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BLOCK DESIGNS AND ELECTRICAL NETWORKS

By TuE Tgur
University of Copenhagen

For a given block design, an electrical network is constructed in which
blocks and treatments are represented by points and observations by
connections. This network has the property that the resistance between
two points representing two different treatments is equal to the variance on
the estimate of the corresponding treatment contrast in the usual additive
block effect plus treatment effect model. This provides a simple tool for
computation of contrast variances in many examples. Further applications
are made to obtain lower bounds for contrast variances and upper bounds
for efficiencies. A particular application is a complete solution to the
problem of finding the A-optimal design in the case where the number of
blocks equals the number of treatments and the blocks are of size 2.

1. Introduction. Consider a block design, that is, a finite set B of
blocks, a finite set T of treatments and a B X T matrix N of nonnegative
integers n,, indicating how many times treatment ¢ occurs in block b. Draw a
graph as follows. Each block and each treatment is represented by a point
(vertex). Each plot (i.e., each occurrence of a treatment in a block) is repre-
sented by a connection (edge) between the points corresponding to the block
and the treatment assigned to that plot. Thus, n,, connections are drawn
between the points b and ¢, whereas two block points or two treatment points
are never directly connected (the graph is bipartite). Now, think of the graph
as a diagram of an electrical network where the edges are connections of unit
resistance (1 ohm). The properties of this network turn out to be closely
related to the properties of the design. The most interesting relation is
probably the following. Consider the standard block + treatment model, as-
suming that the observations (yields) on plots are independent, normally
distributed with common variance o2 and means of the form a, + B;. For two
treatments ¢ and ¢”, let R(¢,t") denote the resistance through the network
between the points corresponding to ¢’ and ¢”. Then

Va.r(&tr - aAt") = UzR(t’, t”),

where &, — &,  is the (maximum likelihood or least squares) estimate of the
simple contrast a, — a,.

For some block designs (including balanced incomplete block designs, simple
lattices and a few others) it is easy to compute the contrast variances explicitly
by reference to this result, simply by drawing the network in a convenient
manner and using the laws for parallel and serial combination of resistances,
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BLOCK DESIGNS AND ELECTRICAL NETWORKS 1011

together with some straightforward rules for cancellation and short circuiting
of connections that do not carry any current. This gives some insight in the
way contrast variances depend on design structure. One byproduct of this is a
solution to a design optimization problem put forward by Jones and Eccleston
(1980). Section 5 contains a discussion of the relation of the present work to
the work of other authors, in particular Borre and Meissl [(1974), on a relation
between geodetic networks and potential theory], Dynkin [(1980), on a rela-
tion between Markov processes and Gaussian fields], Paterson [(1983), on
properties of a related graph derived from a block design and its relation to
efficiency] and Eccleston and Hedayat [(1974), on connectedness properties of
designs].

2. The main result.

NoratioN. By I, B and T we denote the sets of plots, blocks and treat-
ments, respectively. Elements of these sets are denoted i,i,i,,... €1,
b,b',b,,... € B and ¢,t,t,,... € T. Whenever convenient, we assume I =
{1,2,...,I}, T=(1,2,...,T} and B =1{(1,2,..., B}, thus letting I, B and T
denote both the finite sets and their cardinality. This is not likely to cause any
confusion in the present context.

Formally, a design is given by two mappings ¢5: I - B and ¢,: I - T,
assigning factor levels to plots [cf. Tjur (1984)]. The statistical properties of the
design are determined by the integers n,, = #{i € I|lpg(i) = b and ¢,(i) = ¢},
constituting the B X T incidence matrix N = (n,,). By k,, we denote the size
of block b and by r, the number of replicates of treatment t.

The design network is defined as follows. The set of points of a graph is

taken to be the disjoint union of B and T. On figures, we use signs - for
treatments and o for blocks, to distinguish. A connection from b € Btote T
is introduced for each occurrence of treatment ¢ in block b. Thus, the set of
connections can (and will) be identified with I. We interpret the graph as an
electrical network where these connections are unit resistances (1 ohm). In all
that follows, we shall assume that the design is connected, in the sense that
any two treatment points ¢’ and ¢” can be joined by a chain ¢’ = ¢,b,¢,b,
b, it, =" such that n, , (i= ,n) and n,, (i=1,...,n~ 1) are
positive. This is easily seen "to be equlvalent to the condition that the design
network is connected in the obvious graph theoretic sense, provided that all &,
and r, are positive.

