, a¥, two times of that of (8 — ) and i + 2 times of that of
Yives J=1,2,...,v. We consider the sum of all those terms such that
d;> - 2d,>land X}_ ,d;j=p—-720,d;<1for j=7+1,...,n
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Denote such a sum by T'(7, u, d). Let r denote the number of d’s which are
greater than m [note that 0 < r < 2, since %d; < 3(m — 2)]. When r > 1, by
the Schwarz inequality, we have

EIT(T, w, d)l < O(n(dl_m)/2+ +(d,—m)/2+(p,—1-)/2)

(3.46)
< o(nEdj/2—r(m/2—~1)—'r) ,

where and hereafter the symbol o(-) denotes a small quantity whose order is

independent of x varying subject to xon~/!* € ©. Note that the power of n

in the denominator of the term described by (3.41) is one half of
v+2s+tw+igtigtig=v+2s+i;+iz+2ig=d; +dy+ - +d,,

which with (3.46) imply that all those terms with some d; > m in the
expansion of the term given by (3.41) can be omitted, in the sense that their
sum is of the order o(n~(™~2/2), Now we consider the sum of all those terms
such that m >d, > - >2d,>1, X7 ,,d;, d; <1 for all j> 7. We still
denote such a sum by T'(7, u, d ). Let

yP(x) = yi(x) — &y,
where ¢, = —(1/1,Vn BX1,Z,, + L,a¥). Expand ®©(y,(x)) as

m-—d,
(3.47) ®9(y(x)) = BV(yP(x) + T {1¢<v+l>(y<l>(x))+R<x)

i=1
Here we have, when £, occurs,
|Ry(x)] < Clgy """

By a similar argument as before, one can prove that R ,(x) is negligible.
Then we write

yP(x) = y{P(x) = Lo,
where ¢, = —(1/1,Vn BX1yZ,y, + 1;a%). Expand @@ (y{)(x)) as
(D(v-'-l)(ygl)(x))

m—d, rj
(3.48) _ (I)‘"“)(y(z)(x)) + Z ¢ q)(v+z+1)(y(2)(x)) + Ry(x).

Here we have
| Ry(x)| < Clgg|™ """,

By repeating the same argument as before, one can prove that R (x) is
negligible.

 Repeat the same argument. After 7 steps, we need only to consider the sum
of those terms that d, ., =1,X7_, ,d;=p—7—-1,d;<1forall j>7+ 2.
Then repeat the same argument. Flnally, we find that the integration on the
set ¢, of terms of the form (3.41) can be written as a linear combination of
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terms of the following form, with an error term of order o(n~(m~2/2),

(3.49) n"v/2EX, -+ X,09(5(x)),
where 5(x) =y (x) — ¢, { = —(1)1,y/nB L4132,y + LiaF), X; is a product
of Z,;, af, B — B} and/or Yo j» i =1,2,...,v, with suitable powers, u is an

integer bounded by a constant depending on m (and % in general) only. If we
still use d; to denote the score of X ;» then we can rewrite (3.49) in a more
explicit form

o { I EXjn_d,./2+1} (BVn (8 - B}
(3.50) /ot

< {EVR Zey) (B ) " EOO(5,(x)),

i1 <ip+i3+s,i;>223< d; <m for j =1,2,...,7. By applying Lemmas 2
and 3 and the expansion (3.44), we obtain

(3.51)

m—2 v _1 v+2s x
+ Z n-v/2 (_—_) q)(v+2s+v)(__—)
ths()‘,?., ey Av+2) + o(n_(m—2)/2),

where p = ¢2/02. Finally, making ordinary Taylor expansion for {1 — 7p/n
on the right-hand side and omitting all terms with higher order, we conclude
that

(3.52) sup | Fy(2) — U, (x)] = o(n="=272),

xon~ V4o

by recalling (3.40), (3.44), (3.50) and (3.51).
It is easy to see that

(353 Up  |Upa(x)] = o(n-272),

x<—an'//(20)
Hence

sup F(x) < F(—an'/'/(20))

x< —an'/*/(20)

(3.54) < sup U (2)|+  sup  |F(x) — U, ()]

x<—an'/"/(20) xon"V4e@

= o(n_(m_z)/z) .
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Similarly, we have

(3.55) up  [1 = Upy(2)] = o(n~m-5),
x>bn'/1t/(20)
(3.56) sup (1 - Fy(x)) <1-F,(bn/™/(20)) = o(n~(m~/2),
x>bn'//20)

(8.52)-(3.56) complete the proof of Theorem 1.
We shall compute the coefficients of the first term. The procedure gives a
clue as to how the later terms can be computed. The term of order 1/ Vn has

three sources:
(i) From the leading term of the first step expansion [see (3.45)], we have

1
(3.57) - WAst(x)‘P(x),

where Ay = E(lja} + 1,Z,,)% ¢(x) is the density of standard normal variable
and H (x) denotes the Chebyshev—Hermitian polynomial of the vth degree.

(ii) From the second term of the first step expansion, approximate B2 by
nB and apply Lemma 3 to the integration to obtain

1 *\3HOB) (o
- WE(ZH — af ) O (§y(x))

(3.58)
- \/— —=—13E(Zy; - at) Hy(x)e(x) + O(n7Y).

(iii) From Taylor expansion of the leading term, that is, y,(x)®'(y,(x)).
Recall that

¥a(x) = yn/B {%lle(n)(xn —13Z,) + gm0y + N11%, 2o + %222}
= 1n/B {B(n)(VB/myu(x) + &) = 17| 1u(VB/mn(x) + &)
+211222(\/B/ny1(x) + &) + 122222]}.

After elementary computation, we obtain that the coefficient of n~1/2p(x) is
(3.59) - (20) i EZ3 + 21 ,EZ,,Z,, + 1,,EZ3))
and the coefficients of n~'2H,(x)¢(x) is
- %0“3{l11E2(l12121 + l2ZuZ21) + l22E2(l1Z11Z21 + l2Z221)
(3.60) +2112E(l1Z121 + lzzuZzl)E(llzuzm + l2Z221)
+EBy(lyaf + 1,Z4)).
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Summing (3.57), (3.58) and (3.60) up, we obtain the coefficient of
n~12H,(x)¢p(x) as follows:

- %0_3{6l11E2(112121 + 12Z11Z21) + 6122E2(Z1Z11Z21 + l22221)
(3.61) +12l12E(11Z121 + l2211221)E(l1Z11Z21 + 122221)
+E(1 2y, + 1325)°).

Now we get the first term in the expansion as the linear combination of
n~1/2p(x) with coefficient given in (3.59) and n~1/2H,(x)¢(x) with coefficient
in (3.61).
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