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GAUSSIAN LIKELTHOOD ESTIMATION FOR NEARLY
NONSTATIONARY AR(1) PROCESSES!

By Dennis D. Cox
University of Illinois, Champaign-Urbana

An asymptotic analysis is presented for estimation in the three-param-
eter first-order autoregressive model, where the parameters are the mean,
autoregressive coefficient and variance of the shocks. The nearly nonsta-
tionary asymptotic model is considered wherein the autoregressive coeffi-
cient tends to 1 as sample size tends to «. Three different estimators are
considered: the exact Gaussian maximum likelihood estimator, the condi-
tional maximum likelihood or least squares estimator and some ‘‘naive”
estimators. It is shown that the estimators converge in distribution to
analogous estimators for a continuous-time Ornstein~Uhlenbeck process.
Simulation results show that the MLE has smaller asymptotic mean squared
error then the other two, and that the conditional maximum likelihood
estimator gives a very poor estimator of the process mean.

1. Introduction. Consider a sequence of statistical experiments with
observation vector (y,(0),...,y,(n)) given by a three-parameter AR(1) process

(11) [yn(k + 1) - “‘n] = (Pn[yn(k) _y’n] + En(k + 1)’
k=0,1,...,n — 1.

The shocks ¢,(1),..., ¢,(n) are assumed i.i.d. with common distribution inde-
pendent of n, and Ee, (1) = 0, Ee%(1) = 0 < ». We suppose that |¢,| < 1 for
all n and that y,(0) has the stationary distribution for the process. The
parameters ¢, and u, will be allowed to vary with sample size [see (1.2) and
(1.3)].

Suppose that the statistician models the process as Gaussian. Then the
maximum likelihood estimate (MLE) of the parameter vector (u,,og, ¢,),
denoted (4, 62, $,), is a solution of a rather complicated system of equations.
Assuming that u, = u, and ¢, = ¢, are fixed, then one can show that the
MLE is asymptotically equivalent to a simpler estimator obtained by maximiz-
ing a conditional likelihood. The MLE maximizes the full log likelihood

L(w,0%,¢)=1log f, ,2 ,(y(1),...,y(n)|y(0)) + log £, ,2 ,(¥(0)),

whereas the maximum conditional likelihood estimator (MCLE) maximizes the
conditional likelihood

[o(ms 0% ) =108 f, 42,,(¥(1),...,5(n)|¥(0)).
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1130 D.D. COX

The MCLE, denoted (&, 6.2, $,), is given by some simple formulas. See (3.12)
through (3.15) below. Further details may be found in Fuller (1976), pages
328-332.

While the MLE and MCLE. will be nearly the same with high probability for
“sufficiently large n,” they can be quite different for small to moderate n.
Furthermore, the meaning of ‘“large n’’ depends on the value of ¢. If ¢ is
close to 1, then the term

— 2 _ 2 _ 2
log f(y(0)) = %k,g[ ! 02“’ ] (-9 );i(ZO) ©]

has a more pronounced effect on the log likelihood, and a much larger value of
n is required before the classical asymptotic results are useful. This has been
observed by Harvey (1981), page 135. As many real series exhibit large lag-one
autocorrelation (hence ¢ near 1), it is worthwhile to investigate the MLE and
MCLE under this condition. Furthermore, one is naturally interested in which
estimator is better, or if some other estimator is even better than either of
these. One would conjecture that the MLE is better than the MCLE, and we
present results below which corroborate this conjecture. See also Ansley and
Newbold (1980), page 181.

Recently, there has been much interest in ‘“‘nearly nonstationary’” asymp-
totics for such time series models; see, for example, Bobkoski (1983), Chan and
Wei (1985), Tsay (1985) and Phillips (1987). These authors only consider
asymptotics for the least squares estimator when o2 and u are known. For
the three-parameter AR(1) model, the nearly nonstationary setup corresponds
to assuming that

(1‘2) bn = I_BO/ny BO>07

(1.3) R, =n"%p,,

where B, and v, are fixed. Since ¢, — 1, in some sense the process ap-

proaches a nonstationary process as n — «. The rationale for the particular

forms of u, and ¢, will be evident from the following discussion.

Define a continuous-time “step function’ process Y, (¢), 0 < ¢ < 1, by
Y.(t) =n"2y,([nt]),

where [-] denotes the greatest integer. It follows from (1.1) that Y, satisfies

the difference equation

AY,(k/n) = —Bo|Y,(k/n) — vo] At + 0y AW, (k/n),
O<k<n-1.