THEOREM 2.1. Let y = (y;li € I) be a vector of real random variables,
independent and normally distributed with common variance 0% and expecta-
tions given by

Ey,=a,+ B, (t =er(i), b =0p(1)).

Let (&,) and (B,) be maximum likelihood (or least squares) estimates of (a,)
and (Bb) in this statistical model. Let R(p', p") denote the resistance between
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points p' and p" of the network. Then,

(i) The variance of an estimated treatment contrast is given by
var(d, — @,) = o®R(t',t").

(ii) The variance of a fitted value is given by
var(&, + B,) = o2R(¢,b).

(iii) Let &, — @, = ¥ ,a'"y, be the expression of the estimated (t',t")-con-
trast as a linear combination of the observations. Then, the coefficients a""
have the following interpretation as potential differences in the network.
Suppose that voltages R(t',t") and 0 are kept fixed at the two points t' and t’,
while all other points are left untouched. Then, a''" is the current through
connection i, signed so that current from block to treatment counts negative
while current from treatment to block counts positive. Or (since potential
difference = current through a unit resistance),

oo B
@ = Vory ~ Veptiy

where v, denotes the potential at the pointp € BU T.

REMARKS. We have used the term fitted value for the estimate &, + ;. For
combinations (¢, ) which do not occur in the design, a term like predicted
mean of hypothetical observation would be more correct. But the result (ii) is
valid in both cases.

Notice that the formula R(#,¢") = L (v, ) — v,,:)? [which follows from
(1) and (iii)] has the physical interpretation that the total energy per time unit
developed by the network equals the sum of energies per time unit emerging
from the single connections.

Notice also that (iii) suggests a way of solving the normal equations numeri-
cally by means of relatively simple physical equipment. This would have been a
potentially useful result before the digital computer age.

Proor. Consider the (T' + B) X (T + B) matrix

diag(r,) N*

C=() = "N diag(r,) |

Let X, denote the I X T design matrix for the factor T [cf. Tjur (1984)], that
is,

17 fOI'(PT(i) =t,
0, otherwise,

(Xn)u = |

and define Xz(I X B) similarly. The normal equations determining the maxi-
mum likelihood estimates (up to an arbitrary constant to be added to all «,
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and subtracted from all 8,) can then be written

X;XT X;XB a| X;'k
[B] | xx v
B

XiX, XiXp
The partitioned square matrix on the left is easily seen to equal the
previously defined matrix C. Now, let C~ be a symmetric (T' + B) X (T + B)
matrix such that CC~C = C and C~CC~= C~ [ a reflexive generalized inverse
for C, cf. Rao (1973)]. One solution to the normal equations is then given by

-+

and the covariance matrix for this set of estimates is o2C . It follows that the
variance on an estimated contrast &, — d,. is

var(@, — &) = (1, — 1,)*(0*C7) (1, - 1),
RB+T

X7

y
Xp

with an obvious notation for vectors in which are 1 at a single coordi-

nate and 0 elsewhere. Similarly, the variance of a fitted value @, + Bb is given
by

var(@, + B,) = (1, + 1,)*(02C7)(1, + 1,).

As to the interpretation of C in the network context, suppose that a voltage
difference of R(¢,t") is kept fixed between the two points ¢’ and ¢”. According
to Ohm’s law, the current through the network from ¢’ to ¢” will then be 1
ampere. The laws of Kirchhoff, determining the potential differences between
all other points of the network, can be stated as follows. Let v, (p € T U B)
denote the potential at the point p. The current through a connection from ¢
to b is then v, — v,. The currents leaving ¢' via connections to other (block)
points of the network must sum to 1, that is,

(2.1) Y (vy —vp)nyy = 1.
beB

Similarly, the currents entering ¢” must sum to 1, that is,

(2.2) Y (vp —vp)nyy = —1.
beB

For all other points of the network,' the sum of (signed) ingoing currents
equals 0, that is, for ¢ # ¢/, ¢”,

