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STATISTICAL INFERENCE FOR UNIFORM STOCHASTIC
ORDERING IN SEVERAL POPULATIONS!

By RicHARD DYKSTRA, SUBHASH KOCHAR AND TiM ROBERTSON

University of Iowa

Stochastic ordering between probability distributions is a widely stud-
ied concept. It arises in numerous settings and has useful applications.
Since it is often easy to make value judgments when such orderings exist, it
is desirable to recognize their occurrence and to model distributional
structure under such orderings. Unfortunately, the necessary theory for
statistical inference procedures has not been developed for many problems
involving stochastic ordering and this development seems to be a difficult
task. We show in this paper that the stronger notion of uniform stochastic
ordering (which is equivalent to failure rate ordering for continuous distri-
butions) is quite tractable in matters of statistical inference.

In particular, we consider nonparametric maximum likelihood estima-
tion for k-population problems under uniform stochastic ordering restric-
tions. We derive closed-form estimates even with right-censored data by a
reparameterization which reduces the problem to a well-known isotonic
regression problem. We also derive the asymptotic distribution of the
likelihood ratio statistic for testing equality of the % populations against
the uniform stochastic ordering restriction. This asymptotic distribution is
of the chi-bar-square type as discussed by Robertson, Wright and Dykstra.
These distributional results are obtained by appealing to elegant results
from empirical process theory and showing that the proposed test is
asymptotically distribution free. Recurrence formulas are derived for the
weights of the chi-bar-square distribution for particular cases. The theory
developed in this paper is illustrated by an example involving data for
survival times for carcinoma of the oropharynx.

1. Introduction. Stochastic ordering between probability distributions is
a widely studied concept. It arises in numerous settings and has useful
applications. Since it is often easy to make value judgments when such
orderings exist, it is desirable to recognize their occurrence and to model
distributional structure under such orderings. Unfortunately, statistical infer-
ence procedures have not been developed for many problems involving stochas-
tic ordering and the development of the necessary theory for these problems
seems to be a difficult task.

Uniform stochastic ordering, as discussed in Keilson and Sumita (1982), is
stronger than ordinary stochastic ordering but weaker than likelihood ratio
ordering. In the continuous case, uniform stochastic ordering is equivalent to
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UNIFORM STOCHASTIC ORDERING 871

failure rate ordering. We show in this paper that uniform stochastic ordering
is quite tractable in matters of statistical inference.

DEeFINITION 1.1. The univariate cdf F, is uniformly stochastically greater
than the cdf F, (F, = F,) if

(1.1) Fy(x)/Fy(x) is nondecreasing for x in (—, F; (1))

(where F, = 1 — F, is the survival function corresponding to F)).

If F, and F, are absolutely continuous with failure rates r; and r, defined
by r, = F//F,, i = 1,2, then (1.1) is equivalent to saying that r(x) < ry(x) for
all x. For this reason, the ordering > is sometimes called failure rate
ordering.

Definition 1.1 is also equivalent to the inequalities

P(X>s+tlX>t)>P(Y>s+¢tY>t) forall s>0,¢,

where X has cdf F, and Y has cdf F,.

In other words, the conditional distributions, given that the random vari-
ables are at least of a certain size, are all stochastically ordered (in the
standard sense) in the same direction. Thus, if X and Y represent the survival
times of different models of an appliance that satisfy this ordering, one model
is better (in the sense of stochastic ordering) when the appliances are new, the
same appliance is better when both are one month old, and if fact is better no
matter how much time has elapsed. It is clearly useful to know when this
strong type of stochastic ordering holds since qualitative judgments are then
easy to make.

This type of ordering is certainly of interest when populations correspond to
survival times for different medical treatments. Even if the better of two
treatments (better in the sense that its survival time stochastically dominates
that of the other treatment) is administered initially, it may not be the better
treatment when patients are examined at a later point in time. However, if the
treatment populations are ordered in this stronger sense, there can be no
doubt which treatment is preferred at any point in time.