Here, AY,(k/n) =Y, ((k + 1)/n) — Y,(k/n) is a forward difference operator,
At :=1/n, and

(1.4)

[nt]

(1.5) Wi(t) = og'n /2 T en(k)

is a normalized partial sum process. Since W, converges weakly to a Wiener
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process W(¢), 0 < ¢t < 1, in D[0, 1], and the difference operator A converges in
some sense to a differential operator d, one would expect that Y, should
converge to the solution of the stochastic differential equation

dY(t) = ~Bo[¥(t) — vy dt + oy dW(2),
(1.6) Y(O) =D N(Vo:"'oz/(zﬁo)),
Y(0) independent of {W(¢):0 < ¢ < 1},

which defines an Ornstein-Uhlenbeck process [Arnold (1974)]. (Equality in
distribution is denoted = .) In fact, Y, converges weakly to Y [Bobkoski,
(1983)1. .

In Section 3 this weak convergence is used to prove convergence in (joint)
distribution of the MLE (8,,62,7,) = (n(1 — ¢,),6%, n"'24,) for the se-
quence of AR(1) processes given by (1.1), (1.2) and (1.3) to the corresponding
MLE’s of the parameters in the Ornstein-Uhlenbeck process given in (1.6).
See Theorem 3.1. The MLE’s for the continuous-time Ornstein—Uhlenbeck
model are denoted (B, #). The MLE for the variance parameter is o2, that is, it
can be determined exactly (with probability 1) from the finite sample path
{Y(#): 0 <t<1}. Indeed, o2 is the only parameter which is consistently
estimable from the sequence of AR(1) experiments.

In order to understand this phenomenon, it is necessary to investigate the
likelihood (i.e., Radon-Nikodym derivative w.r.t. some dominating measure on
path space) for the Ornstein—-Uhlenbeck model. This has been done by Feigin
(1976) for the situation where the only unknown parameter is 8, and Y(0) is
taken as fixed. In Section 2 we give results when the mean v, is also unknown.
The “perfect” estimability of the variance parameter ¢ results from mutual
singularity of the Ornstein—-Uhlenbeck measures corresponding to different
variance parameters.

In Theorem 3.2 it is shown that the MCLE (B,,62 5, = (n(1 -
@,), 62, n"1/2i,) converges in distribution to (3, o2, #), where B and ¥ denote
the values of B and v which maximize the conditional likelihood of the
Ornstein—-Uhlenbeck observation given the starting value Y(0). Theorem 3.3
gives similar limiting distribution results for some ‘‘naive’ estimators, namely
the sample lag-one autocorrelation r, as an estimator of ¢, = (1 — B,/n), a
crude estimator s2 of of and the sample mean of the y,(k)’s as an estimator
of w,.

While these results give representations for the asymptotic distribution of
the estimators, it is unfortunately very difficult to carry out any calculations
with the limiting distributions. Bobkoski (1983) gives some results when only
B, is unknown and y,(0) = 0. Of course, one can always resort to Monte Carlo,
as we do in Section 4. The results of this paper do provide invariance principles
so that fixed reference distributions can be developed for samples of different
sizes, even if computation of the reference distributions is difficult. Further-
more, they allow one to obtain results about the limiting Ornstein-Uhlenbeck
case by simulating discrete-time processes.
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Some conclusions and conjectures can be drawn from the simulation results
presented in Section 4. First, the MLE appears to be the best estimator in
terms of mean squared error, but not significantly so. All the estimators of B,
considered are biased upward, espetially so for B, near 0. (Hence, the corre-
sponding estimators of ¢, are biased downward, especially for ¢, near 1.) The
MCLE estimator of the mean is quite bad, much worse than the sample mean
or MLE. These results suggest that better estimators of B, may exist if one
can reduce the bias.

The results of this paper indicate that it is important to make appropriate
use of y,(0) to obtain asymptotically efficient estimation. Of course, this
contradicts the usual statistical notion that the information in a single obser-
vation should be negligible in comparison with the information in the whole
sample. It also makes clear the singular nature of the stationarity/non-
stationarity boundary, as already noted in the works of Feigin (1976, 1979).
Certainly, one must not take lightly the assumption of stationarity.