(2.3) Y (v~ vy)ny, =0
beB

and for b € B,

(2.4) Y (v, — vp)ny, = 0.
teT

The equations (2.1),...,(2.4) are conveniently put together in the matrix
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equation
(v)
(—vs)

where the matrix C defined earlier occurs as the coefficient matrix. For C~
defined as before,

(2.5) C[ = lt’ - lt"’

(26) [((”‘) = C (1, - 1,)

—vp)

is then a solution to the network equations. It follows that

(ve) }
(—vp)

= (1t’ - 1!”)*0_(11," - 1:")-

R(¢,t") = v, — v, = (1, — 1t,,)*[

Comparing this with our expression for the contrast variances in the
statistical model, we see that (i) has been proved. The proof of (ii) is similar.
Our convention that potentials of block points occur with a minus sign in the
equations means that the role of 1, — 1,. is taken over by 1, + 1,, but except
for this the proof is exactly the same.

In order to prove (iii), consider the expression

*
T

y
X

. A & _
at' - at" = (lt' - lt”)*[éjl = (lt’ - 1t~)*c

for the estimated contrast. By (2.6), this equals

U * X;‘k U, ¥
[<(—v1>] [ }y=[<( )] (B0 10)

Xz —Up)
= Z (Vory = Vopir)Yis
13
which proves (iii). O

REMARK. It should be noticed that the design-network relation relies on a
somewhat artificial way of writing the network equations. From a physical
point of view, the shift of sign for block point potentials is an unnecessary
complication. The canonical matrix for the network (Kirchhoff’s matrix) is not
C, but the matrix which can be obtained from C by change of sign of the
diagonal elements. Unfortunately, this means that there is no way of extend-
ing the design-network isomorphism to additive models in designs with three
or more factors. It is not even clear what the design network should be in that
case.
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3. Examples.

ExaMpLE 3.1 (Circular design with 3 blocks of size 2). Consider the small-
est possible balanced incomplete block design (BIBD), 3 treatments arranged
in 3 blocks of size 2. The design network is given by Figure 1 (notice: blocks
are drawn as small circles, treatments as points).

The resistance between two treatment points, for example, 1 and 2, is easily
computed. We can split this into two parallel resistances, each of which is a
serial combination of unit resistances (2 and 4, respectively). By the rules for
parallel and serial combination (hereby revived), we have

RL,2)=[A+D)  +@+1+1+1)7Y] "= [2+1]7 =4

Thus, var(d@, — &) = ($)o 2.

This computation is immediately generalized to circular designs with T
treatments arranged in B = T blocks of size 2 in such a way that the design
network has a circular form, similar to that of Figure 1.

ExamPLE 3.2 (A more complicated BIBD). The cyclic design which has 7
treatments arranged in the 7 blocks {1,2,4},{2,3,5},...,{7, 1, 3} (each block
constructed from the previous one by addition of 1 modulo 7) is a BIBD (any
two treatments meet in exactly one block). Figure 2 shows the design network.

When the graph is drawn like this, it is easy to see that a constant voltage
difference between treatment points 1 and 2 will induce the same potential at
the points in the middle of the figure. A more detailed argument for this goes
as follows. Suppose that block points 3 and 4 (and their 6 connections) are
removed from the network. Then it is rather obvious that the potentials at
treatment points 3, 4, 5, 6 and 7 and block point 1 will be equal. Now,
reintroduce the connections that were removed. This will merely create some
connections between points with the same potential and since none of these
new connections will carry any current, the points in the middle of the figure
will still have the same potential. Hence (with vl denoting the potential at
treatment point ¢, v the potential at block point b, to avoid index confusion),

vB =vP =vf =0l =0 =0l =0l =07 Similarly, v? = v2 and v§ = v{.