It is easy to see that F, x> F, implies that F is stochastically larger than F,
in the sense that Fi(x) < F,(x) for all x. However, as shown in Ross (1983),
this ordering is weaker than likelihood ratio ordering, that is, f,(x)/f,(x) is
nondecreasing in x. Various other relationships between uniform stochastic
ordering and other partial orderings have been obtained by Bagai and Kochar
(1986). Recently, Capérad (1988) has used this notion of ordering of probability
distributions to compare asymptotic efficiencies of rank tests in two-sample
problems. For applications of this ordering in queuing theory, see Ross (1983)
and Stoyan (1983). Lynch, Mimmack and Proschan (1987) have discussed
some closure properties of uniform stochastic ordering.

Tests for equality of distributions against ordered failure rates in the
two-sample situation have been given by Kochar (1979, 1981), Joe and
Proschan (1984), Cheng (1985) and Aly (1988). However, none of these tests
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allow for censored data. Proschan and Singpurwalla (1980) discuss a Bayesian
procedure for estimating several populations when the corresponding failure
rates are presumed to be linearly ordered by ri(x) > ro(x) > -+ > ry(x) for
all x. Their procedure requires pooling adjacent violators, but is very different
from what is done here.

The literature on estimation and hypothesis testing problems involving
(ordinary) stochastic ordering is extensive. Brunk, Franck, Hanson and Hogg
(1966) obtained nonparametric maximum likelihood estimates of two stochas-
tically ordered cdf’s and studied their properties. Dykstra (1982) considered a
similar problem with censored data. Dykstra and Feltz (1989) obtained maxi-
mum likelihood estimates of more than two cdf’s subject to stochastic ordering
restrictions by using an iterative algorithm. Robertson and Wright (1974) have
considered stochastic orderings in higher dimensions, as have Sampson and
Whitaker (1989). Testing procedures which are based on maximum likelihood
estimates of two stochastically ordered distributions are discussed in Robert-
son and Wright (1981), Lee and Wolfe (1976), Franck (1984) and Dykstra,
Madsen and Fairbanks (1983). Closed-form algorithms for maximum likeli-
hood estimates of more than two stochastically ordered distributions have not
been found. Distribution theory for tests based on the likelihood principle have
not been developed to a satisfactory conclusion to the best of our knowledge.

In this paper, we consider the multiple-sample problem when the observa-
tions are randomly censored on the right. Nonparametric maximum likelihood
estimators of the survival functions are obtained under the assumptions that
the various populations are uniformly stochastically ordered. We also discuss
the likelihood ratio test for testing equality of distributions against the uni-
form stochastic ordering restrictions in a linear order situation. Asymptotic
distributions are derived and related to the distribution of tests occurring in
other situations. Finally, an example involving survival times for carcinoma of
the oropharynx is discussed in Section 5.

We will use terminology as if the measured quantity of interest is survival
time, although this need not be the case. Thus deaths will refer to complete
observations and losses will refer to censored observations.

2. Maximum likelihood estimation. Suppose we have independent
random samples from populations with corresponding cdf’s F,, F,, ..., Fy. We
allow the possibility that our observations may be censored on the right with
respective censoring distributions G, ..., Gy. We do assume that the censor-
ing distributions are independent of the distributions of interest and that we
are always dealing with nonnegative random variables.

The problem will be to construct nonparametric maximum likelihood esti-
mates of the survival functions subject to the constraints F; = F, = -+ x Fy.
Similar procedures will work for other ordering configurations of the sur-
vival functions since a good deal is known about other ordering problems
[Robertson, Wright and Dykstra (1988)]. For example, there exists a pool
adjacent violators algorithm (PAVA) which will work nicely for a tree ordering
(F, = F,i=2,..., N). However, we will restrict ourselves to the above linear



UNIFORM STOCHASTIC ORDERING 873

order since it is of considerable interest and is indicative of general behavior.
We will assume notation as in Feltz and Dykstra (1985).