2. The Ornstein-Uhlenbeck process. In this section we present the
likelihood for a continuous-time observation {Y(¢): 0 <t < 1} from the
Ornstein—Uhlenbeck process. The derivations are standard and hence omitted.
See Feigin (1976) or Theorem 7.19 of Lipster and Shiryayev (1977). The
dominating measure is a Wiener process measure modified to account for
starting value and scale change. We also give results on the MCLE and MLE
for the Ornstein-Uhlenbeck process.

We first give the conditional likelihood given Y(0). Let P(-|Y(0), v, o2, B) be
the Ornstein—Uhlenbeck measure on path space C[0, 1] with mean v, scale o
and drift coefficient B, as in (1.6) with subscripts deleted. Let Q(:|Y(0), o2)
denote the measure of o W(¢) + Y(0), 0 < ¢ < 1, where W is a standard Wiener
process. Let I(v, B|Y(0), 02) denote the log of dP(:|Y(0), v, a2 B)/
dQ(-1Y(0), o?) evaluated at a path {Y(¢): 0 < ¢ < 1}. As is usual, we suppress
the dependence on the data (path) in the log likelihood. Then

(2.1) I(v,B|Y(0),0%) = — %[()I[Y(t) — ] dY(¢) - %/()I[Y(t) —v]%dt.

For the unconditional likelihood, let P(:|v,o?, B) denote the Ornstein-
Uhlenbeck measure when Y(0) is given its stationary distribution. Let @(-|o2)
be the measure’ of o[W(¢) + Z], 0 <t <1, where Z is a N(0,1) random
variable independent of W(#), 0 < ¢ < 1. The corresponding log likelihood has
extra terms from the initial conditions. It is given by

Y(0)®
202

1
I(v,B|o?) = 3 log(2B) +

(2.2); - %(j:Y(t) - vdY(t) + [Y(0) - V]2)

——2%5[01[1/(15) —v]%dt.
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It is easy to solve for the MCLE for 8 and » from (2.1). The results are
JY(t) — YdY(¢)

(23) ﬂ~ = —_12 ’
Y@ -7 at
(2.4) 7=Y+(Y(1) - Y(0))/B,
where
(2.5) Y= ['¥()adt.
0

The results concerning the MLE are somewhat harder to obtain.
THEOREM 2.1. With probability 1, the MLE for (B, v) exists and is unique.

Proor. For each fixed value of the variable B, maximization of I(v, Blo?)
over v gives

2(B) = (Y(1) + Y(0) +BY) /(2 + B).
Substituting this back, one obtains an expression for I(#(B), Blo?) which tends
to — as either B8 — 0 or B — « almost surely. This establishes existence. We

only sketch the proof of uniqueness. Taking dI(#(B), Blo?)/dB and setting to
0, one obtains, after some manipulation,

(2.6) AB*+BB3+CB2+ DB +E =0,

where
A=-2[(Y-¥)'dt<o0,

and the coefficients B, C, D and E are polynomial functions of the sufficient
statistics

T = (Y(O), Y(1),Y, [Y2at, [YdY).

Using It6’s formula [see, e.g., Theorem 4.4, page 118, of Lipster and Shiryayev
(1977)), one can show (Y dY is a polynomial in the other four components of
T. Hence, for fixed B,,v, the coefficients of (2.6) are polynomial functions of
the components of

S = (Y(O),Y(l),?, ]Y2dt).

The Lh.s. of (2.6) is obtained by multiplying dI(#(B), Blo?)/dB by positive
quantities, so there are at most two values of the MLE B since only two of the
the four roots of (2.6) can have the right sign for the derivative to be that of a
local maxima. It is clear that this can happen only if the roots of (2.6) are real
and distinct, so we concentrate on this case. The two roots of (2.6) which are
candidates for the MLE are the second and fourth, 8, and B,, when the roots
are listed in ascending order. Now B, and B, are analytic functions of the
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coefficients and hence of S, and I(#(B), Blo2) is similarly an analytic function
of B > 0 and S. Consider the three-dimensional manifold given by

{33 l(ﬁ(ﬁz(s))’ Bz(S)|0'2) = 1(5(34(8))’ B4(S)|0'2)},
which is the set of values of S wherein the MLE is not unique. The four-
dimensional Lebesgue measure of this manifold is 0 by smoothness of the
functions and an elementary argument [see, e.g., Lemma 1.4.3 of Narasimhan
(1968)]. Hence, the MLE is unique a.s. if we show Law(S) < m*. Note that
the first three components