1

Fic. 1.
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Now, notice the trivial fact that resistances of connections between points
with the same potential may be changed arbitrarily, without change of the
potentials. In particular, points with the same potential may be short circuited
(i.e., connected by a O-resistance or contracted to a single point), or the
connection between them, if any, may be removed. In the present case, we may
perform the following operations, without changing the solution to the net-
work equations: Contract block points 5 and 7 to a single point, contract block
points 2 and 6 to a single point, cut the connection between block 1 and
treatment 4 and finally contract all points in the middle, except block 1, to a
single point. These operations create a new network (Figure 3) for which the
resistance is easily computed as

R(L2) =[(1+1) "+ (F+i+1+ %)‘1]“ -

<o

A more careful examination of this argument will show that it is valid for
any BIBD. We shall not give the details, but merely notice this as one
explanation of the fact that there is a simple formula for the contrast variance
in a BIBD.

Other examples are the simple lattice designs and complete block designs
with a single observation missing. In both cases the design network can be
drawn in such a way that straightforward use of cutting, short-circuiting and
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the rules for parallel and serial combination of resistances give a simple
formula for the contrast variances [Tjur (1987)].

ExampLE 3.3. A paper by Jones and Eccleston (1980) contains an interest-
ing remark on designs with 2 = 2 and B = T. It appears that the circular
design (cf. Example 3.1) is not always optimal when the replicate counts are
allowed to vary freely. Optimality here means A-optimality, that is, the
property that the average of the T(T — 1)/2 contrast variances is as small as
possible. For B = T = 10, 11 and 12, designs with smaller average contrast
variance than the circular design (and, consequently, with unequal replicates)
were found. Incidentally, this is a situation where the electrical network
approach gives a complete solution to the optimization problem.

For B =T and k = 2, the design network must necessarily be of the form
illustrated by Figure 4 for the case B = T' = 10, that is, a circular subgraph
equipped with a number of (optionally branching) rays. Figure 4 is actually the
variety concurrence graph [Paterson (1983)], but the design network comes out
of it if we imagine a block point at the midpoint of each connection. The fact
that the design network must have a structure like this follows from basic
graph theory. A connected graph with B + T points and B + T — 1 connec-
tions is a tree, that is, a graph without cycles, and if a single connection is
added to this, a graph with exactly one cycle comes out of it. Now, it is easy to
see that the operation which collects all the rays and fixes them at the same
point of the cycle will improve the design. For example, the design of Figure 5
is better than that of Figure 4 because resistances between treatment points
on the rays are either decreased or unchanged by this operation, while the
average of the remaining contrast variances is obviously unchanged. Similarly,
it is easy to see that the operation which breaks a ray into single connections
and fixes these pieces as short rays at the same point of the cycle, will improve
the design. Thus, the design of Figure 6 is better than that of Figure 5. These
arguments show that an optimal design in this case is always of the form
indicated by Figure 6, a circular design involving some of the treatments
extended by a number of blocks in which the remaining treatments occur
together with a selected baseline treatment from the circular design. By the
rules for parallel and serial combination and some straightforward summa-
tions, it is not difficult to compute the average contrast variance of a design

FiG. 4.
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FiG. 5.

Fic. 6.

like this. It turns out to be
(c —1)(c+ 1)(§B - %c) +2(B-c)(B-1)

R= ’
zB(B - 1)

where ¢ is the number of treatments in the circular design. A straightforward
analysis of the behaviour of this third order polynomial in ¢ for fixed B gives
the following solution to our optimization problem:

For B < 8, the circular design (¢ = B) is optimal.

For 9 < B < 12, the design with ¢ = 4 is optimal. The
replicate counts of this design are B — 2,2,2,2,1,1,...,1.

For 12 < B, the design with ¢ = 3 is optimal. The replicate
countsare B —1,2,2,1,1,...,1.

The overlap for B = 12 means that the two designs with ¢ = 3 and 4 have
the same average contrast variance. The complexity of the solution confirms
the impression that design optimization is a difficult matter.

4. Lower bounds for contrast variances and upper bounds for ef-
ficiencies. The main idea of this section can be illustrated by the following
argument, which gives a very rough lower bound for a given contrast variance.
Suppose, for an arbitrary block design, that all blocks points of the design
network are contracted (short circuited) to a single point. This gives a network
of the form indicated by Figure 7. Obviously, the resistance from ¢’ to ¢” in this
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ot

FiG. 7.

network is 1/r, + 1/r,.. Since it was obtained from the original network by
the introduction of some new (0-resistance) connections, this resistance can
never be larger than the original resistance. Hence, we have proved the
well-known inequality

1 1

—_ 4 —
ry Ty

var(d, — ap) = o?,

stating that a contrast variance can never be smaller than the contrast
variance for the same two treatments in a (hypothetical) design with the same
treatments repeated the same number of times in a single block (and with the
same o2).

