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SOME POSET STATISTICS

By PauL R. ROSENBAUM

University of Pennsylvania

Statistics or functions are discussed that measure agreement between
certain types of partially ordered data. These poset statistics are a general-
ization of two familiar classes of functions: the arrangement increasing
functions and the decreasing reflection functions; those functions measure
agreement between linearly ordered data. Specifically, the statistics in
question are functions h(Xy,X,) of two matrix arguments, each having N
rows and they measure the agreement of the ordering of the N rows of the
two matrices. An example is used to illustrate and motivate the discussion.
One statistic in this class is applied to the example; it generalizes Wilcoxon’s
rank sum statistic, Spearman’s rank correlation and Page’s statistic for
ordered alternatives.

1. An example of a statistical poset. This note concerns a class of
functions that measure agreement between certain types of partially ordered
data that occur in statistics. The partially ordered sets (or posets) discussed
here are among the simplest types of posets; they are direct products of
linearly ordered sets.

Consider the following example. Morton, Saah, Silberg, Owens, Roberts and
Saah (1982) studied lead in the blood of the children of employees in a factory
in Oklahoma which used lead in the manufacture of batteries. There were
N = 34 children from 34 different families. The thought was that employees
might bring lead home in their clothes and hair, thereby exposing their
children. Morton, Saah, Silberg, Owens, Roberts and Saah classified employees
in two ways. First, employees had varied jobs and therefore varied exposures
to lead on the job; so employees were classified as having a low (0), medium (1)
or high (2) exposure to lead. Second, employees were observed to vary in their
hygiene and were classified into three categories, good (0), fair (1) and poor (2).
Indicate the classification by the ordered pair (exposure, hygiene). The quan-
tity of lead in each child’s blood was also measured. Their data are given in
Figure 1. If parental exposures are responsible for the lead in a child’s blood,
then we would anticipate agreement between children’s lead levels and the
partial ordering of the categories given by (a;, a,) < (b, by) if and only if
a; <b; and a, < b,.

The original study applied the Kruskal—Wallls test twice to the data in
Figure 1, once for level of exposure and once for hygiene. Although this did not
lead to an error of interpretation in this case, it is arguably not the best
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(High, Poor)
23, 24, 34, 35, 37, 38, 39, 43,
44,45, 48,62, 73
n=13, median=39

(Medium, Poor) (High, Medium)
20, 22, 31,34, 35 18,41,49
n=5, median=31 n=3, median=41
(Low, Poor) (Medium, Medium) (High, Good)
10, 15, 17, 21, 23, 27, 36 9 13, 14,25

n=7, median=21 n=3, median=14

(Low, Medium) (Medium, Good)
16 39

(Low, Good)

Fic. 1. Blood lead levels of children classified by parent’s exposure and hygiene. Labels are
(exposure, hygiene).

approach. A practical byproduct of the general discussion in Sections 2 and 3 is
a better test for this problem and a property that good tests should have.

Let Z be the 34 X 2 matrix in which the first column indicates the level of
the parent’s exposure and the second column indicates the level of hygiene. Let
Y be the 34 X 1 matrix indicating the children’s blood lead levels. What does it
mean to speak of agreement between arrangements of Z and Y?

Let 3, ; be the N-dimensional column vector whose ith coordinate is 1/v2,
whose jth coordinate is —1/ V2 and whose other coordinates are 0. Then the
N X N matrix I— 23,,5;; acts on RY by interchanging the ith and jth
coordinates. o

Consider a = Z73,;5]Y. Then a has mth coordinate a,, = 3(Z,,, — Z;,,)
(Y; - Y)), for m = 1,2. Compare child i and child j. If a; > 0 and a, > 0 with
at least one strict inequality, then the child with the higher blood lead level
also has both the higher parental exposure and the poorer parental hygiene. In
the case of these two children, the partial order on the rows of Z agrees with
the linear order on Y. On the other hand, if a; < 0 and a, < 0 with at least
one inequality strict, then the child with the lower blood lead level has both

the higher parental exposure and the poorer parental hygiene, so the two
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orders disagree. Finally, if one a,, is negative and the other is positive, then
there is neither clear agreement nor clear disagreement between the two
orders. A function which measures agreement should be large when there are
many choices of i and j such that ¢; > 0 and a, > 0.