R =(Y(0),Y(1),Y)
have a nonsingular normal distribution on R3, and
Z(¢) = Y(t) - E[Y(2)IR]

is a Gaussian process independent of R. Conditional on R = r, the random
variable

vzt - jol{Z(t) +E[Y(t)|R =r]} dt

clearly has a distribution < m. Note, for instance, that by a Karhunen-Loéve
expansion one can represent [Y 2d¢ as a weighted sum of independent noncen-
tral chi-squared random variables. Hence, Law(S) < m*, which completes the
proof. O

3. Main theorems. This section contains the statements and proofs of
the claims that the parameter estimates for the nearly nonstationary AR(1)
converge to their analogs for the Ornstein—-Uhlenbeck process. The first
theorem concerns the MLE and the second concerns the MCLE. The third
theorem is about some ‘“naive” estimators. Throughout this section we as-
sume that the ¢,(k)’s are i.i.d. with mean 0 and variance o2

We first mention a couple of facts that will be useful. As noted before, W,
converges weakly to W, and by a well-known construction [see, e.g., Theorem
13.8 of Breiman (1968)], we may in fact assume

sup |W(t) — W,(£)| —p 0.
0<t<1
This requires changing to a new probability space, and all results so obtained
translate into weak convergence back on the original space. It is not hard then
to show
(3.1) sup |Y,() - Y(t)| —p 0.

0<t<1

Also, one may show
n—1
(3.2) Y Y,(k/n) AW,(k/n) —p [0 'y (¢) dW(t).
k=0

See Bobkoski (1983) for proofs.
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TueoreM 3.1. Let (4,67, $,) be the MLE of (u,, 03, ¢,) in the AR(1)
model given in (1.1) through (1.3). Let (9, B) be the MLE of (v, B,) in the
Ornstein—-Uhlenbeck model in (1.6) when of is known. Then

n—1/2ﬁn D
(3.3) 62 -p| o3
n(]‘ - én) B

Proor. We will use the variables n'/2» in place of u and 1 — 8/n in place
of ¢. Inessential constants in the log likelihood will be dropped. The first step
is to eliminate » and o2 from the likelihood maximization problem. The log
likelihood can be written as .

1/2

l

v,o02,1——|=— log o? — —s2

n n 2 20

n

B) n+1 2 n

2 2n
BB AP

)
0.2 0_2

1 1 B
+—log B + Elog(l - —)

where

sz = ¥ AY,(k/n)’,

Ay(v) :

1 2 2
F{=n7%(0) —]* + T [Yo(k/n) —v]* At}

B,(v) = [Y,(0) - v]* + ¥ [Y,(k/n) — v] AY,(k/n).

All summations in this proof are from %2 =0 to n — 1, unless otherwise
indicated. For any fixed values of o2 and B,

B,(B) = (2 + B(1 — 1/n)) (Y, (0)(1 — B/n) + Y,(1) + BY Y,(k/n) At)

maximizes [, over v. Note that sup,_;../7,(B)| is bounded in probability,
since all of the random variables appearing in the defining expression are
bounded in probability by (3.1) and (3.2), and B > 0. Since A, and B, are
continuous and A, is bounded below by a function of Y, only, this implies
that Ve > 0,3 C,Cy >0, Cy,C, > 0, and N such that V n > N, the event

En = [Cl + 023 < Bn(ﬁn(ﬁ))ﬂ + An(ﬁn(ﬂ))ﬂ2
< C3B + C,B2 forV g > 0]

satisfies
(3.4) P(E,) =21-e¢.



1136 D.D. COX

For each fixed value of B,

n

2
GIB) = o ph T [ Baln(B)B + An(2n(8))R7]

maximizes over o2 the function ,(n'/%25,(B), 0% 1 — B/n), provided 2(B) >
0. Note that on the event E,, 62(8) > 0 for all n sufficiently large. Also, we
have

s2=02Y [AW,(k/n)]* — 2n" B0, Y. Y, (k/n) AW, (k/n)

+n71B2Y Y2(k/n) At.

The first term on the r.h.s. of (3.5) =, o7 by the weak law of large numbers,
while the other two terms are Op(n~1).
With a little algebra, there results

2ln(n1/2ﬁn(ﬂ)’ 6'712(3)7 1- B/n)

= —(n + 1)log 6X(B) + log B + log(1 — B/(2n)).