In fact, we can say a little more than this. The situations where the previous
inequality is an equality must obviously be those where a difference in
potential between ¢’ and ¢” induces the same potential at all block points. With
a little bit of intuition, it is not difficult to see that this happens if and only if
the occurrence counts for ¢’ and ¢” in blocks are proportional, that is, n,, =
cn,, for some constant ¢ independent of b. Thus, equality for all pairs of
treatments occurs if and only if the design is orthogonal in the sense that all
columns of N are proportional (see, e.g., Tjur (1984)).

The previous result is classical. More refined inequalities come out by less
violent short circuiting of the design network. We shall prove two such
inequalities, one that gives a bound similar to the expression for the contrast
variance in a BIBD, and a more complicated inequality based on a short
circuiting procedure which can be used for the computation of contrast
variances in a simple lattice design.

PROPOSITION 4.1. Suppose that the design is binary, that all block sizes are

equal (k, = k) and that all replicate counts are equal (r, = r). Then
r— At 2")
kr ’

where A(t',t") denotes the number of blocks in which both t' and ¢" occur.

2 -t
R(t,t") = —|1 -
( )

Proor. For two treatments ¢’ and ¢, imagine that the design network is
drawn in a way similar to that of Figure 2, with ¢’ to the left and ¢” to the
right; in the middle we have all other treatment points together with all points
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corresponding to blocks in which neither # nor ¢” occur (bottom) and those in
which both # and ¢” occur (top). Between #' and the points in the middle we
place the points corresponding to blocks in which #' but not ¢” occur, and
similarly for ¢". In this electrical network, the following groups of points are
contracted to single points by short circuiting:

I The blocks containing ¢’ but not ¢".
II The blocks containing ¢” but not ¢'.
III The blocks containing both #' and #".
IV All treatments except ¢’ and ¢” and all blocks containing neither ¢’ nor #”.

Finally, we cut all connections between groups III and IV (which is obviously
allowed, since these two points have the same potential for reasons of symme-
try) and end up with the reduced network shown by Figure 8. On this figure,
the connections are bundles of parallel unit resistances and the integers
assigned to connections are multiplicities, that is, inverse resistances [with the
short notation A for A(¢', ¢")]. The rules for parallel and serial combination give
the following expression for the resistance between ¢ and ¢” through this
network (which is then a lower bound for the corresponding contrast variance
in the original design):

1" e T <202

ProOPOSITION 4.2. In addition to the assumptions of Proposition 4.1, as-
sume that the numbers A(t',t") are all less than or equal to 1. Define

A(t',t") = #{t # ', t" (¢, 8) = A(¢,t") = 1}

(equals the number of other treatments that meet both t' and t"). Then

Rty > |2+ 2r L2
rmny s | —
(#,) = 2 rtk—D(r=A-1)+A+A r-—2A ’

where A and A are short for A(t',t") and A, t").

I

(k=11 (e-X) [\ (k=11 (r-A) 1

Fic. 8.
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Proor. The following sets of points are contracted to single points by short
circuiting:

I The blocks containing ¢’ and #".

II, The blocks containing ¢’ but not ¢".

II, The blocks containing ¢” but not ¢'.

IIT The blocks containing neither #' nor #".

IV, The treatments occurring in a block together with ¢', but not with ¢".

IV, The treatments occurring in a block together with ¢”, but not with ¢'.
V The treatments occurring in blocks with both ¢’ and #".

VI The treatments that never occur in a block with ¢’ or #".