Let A(Z, Y) be a real-valued function which is unchanged by simultaneously
reordering the rows of Z and Y in the same way, that is, a statistic unchanged
by renumbering the 34 children. Suppose that we have selected a pair (, j) of
children such that e¢; > 0 and a, > 0, so this pair is not out of order. If
h(Z,Y) measures the agreement between Z and Y, then knocking this pair out
of order should not increase the function, that is, we should have h(Z,Y) >
h(Z,[I — 25, jﬁi ;1Y). This is the principle underlying the general discussion in

Section 2 and it has a long history.

2. Functions measuring agreement between two matrices. Let
B ={x € R": x"x = 1}. For any x € B, the N X N orthogonal matrix S_ =
I — 2xx" is a reflection; it acts on RM by reflecting points through the
hyperplane orthogonal to x. A finite reflection group G with root system
A C B is a group of finitely many N X N orthogonal matrices such that (i) G
is the smallest group containing the reflections {S;: 8 € A} and (ii) a reflection
I — 2xx" is in G only if x € A. The group my of all N X N permutation
matrices is a finite reflection group with root system A = {3, »1<i#j<N}
where 8, ; was defined in Section 1. Other finite reflection groups that arise in
statistics include the group of coordinate sign changes, the group of coordinate
sign changes and permutations, the group of permutations within blocks or
subclasses and various direct products of these groups. For discussion of finite
reflection groups, see Eaton (1982, 1987) and Grove and Benson (1985) and
the references given there. The group of sign changes and permutations is
applied to sensitivity analysis for the signed-rank and related statistics in
Rosenbaum (1987, Section 4).

Let G be a finite reflection group with root systemA. A set D of N X M
real matrices is G-invariant if X € D implies gX € D for all g € G. For
k =1,2, 1let D, be a G-invariant set of N X M, real matrices, with N > 2 and
M, > 1 and let D; X D, be the direct product of these two sets. A function
h: D, X D, - Ris G-invariant if h(X;,X,) = h(gX,, gX,) for all g € G. Write
A > 0 if A is a nonnegative matrix, that is, if a;; > 0 for each i and ;.

DEFINITION. A G-invariant fun¢tion h: D; X D, - R is an (M, M,)-
decreasing reflection function (or dr function) if for all 3 € A and all X, € D,
k=12

(2.1) XT38'X, > 0 implies A(X;,X,) = 2(X;,S,X,).

In words, when G is the group m, of permutation matrices, if two specific
rows of X, and X, are arranged in the same way, then deranging these two
rows of X, yielding S;X, will reduce (i.e., not increase) A. A (1, 1)-dr function
is a decreasing reflection function as defined in Eaton (1982, 1987). The
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(1,1)-dr functions for the group m, of permutations are the arrange-
ment increasing functions, discussed with various names by Eaton (1967),
Hollander, Proschan and Sethuraman (1977), Marshall and Olkin (1979, Sec-
tion 6F) and D’Abadie and Proschan (1984). Related ideas are discussed by
Savage (1957).

Hollander, Proschan and Sethuraman (1977) develop many properties of
arrangement increasing functions and the reader can easily verify that most of
these properties also hold for the larger class of (M,, M,)-dr functions, some-
times with minor modifications. Two properties in particular deserve mention.
First, they show that A(w,v) = Il f(w,,v,) is arrangement increasing when
f(-,-) is TP,. Analogously, h(X;,X,) =TI1f(x,,X,,) is (M, M,)-dr with
respect to w5 when f(-,-)is MTP, in the sense of Karlin and Rinott (1980),
where x,,, is the nth row of X,.

The second property that deserves mention is the extension of the composi-
tion theorems in Hollander, Proschan and Sethuraman [(1977), Theorem 3.3]
and Eaton [(1982), Theorem 4.3; (1987), Section 3.4)]. Let A,: D; X D, - R be
an (M, 1)-dr function and let h,: D, X D; > R be a (1, M,)-dr function,
where D, is a G-invariant set for £ = 1,2, 3. Let u, be a o-finite, G-invariant
measure on D,. If, for all (X;,X;) € D, X D,, the integral h,(X,,X,) =
Ip,h1Xy, L) (Z, X 3)u(d Z) is well-defined and finite, then % 4(X,, X;) is called
the composition of &, and h,. The composition theorem asserts that the
composition A 4(X;,X3) is (M, M;)-dr. The proof of the composition theorem
for M; > 1 and M, > 1 is identical to the proof for (1, 1)-dr functions given in
Eaton [(1982), Section 4; (1987), Section 3.4].