The next step of the proof consists of showing that ﬁn is bounded away
from 0 and « in probability. Using log x <x — 1, V x > 0, on the event E, we
have

(3.5)

(3.6)

21,(n'?5,(B),6%(B),1 - B/n) + (n + 1)log s2
> (2/52)[CsB + C,B2] +1ogB, VB < (0,2n).

For all n sufficiently large, the expression on the r.h.s. of (3.7) achieves a
maximum at some B} in (0,2n), and B} -, B*, say. When B} is plugged into
the r.h.s. of (3.7), the resulting expression converges in probability to a
constant. Since the supremum of a lower bound on the likelihood function
provides a lower bound on the maximum of the likelihood, it follows that

Ve>0,3m,NsuchthatVn >N,
(3.8) P(21,(n/?0,(B,), 62(Ba): 1 — Bo/n)
+(n+ logs2>m)>1-e.

(3.7)

Hence, the MLE B, is with high probability in the set of B € (0,2n) which
satisfy the inequality in the event in (8.8). In view of the definition of 52(B)
and the lower bound in E, and (3.5), we may restrict attention to the set of
B’s satisfying 0 < 8 < 2n and for some constants Cy, Cg > 0, and m,

(3.9)  G,(B) = —(n +1)log|1 + (Cs + CsB)| +log B> m.

n+1

It is easy to check that G, is maximized at a point B¥* — Cz!, that
G (Bi*) » —(C5 + 1) — log C¢ and that G(B) is eventually less than ¢ <0
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for all B, where ¢ is a constant. These facts imply that there is a constant
b > 0 such that eventually all values of B satisfying (3.9) also satisfy B < b.
Now G,(B) = —[Cs + C¢B] + log B as n — «, uniformly in B € (0, b], and
the limit function crosses from above the level m at some positive value larger
than g**. For 0 < B < b, G,(B) <°C + log B for all sufficiently large n, where
C is some constant, so G, must also cross the level m at some point in the
interval (0, B8**). Hence,

(3.10) Ve>0,3a>0,b>a,NsuchthatVn >N,
' P[ﬁn existsandasﬁ,,sb]zl—s.

It now follows that the MLE (5, 62, 8,) = (5,(8,), 62(B,), B,) exists with
arbltrarlly high probability for all n sufficiently large, and furthermore that
Bn is bounded away from 0 and « in probability. Now 7,(B8) converges in
probability uniformly in 8 € [0, b] to

1
(3.11) 5(B) = (Y(O) +Y(1) +B[Y(2) dt)

and 2(B) = s2 + Op(n™1) -, 0, uniformly in B € [0, b]. Hence using (3.1)
and (3.2), ln(n1/2“ (B), 64(B),1 — B/n) + [(n + 1)/2]log o0& + n/2 converges
in probability uniformly in 8 € (0, b] to 1(?,(B), B), where

1 B(v)B A(v)B®
l(V’ B) = Elogﬂ - 0_02 - 0_02 )

B(v) = [Y(0) - v]* + [Y(t) - vdY(2),

1
A(v) = -2—f[Y(t) —v]%adt.

Now I(v, B) is the likelihood for the Ornstein—-Uhlenbeck process estimation
problem (with o2 known, of course), and #(B) is clearly the MLE of v for each
fixed B. It also follows that Bn P B by the following simple fact. Suppose a
sequence of functions f, converges uniformly to f, and for each n, x, is any
maximizer of f,. Then any limit point of the sequence {x,} is a maximizer of
f. Uniqueness of B then gives the desired result. The proof is complete. O

Now consider the MCLE. First, define

n==1

(3.12) Fno= = Z ¥a(t).



1138 D.D. COX

Then the MCLE’s are given by
=_01[yn(t) - ynO] [yn(t + 1) - ynO]

3.13 5, = > ,
( ) ¢ =_01[:Xn(t) _ynO]
- - yn(n) - yn(o)
(3‘14) Mn =Yno + W’
(3.15) = LS e+ 1) = () — (1= B )]

n oo
The corresponding MCLE’s for the Ornstein-Uhlenbeck process are given in
(2.3) through (2.5). The following theorem can be proved more simply than the
previous one by simply using the explicit formulas for'the estimators and (3.1)
and (3.2).