Figure 9 shows the reduced network [still with the brief notation A = A(¢, ¢")
and A = A(#,¢")]. For reasons of symmetry, the vertical connections can be
removed and it follows that we have the lower bound

A 2
2 r—A

+

(2+r—2—1)r(k——1)%—(A+/\))_1

171

—+

2 -1t
A—(k—-2)A ) ] J
for R(¢',t"). The proposition follows after some straightforward algebra. O

The efficiency (or harmonic mean efficiency) E of a block design with equal
block sizes and equal replicate counts can be defined as the harmonic mean of
the T — 1 nonzero eigenvalues of the matrix (1/7)C;, where

1

Fk-1) =(A+}) A-fk-zih— T A-lk-2]A t(k=1) - (A*A)
LITT
v, (r-n(r(k-n-(mnl(r-mr(k-n-(mxn Iv,
vI

FiG. 9.
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is the information matrix for the set of treatment parameters [see, e.g.,
Paterson (1983)]. The following (equivalent) definition gives an intuitive justi-
fication of the efficiency as a measure of design quality. Define

= 2
=—— Y R(t,¢t"
& (T-1) t’é:t” (#:2)
(equals the average resistance between pairs of treatment points in the design
network). Then
-
R

Notice that Ro? is the average contrast variance for the given design, while
(2/r)o? is the same quantity for a complete block design with each treatment
repeated r times. Thus, it follows from the discussion in the beginning of this
section that E < 1 (with E = 1 if and only if the design is orthogonal).

It follows from the last definition that any lower bound for the average
contrast variance o-2R gives an upper bound for the efficiency and vice versa.
The lower bounds for contrast variances given by Propositions 4.1 and 4.2 are
given as resistances through short circuited networks in which the inverse
resistances (equals multiplicities) of connections are linear expressions in
combinatorial quantities like A(#',¢") and A(#',¢"). It is easy to derive expres-
sions for sums or averages of such combinatorial quantities over all pairs of
distinct treatments. Thus, in order to average the lower bounds for contrast
variances to obtain lower bounds for average contrast variances (or upper
bounds for efficiencies), we need the convexity property stated by the following
lemma.

LEMMA 4.3. Consider a connected graph with P as its set of points and I as
its set of connections. We think of the graph as an electrical network with
variable resistances. By z; we denote the inverse resistance of connection i. For
two selected, distinct points p' and p", let R(z) = R((z,)) denote the resistance
through the network from p' to p". Then, the function R on [0, +»)! is convex.

REMARK. Notice that one or more zeroes among the z; may give the value
+o of R(z), due to disconnectedness. However, R is also convex in the
(obvious) extended sense.

It is possible to give a heuristic proof of this lemma, based on the kind of
physical reasoning applied earlier in this section. But since the convexity
property is easy to prove directly in the two situations where we are going to
use it, the proof will be skipped here; see Tjur (1987).

As an example, consider the right-hand side of the inequality

Rt & 1 1
(¢, t") = m + rt”

derived in the beginning of this section. In this simple case, the conclusion of
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Lemma 4.3 is that 1/r, + 1/r, is a convex function of r = (r,). By Jensen’s
inequality,

2

— 2
E=——— Y R4, t) > ——— ¥
T(T._ D y2r ( ) T(T-1) s

where 7 is the average (in principle over all pairs of distinct treatments, but
equivalently over all treatments) of the replicate counts r,. Since this is

1 1
p— + —
ry I

> 2/F,

1 1
F=?§;rt=?,

we have proved that R > 2T /I, that is, the average contrast variance is at
least (2T /I)o2. This is not particularly exciting, but the example illustrates
very well what is going on in the following under more complicated circum-
stances.

ProprosiTION 4.4. Under the assumptions of Proposition 4.1,
1-1/k
< /.
1-1/T

REMARK. Under the definition of E in terms of the eigenvalues of the
information matrix, this is merely the inequality stating that the harmonic
mean of the T — 1 eigenvalues of (1/r)C; is less than or equal to the
arithmetic mean. Hence, the result is well-known, but we include it because
the proof does not refer to the spectral decomposition of Cj.