3. Rank-scores. Is it possible to assign rank scores to the rows of a
matrix? That is: Is it possible to assign numerical ranks or scores to the rows
of an N X M matrix X in a manner that is consistent with the ordering
implied by G? Let D be a G-invariant set of N X M matrices, and let
p: D > RN, We say that p(-) is G-equivariant if p(gX) = gp(X) for all X € D
and all g € G. An M-tuple (a,,...,a,) is said to have constant sign if all of
its coordinates have the same sign, that is,if a; > 0fori = 1,...,Mora; <0
for i = 1,..., M. A G-equivariant function p(-) is called a rank-score function
if for every X € D and 8 € A, we have p(X)"33"X > 0 whenever 8'X has
constant sign. In words, this says that if the ordering of certain rows of X is
clear (in the sense that "X has constant sign), then the ordering of the
corresponding rank scores p(X) agrees with the ordering of X. When M =1
and G = my, conventional ranks are rank-score functions, providing average
ranks are used for ties. For M > 2 and G = my, a simple rank-score function
p*(X) is obtained by separately ranking the M columns of X, with average
ranks in case of ties and using the sum of the ranks in a row as the score for
that row.

A rank-score function is intended to assign scores to the rows of X in a
manner consistent with the order implied by G, that is, the order measured by
the (1, M)-dr functions. The following proposition says the rank-score func-
tions are precisely the functions that do this. The proof is elementary and is
omitted.
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ProposITION 1. A G-equivariant function p: D —» RV is a rank score
function if and only if for every (1, M)-dr function h: RN X D - R, and for
every X € D and 8 € A such that 8'X has constant sign, we have h{p(X),X} >
h{p(X), S;X}.

The following proposition states that statistics p(X;)'p,(X,) which are
sums of rank products are (M;, M,)-dr functions. When M; = M, = 1, many
familiar nonparametric statistics are essentially of this form for suitable X’s
and suitable choices of the rank-score functions. In particular, this is true of
Wilcoxon’s rank sum statistic, Spearman’s rank correlation and Page’s (1963)
statistic, though in the last case the group G is not 7, but rather the group of
permutations within blocks. For M, > 1 or M, > 1, one statistic of this form
is p*(X,)'p#(X,). As a second example, suppose there are M; > 1 outcome
measures in X; and there are two treatment groups indicated by the binary
coordinates of the M, = 1 column of X,; then p#(X,)'X,, is the sum of M,
Wilcoxon rank sum statistics and is also of the form covered by Proposition 2.

ProposITION 2. Let p,: D, > RN be a rank-score function for k = 1,2.
Then p,(X,)'p,(X,) is an (M;, M,)-dr function on D; X D,.

Proor. By equivariance, for all g € G,

p1(8X,) p2(8X,) = pi(X) 8'82(X,) = pu(X)) pa(X2),

since each g is an orthogonal matrix; so p,(X;)p,(X,) is G-invariant.
Let d € A. Assume that X]33'X, > 0; this implies that 8"X; and 3"X, have
the same constant sign. Now p,(X)p,(S;X,) = p,(X)'S;p.(X,) =
p,X))p,(X,) — 2p,(X,)7887p,(X,), so it suffices to show that p,(X,)"88"p,(X,)
> 0. Since, for i = 1,2, p,(X,) is a rank-score function, it follows that the sign
of p;(X;)™8 is the same as the common constant sign of both 3"X; and 3"X,,
proving the result. O

4. A return to the example. The following presumptions seem to un-
derlie the study by Morton, Saah, Silberg, Owens, Roberts and Saah (1982) in
Section 1. Over a period of years, the parent of the ith child brings home a
quantity x; of lead, some of which finds its way into the child’s bloodstream.
At least in this study, the quantity x; could not be measured directly. We
anticipate that generally higher quantities x; of lead will be brought home by
parents with higher exposures and poorer hygiene, though there may well be
individual exceptions to this pattern. We also anticipate that a higher quantity
x; brought home will generally yield a higher level y; in the child’s blood-
stream, though again there may be individual exceptions. We might go further
and conjecture that parental exposure z;; and hygiene z,, are relevant to the
child’s lead level only through the quantity x; of lead brought home. If x; were
observed, we would examine the relationship between x; and y; and be done,
but this is not possible. Instead, we must examine the relationship between
observable quantities, namely y, and (z;, 2;5). We seek a test whose power
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increases with increasing similarity of the ordering of the unobservable x; and
the observable (z;;, 2;5). Let us formalize this.