Suppose that complete observations from all N samples occur on a subset of
the times S; < S, < -+ <8§,,, S;= —», S,,,.; = ©. We let

d,; = number of complete observations from the ith population at S I

l;; = number of observations from the ith population censored in [S;, S; ., )
(we assume these occur at L&, r=1,2,...,1;.);

n,;,=Xn j(d i» + 1;,) = number of observatlons from the ith population sur-

viving to _]ust prior to S;.

We interpret maximum likelihood estimators in the generalized sense given
by Kiefer and Wolfowitz (1956). Since these estimates of the cdf’s will put
probability only on actual observation points and since censoring distributions
are independent of survival distributions, the likelihood function is given by

N M li/
1) L@®=TI1] [F(8; =) = F(8)] ™ TLR(L§-) | H(G),

where H will depend on the censoring distributions, but not on the vector of
survival functions F. We wish to maximize L(F) under the constraints that

(2.2) F(t)/F.,(t) is nondecreasing in ¢ for i = 1,..., N — 1.

Note that if the survival functions F satisfy the constraints (2.2), then the
likelihood is not decreased and the constraints are still satisfied if Fi(¢) is
replaced by X7 F,(S; )I[S s, )(t)

Thus it w111 sufﬁce to maximize L(F) over this class or, equivalently, to
maximize

N m
p— d”_ llJ
I TT[F(s, ) - ()| “/R(s)
subject to the constraints
F(S) _ R(S,.)
Fi+1(Sj) B Fi+1(Sj—1)

This is equivalent to maximizing

du dll

_ F(S)
F(S;-0)
F(S) F(S;-)
F(S;-1) Fi(S;-2)
subject to the constraints
F(s;) F.4(S))
F(S;-1) = Fi(S;-1)’

F(S,_1) F(S,_,)
F(S;5) F(S,-s)

i

- F(S.)

J

RACH

(2.4) i=1,..,N-1;j=1,...,m.
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We reparameterize by settlng 0, = IT’i(Sj)/F_'i(Sj_l), i=1,...,N, j=
1,...,m [so that F, (S;) =TI 10 ] Rearranging terms and noting that

m j—1 - m
d”+l” - d,, +1,
0 olr
Jj=1r=1 r=1j=r+1
m—1 m
= l—[ enzr_dtr o= l_[ ontr dy— tr
ir
r=1 r=

we see that maximizing (2.3) is equivalent to maximizing

m N

(2.5) [T I (1 - 6,;)"
Jj=1i=1

subject to

(2.6) 0 20212 tee ZONJ forallj.

The constraints in (2.6) do not relate 6;,; for different values of ;. Thus the
m factors TTNV.,07%~%(1 — 6, )%, j =1, 2 , m, can be maximized individu-
ally. For each ﬁxed J this is a bioassay problem as discussed in Example 1.5.1
of Robertson, Wright and Dykstra (1988). The solution is the isotonic regres-

sion of the vector (01J, 021, . ONJ) with weights (n,;,n,;,...,ny;), where
. n..o—d..

2.7 6, = —+—,

(2.7) ==L

ij
The ‘““pool adjacent violators algorithm” (PAVA) provides an easy method for

obtaining the solution, (6}, 65;, ..., 8%;). The restricted mle’s of the survival
functions under the ordering constraints are found by computing

(2.8) Fr@)= 1 6z

;8,=0

In order to maximize the likelihood under the constraint that all the
survival functions are equal, we need only to set 6,; = 6; for all i and solve the
resulting optimization problems. This gives the estimates

N N
Ei:lnij - Zl‘=1d J
N
Z,-:lnij

(2.9) 9, =

The mle of the common survival function is then given as in (2.8) with 5j
replacing 6.

The fact that this simple reparametrization makes tractable a seemingly
complicated problem is closely related to the problem solved in Dykstra and
Robertson (1982).