ProoF. The inequality of Proposition 4.1 was derived from a short cir-
cuited design network (Figure 8) in which the conductances are affine func-
tions of A = A(#, ¢"). It follows by Lemma 4.3 that the inequality still holds
when R(#,t") on the left-hand side is replaced by R and A(#,¢") on the
right-hand side is replaced by A = the average of A(#,t") over all pairs of
distinct treatments. Now, for binary designs it is easy to show that

3 Bk(k — 1)
CT(T-1)°

The substitution of this expression in the averaged inequality
- -1

— 2 r—A
Rz—(l— )

r kr

followed by a little algebra, gives the desired result. O

PropOSITION 4.5. Under the assumptions of Proposition 4.2,
k-1 ( r T—1)“1

E=< F-D(r—1) T-*%

+
T T-1
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Proor. By arguments similar to those applied in the proof of Proposition
4.4, a lower bound for R can be obtained from Proposition 4.2 by replacement
of A(#',t") and A(t', t") by the averages of these quantities over pairs of distinct
treatments. An expression for A was given in the proof of the previous
proposition. Under the assumptions made, it is easy to show that

A= (r(k—-1) - 1)a.
The inequality obtained from Proposition 4.2 by averaging is
-1
E>

A 2r 2 \7!
§+(r(k—1)(r—X-1)+K+X +r—X)

or

E 2(2 2r 2 |\ '
<—|=+ — _— + - .
r|2 r(tk—=1)(r=A2-1)+A+A r-—2A
Noting that the relation A = ((k — 1) — 1)A gives a considerable simplifica-

tion of the denominator of the first fraction of the inner expression here, this
inequality is easily rewritten to that stated by the proposition. O

ExampLE 4.1. Paterson and Wild (1986) study an a-lattice with 40 treat-
ments arranged in 32 blocks of size 5. The efficiency of this design is 0.79048.
They derive upper bounds for the efficiency under various conditions. The
sharpest among those proved under the general assumptions of Proposition
4.5 is E < 0.79740. Proposition 4.5 gives E < 0.79335, which is less than half
as far from the true efficiency as the bound reported by Paterson and Wild.

ExampLE 4.2. Jarrett (1977) gives an upper bound for the efficiency which,
in the case B=15, T=20, k=4 and r = 3, is E < 0.7549 (without addi-
tional assumptions, like resolvability, etc.). Our bound in this case is E <
0.7505. Jarrett gives an example (an a-lattice) with E = 0.7447.

These examples show that the upper bounds for efficiencies obtained by
short circuiting compete well with those obtained by Jarrett (1977) and
Paterson and Wild (1986) by methods based on the spectral decomposition of
Cr. Bounds obtained by more refined methods [see, e.g., Fitzpatrick and
Jarrett (1986), Tjur (1990)] seem to be generally better than the bounds
derived here. But the fact that the bound of Proposition 4.5 does at all have a
place among the strongly competing bounds of the design literature, indicates
that the bound of Proposition 4.2 (from which the efficiency bound comes out
by averaging) must be close to the true contrast variance in case of nearly
optimal designs. The upper bounds for efficiencies given in the design litera-
ture do not have such contrast-specific counterparts.

5. Notes on related work. Borre and Meissl (1974) seems to be the first
presentation of a relation between potential theory and covariance structure.
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As noticed by H. Brgns (lecture around 1974), the theory presented by Borre
and Meissl contains the main result of the present paper (Theorem 2.1) as a
special case. The exposition of Borre and Meissl is based on the probabilistic
interpretation of potential theory (the electrical network interpretation is
found in an appendix) and the statistical problem investigated was the follow-
ing. Suppose that measurements of height differences between certain points
in a landscape are given. Denote the measurements y,, i € I, and let p! and p!
be the two corresponding points, so that y; is a measurement of a,, — a,,,
where «, denotes the true level (over the sea surface, say) of point p The
classical statistical model for smoothing of such data assumes that the y; are
normally distributed, independent with Ey, = a,, — a,, and (for simplicity)
known variances o;2. Thus, the maximum hkehhood or weighted least squares
estimates &, of the true levels (given up to a common additive constant) are
obtained by minimization of L (y; — (@,, — a,,))*/0;>. Now, the connection to
potential theory can be explained as follows Draw, for each measurement y;, a
line on the map between the points p/ and p/ and think of the resulting graph
(which is assumed to be connected) as an electrical network where the connec-
tion corresponding to the ith measurement has a resistance of ;2 ohm. Then,
var(@, — @,) equals the resistance through the network from p’ to p". The
probabilistic interpretation in terms of random walks on the graph is briefly
outlined later in this section.
Now consider the special case where the graph is bipartite and all o> are
equal. Denoting the two sets of points by B and T and the levels of the two
different kinds of points by «, (¢ € T') and B, (b € B), we can write the model