Let h(Z,Y) be a (2, 1)-dr statistic with respect to 7 selected to measure the
relationship between the y, and the (z;y,2,,). Suppose pr(y,lx;, z,,, 2;5) =
pr(y;lx;), so that, as before, the child’s lead level depends on the parent’s
exposure and hygiene only through the amount of lead brought home. Suppose
that pr(y,lx;) is TP,, so that, as before, y;, and x; are either positively related
or independent, the null hypothesis being independence. Finally, suppose the
y;’s are conditionally independent given the (x;, 2;,, 2;5). Then pr(Y|X,Z) =
pr(Y|X) = ITpr(y,lx;) is (1, 1)-dr. Write Y for the order statistic Yy -+ ,y(N))
where yy) < -+ <y, It is easily checked that the permutation distribution
pr(YX,Z,Y) = pr(Y|X,Y) is (1, 1)-dr when viewed as a function of Y and X;
note that this distribution is nonzero only on the orbit of ¥, namely Orb(Y) =
{gY g € wy}. Write |A| for the cardinality of a set A, so |Orb(Y)| is the
number of distinct rearrangements of ¥, which may be less than N! if there
are ties. Under the null hypothesis, pr(YIX, Y) is constant on Orb(Y), that is,
pr(Y = g¥IX,¥) = pr(Y = YIX, ¥) = 1//0rb(Y)| for all g € N, S0 under the
null hypothesis, the conditional distribution is a known permutation distribu-
tion. Let k¢ be the smallest value of A(Z,Y) for Y € Orb(Y) such that

g |{Y € Orb(Y): 2(Z,Y) = kg}|
- |Orb(Y) |

so a level a conditional test based on h(Z,Y) rejects when h(Z,Y) > k. Let
the indicator [A(Z,Y) > k] equal 1 if A(Z,Y) > k¢ and equal O otherwise.
Since A(Z,Y) is (2, 1)-dr on Orb(Y), so is [A(Z,Y) > k¢]. Then the conditional
power of the test is

B(Z,X;Y)= ¥ [R(Z,Y) = kg|pr(YX,Y),
Y € Orb(Y)

which is (2,1)-dr in Z and X for each Y by the composition theorem. The
marginal power B(Z,X) = [B(Z,X;Y) pr(Y|X) dY is also (2, 1)-dr. This means
that, when the null hypothesis of independence is false, the power of the test
increases steadily as the ordering of the quantities x; of lead brought home is
permuted to resemble the ordering suggested by exposure z;; and hygiene z;,.
In other words, the test will be particularly sensitive when exposure and
hygiene do a good job of sorting parents by their unobserved x,’s. Following
D’Abadie and Proschan (1984) in the case of (1,1)-dr functions, a power
function that is (M;, M,)-dr with respect to G is said to be isotonic in the
G-order. Isotonic power is an attractive property in a problem such as this. It
is a property of all (2, 1)-dr statistics, but not of the Kruskal-Wallis statistics
used in the original study.
A s1mple (2, 1)-dr statistic h(Z,Y) is the sum of rank products
p¥(2)Tp3(Y) = 22,784. Write p, = p;"(Z) and py = p%(Y) and let p, and py be
thelr means, for example, p, = (1/N)1'p,. By fam111ar arguments for linear
rank statistics, under the null hypothesis, the conditional moments of the

)
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test statistic given Z,Y are E(pypy) = Np,py = 20,825 and var(plpy) =
{1/(N — DXZ(pz; — pz)HE (py; — py)?} = 377,296, leading to a deviate of
(22,784 — 20,825)/ V377,296 = 3.2. The central limit theorem for linear rank
statistics leads to an approximate one-sided significance level less than 0.001.
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