THEOREM 3.2. Asn — «x,

n-1/25 -

. 7
G2 -5 ol
n(l-¢,) B

Finally, we consider some ‘“‘naive” estimators. Let

1 -1
(3.16) ¥, = ; Z‘, ya(t + 1),
(B17)  Fu=—"7 g ¥a(2),
1n-1
(3.18) s7=— ; [ya(t + 1) = 3(8)]%,
(3.19) ro= =0 [yn(t + 1) _an] [yn(t) _ynO]

" ({Zflol[yn(t +1) _ynllz}{):?;()l[yn(t) _5'"0]2})1/2 '

We refer to 7,, s2 and r, as the naive estimators of u,, of and ¢,,
respectively. Note that r, is precisely the bivariate correlation of the pairs
(7,00, v, (1), (y,1), y,(2),...,(y,(n — 1,y,(n)),andso -1 <r, <1 as. Itis
important to use ¥,, and ¥,; in the definition of r, (rather than ¥,) to ensure
r, isin (=1, 1).

THEOREM 3.3. Let
' LY(1) - Y(0)][¥(1) + Y(0) + 2¥] — jY(¢) - vay ()
[[¥(e) - ¥7]" at

(3.20) B =
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Then as n — =,

_1/25,71, ?
8,2,‘ -p 0'02 .
n(l-r,) B

Proor. We will assume as in (3.1) and (3.2) that all convergences are
taking place on a common probability space so that we may use convergence in
probability rather than convergence in distribution, and — will mean —p
for the remainder of the proof. Now it is clear from (3.1) that

n~V?% —Y and n V%, ->Y, _i=0,1.

Also, s2 - o as already noted below (3.5). Thus, we need only take care of the
convergence result on r,. Put

1
Sfi:;z[y(t-l-i)_yni]z’ i=0’1’

-1

L GE A
The result (3.1) also implies that n~'S2, - S? as n — «. Some algebra will
show that

n8S,0( 8,1 — Sno) — ):[y(t) yo] Ay(t)
SnOSnl

(3.21) n(l-r,)=
Now

S0
S10(Sn1 = Sno) = W_[y(n) y(O1[y(n) +y(0) + 71 + Fo]

- 5[Y(1) - Y(0)][Y(1) + Y(0) + 27].

If one multiplies the numerator and denominator in (3.21) by n~! and uses

this latter along with (3.2) the desired result follows. O

4. Monte Carlo results. Tables 1 through 3 present the results of a
simulation study of the various estimators. The simulation program used the
IMSL subroutine GGNML to generate n + 1 pseudorandom variates which
were used to construct AR(1) sample paths according to the model (1.1). We
considered three estimators of B, and v, (the naive, MCLE and MLE) and
four estimators of of (62 is the ordinary sample variance). All estimators
except the MLE were computed directly from the formulas. The MLE was
comiputed by a Newton type algorithm using finite difference approximations
to the derivatives of the log likelihood function as a function of B with » and
o? substituted out, as in the proof of Theorem 3.1. The naive estimator was
used as the starting value, and convergence was quite fast, requiring on the
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TABLE 1
Summary of simulation results for estimators of B,

Bo n Estimator Bias Mean squared error
5 100 T 4.38 (0.03) 42.27(0.53)
B, 4.37(0.03) 43.58 (0.54)
8, 4.48 (0.03) 39.49 (0.51)
5 500 I 4.55(0.03) 46.11 (0.57)
B, 4.55 (0.03) 47.89 (0.59)
B8, 4.22 (0.03) 42.87 (0.55)
2 100 T 4.68 (0.03) 40.21 (0.46)
B, 4.68(0.03) 42.00 (0.48)
B, 4.27(0.03) " 36.21(0.44)

Note: For all cases, vq = 1 and ¢Z = 1. Estimated standard errors are shown in
parentheses next to the figure.

TABLE 2
Summary of simulation results for estimators of v,

Bo n Estimator Mean squared error

0.032 (0.000)
0.376 (0.291)
0.029 (0.000)

0.032 (0.000)
0.172 (0.061)
0.030 (0.000)

0.139 (0.001)
286 257)
0.125 (0.001)

5 100

3

> Rl
3

R

5 500

N
>§n= |

b

2 100

0 Rl
>= I=

S

Note: For all cases, v, = 1 and o¢ = 1. Estimated standard errors
are shown in parentheses next to the figure.