Yi ™ N(ati - Bbi’az)

which is merely the two-way additive model with a slightly unusual (subtrac-
tive) parametrization. The previously mentioned electrical network is recog-
nized as our design network (with resistances o2 instead of 1) and (i) and (ii)
of Theorem 2.1 come out as special cases of the previously mentioned result.

Dynkin (1980) presented a relation between Markov processes and Gauss
fields. Roughly, the idea is that the Greens function (or potential operator) of a
time homogeneous symmetric Markov process is a positive definite function
which can be taken as the covariance for a set of normal random variables.
More recently, Ylvisaker (1987) followed up some of these ideas and noticed
their relation to design and prediction problems of a more general nature. The
relation between Dynkin’s results and the present paper can briefly be ex-
plained as follows. Consider the random walk on the design network, per-
formed by an electron when the potentials at all points are equal; the particle
selects its next position at random among those connected to the present state
and makes a jump to it after an exponential waiting time with intensity
inversely proportional to the number of such connections. The Greens func-
tion of this process (in a slightly generalized sense) turns out to be the
covariance matrix for the set of estimates of treatment and block parameters
in the block design. For a more exhaustive exposition of the relation between
Markov chains and electrical networks, see Kemeny, Snell and Knapp (1976).
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Paterson (1983), for a binary design with blocks of equal size &, defined the
variety concurrence graph as follows. The set of points of this graph is the set
T of treatments and a connection between ¢ and ¢” is introduced for each
block in which both #' and ¢” occur. Paterson (1983) expressed the harmonic
mean efficiency in terms of combinatorial quantities related to this graph (the
numbers of cycles of order 2, 3,...). The variety-concurrence graph does not,
as opposed to our design network, contain the full information about the
structure of the design. For example, a BIBD with A =1 and a design
consisting of a single complete block will have the same variety-concurrence
graph. However, it follows from Paterson’s results that this graph does
(together with the common block size) hold information about contrast vari-
ances, etc. It is tempting to ask, in the present context, whether it makes sense
to think of the variety-concurrence graph as an electrical network. This turns
out to be the case and there are two very simple ways of seeing it. The first is a
purely probabilistic argument, based on the corresponding random walk on the
graph; this argument will not be given here [see Tjur (1987)]. The second is
based on the so-called star-delta transform for electrical networks, see, for
example, Bollobas (1979). According to this rule, a point in an electrical
network and its connections to other points (a star) can be replaced by a set of
connections between the points connected to it (a delta), without affecting the
resistances between other points of the network. The formula for the resis-
tances of the new connections implies that a star with % rays of unit resistance

should be replaced by a delta consisting of ;’) edges of resistance k (cf.

Example 3.3, where this principle was applied 1n the case & = 2). If we apply
this transformation to all block points of the design network, we obviously end
up with the variety-concurrence graph, except that all resistances will be %
instead of 1. Following this line a little further, one ends up with an interpre-
tation of Paterson’s formula for the average contrast variance as an averaged
form of an expression for the resistance through a network in terms of
combinatorial quantities. In this way Paterson’s work is closely related to
classical problems in electrical network theory, see, for example, Bollobas
(1979).

Eccleston and Hedayat (1974) discussed concepts of connectedness which
are closely related to graph theoretical connectedness properties of the design
network. Apart from small modifications, their concepts can be characterized
as follows. Connectedness in the usual sense is called local connectedness and
the following two stronger conditions are considered. Pseudo-global connected-
ness is characterized by the property that the graph will still be connected
after removal of any treatment point (and its connections to block points).
Global connectedness is the stronger property that removal of two arbitrary
treatment points will leave a connected graph. This description is a consider-
able simplification of their definitions and the results of the present paper
throws some light on their main results, stating that designs which are
optimal in a certain sense must, under suitable conditions on the design
constants, possess one or both of these connectedness properties.
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