TABLE 3
Summary of simulation results for estimates of o

bo n Estimator Mean squared error
5 100 - All 0.020 (0.000)
5 500 All 0.0040 (0.0003)
2 100 All 0.020 (0.000)

Note: For all cases, vy = 1 and ¢2 = 1. Estimated standard errors
are shown in parentheses next to the figure.
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average less than two iterations of the Newton algorithm. The results were
compared with those of the SAS statistical package on selected sample paths in
order to validate the program. All results are based on 25,000 Monte Carlo
replications.

The results indicate that the MLE is the best of the estimators considered
in terms of mean squared error, although not by much in comparison with the
naive. Two surprising results emerge. First, all estimators of B, are badly
biased, with the bias becoming worse as B, becomes smaller. It should be
possible to find improved estimators of B, by ‘shrinking” toward 0, with the
amount of “shrinkage’” becoming larger as say the sample lag-one autocorrela-
tion becomes larger. The bias in the estimators of the other parameters was
negligible compared to the variance and so is omitted. A second surprising
result is the poor performance of the MCLE of the location v, particularly as
B, becomes smaller. This is also the widely used least squares estimator of
location. The main problem here is the term (y(n) — y(0))/B [see (3.14)],
which severely inflates the variance. Results presented by Bobkoski (1983)
indicate that there is some probability of obtaining B close to 0 (it may even be
negative, which is why B was not used as the starting value for the itera-
tive calculation of the MLE). Alternatively, if one considers the Ornstein-
Uhlenbeck observation, with 8 known, the Fisher information about » in the
conditional likelihood is

I(v|Y(0); B) = B?/0?,
whereas for the full likelihood (with 8 known)
I(v;B) = (B* +2B)/0*.

For small B, the latter is much larger than the former. This inaccuracy in V
does not seem to present a problem for the other parameter estimates B or 62

As the MCLE is in general the worst of the estimators, we suggest that one use
either the naive estimators or the full MLE, until something better is found.

REFERENCES

AnsLey, C. and NewsoLD, P. (1980). Finite sample properties of estimators for autoregressive
moving average models. J. Econometrics 13 159-184.

ArNOLD, L. (1974). Stochastic Differential Equations: Theory and Applications. R. Oldenbourg,
Munich.

BoBkoski, M. J. (1983). Hypothesis testing in nonstationary time series. Ph.D. dissertation, Univ.
Wisconsin, Madison.

BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, Mass.

CHaN, N. H. and WEr, C. Z. (1985). Asymptotic inference for nearly nonstationary AR(1) processes.
Technical Report, Dept. Mathematics, Univ. Maryland, College Park.

Cuan, N. H. and Wer, C. Z., (1987). Asymptotic inference for nearly nonstationary AR(1) pro-
cesses. Ann. Statist. 15 1050-1063.

CuMBERLAND, W. G. and SYkEs, Z. M. (1982). Weak convergence of an autoregressive process used
in modelling population growth. J. Appl. Probab. 79 355-367.

FEIGIN P. D. (1976). Maximum likelihood estimation for continuous time stochastic processes.
Adv. in Appl. Probab. 8 712-736.

FEGIN, P. D. (1979). Some comments concerning a curious singularity. J. Appl. Probab. 16
440-444.



1142 D.D. COX

FuLLER, W. (1976). Introduction to Statistical Time Series. Wiley, New York.

Harvey, A. C. (1981). Time Series Models. Halsted, New York.

LipsTER, R. S. and SHIRYAYEV, A. N. (1977). Statistics of Random Processes. 1. General Theory.
Springer, New York.

NARASIMHAN, R. (1968). Analysis on Real ald Complex Manifolds. Masson and Cie, Paris.

PuiLLips, P. C. B. (1987). Toward a unified asymptotic theory for autoregression. Biometrika 74
535-547.

Tia0, G. C. and Tsay, R. S. (1983). Consistency properties of least squares estimates of autore-
gressive parameters in ARMA models. Ann. Statist. 11 856-871.

Tsay, R. S. (1985). Asymptotic inference of least squares estimates in nearly nonstationary time
series. Technical Report, Dept. Statistics, Carnegie Mellon Univ.

DEPARTMENT OF STATISTICS
101 Irnuint HALL

+ UNIVERSITY OF ILLINOIS
725 SouTH WRIGHT STREET
CHAMPAIGN, ILLINOIS 61820