3. Hypothesis testing. Assume that all the random samples have a
common censoring distribution and that censoring values are independent of
theoretical lifetimes. We also assume that for every i, F, has support on the
fixed set {S,,..., S,,} and that each point has positive probability, so that we
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are concerned with discrete distributions with common support. In our asymp-
totic theory, m is fixed as the sample sizes change.

Consider the problem of testing the hypothesis Hy: F, = --- = Fy against
the uniform stochastic ordering alternative H,: F; = --- » Fy (F, + F, i+1 for
some i). We base our test on the statistic @ = —21In L, where L is the

likelihood ratio. Since we have constructed the mle’s in Section 2, it is
straightforward to construct

m-1 N 1—6x* 0*
(31 @=-2lnL=-2Y Zdﬁm( _£)+mﬁ—¢ﬂm(ﬁ)
J

Jj=11i=1 1 J

(since in this setting 6,, = ;% = 0 for all i).
If we expand In(1 - 6%) and In 6% about 6,, we can write

- i T {—d (65 - 6,) - —d""—z(es«—@f
1| (1 2(1 - ay;)
(3.2) )
+(nij - dij) (Oijaj ej) - ( ij zJ) (0 2;3 0) }»

where max{|a,; 0 L1B;; — 0 <16 — 5jl. Combining the first and third parts
of the prev10us sum we obtaln

(3.3) 22 ng(ﬁ’ 8;)n;, +2’"le 51 glig))(nij_dif)'

However by properties of the isotonic regression [Robertson, Wright and
Dykstra (1988), Section 1 3]

N
Zeu l] 2011 ij ;

so that the first part of (3 3)is 0. Moreover, the second part can be written as

m—1 1 N _ N

22 “)[Z ij LJ n;; 0 Z ljnlj]
5 = =
1

N
(3.4) [since Z (@ij — Gi"]‘.)()i";nij = 0]
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Since we are concerned with asymptotic results and since 6% and 5
converge to 6,; if the sample sizes go to » and H, is true, we may use
Slutsky’s theorem to replace «;; and B,; by 0 in (3.2) without affecting the
asymptotic behavior (recall we assume 0 > 0) The second and fourth parts
can then be combined and are asymptotica.lly equivalent to

-2 - \2
m- 1 —d; (0% - 8;)  (ny;—diy) (65— 6))
Z — .2 - 92
Jj=1i=1 (1 - Gj) J
(3.5) _ _ X o
mil ZAE —87 + (26, - 1)6;; (655 - 6,)
= A =N ..
j=1i=1 (1 - 6’j)‘gj (1 - 6’j)oj Y
Since IGL j 51-! - p0 if H, is true, the first factor converges in probability to

— 1. By combining (3.4) and (3.5), we see that the asymptotic distribution of @
is the same as that of

(3.6) m;

This asymptotic distribution can be found by using the multivariate central
limit theorem for multinomial distributions and the § method. However, we
appeal to some empirical processes results given in Shorack and Wellner
(1987). To paraphrase the needed theory, assume that X, X,,..., X, arei.i.d.

with common cdf F, and Y;,...,Y, arei.i.d. random variables (independent of
the X’ s) from the censoring dlstrlbutlon G. It is assumed that Z; = min{ X, Y}}
and §; = I x _y, are observed for i = 1,2,...,n. We let

H(t)=1-P(Z>t) =1- (1 -F(t))(1 - G(t)),

HY(t)=P(Z<t,6=1)= /[0 t](l ~ G_)dF,

H'(t) =P(Z <t, 5—0)—[{ ](l—F)dG

(where G_ denotes the left-continuous version of G) and let their empirical
counterparts be given as

1 N
H(t) = ~ ¥ Io o(2),
i=1
1 N
HY(t) = — X I, (203,
i=1
1 N
H? =~ ¥ Lo o(Z)(1 - ),

~.
Il
-
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The cumulative hazard function corresponding to F is given by

A(2) =f

dF
0,01 —F_

and the empirical version is

1
A(t)=[ ———dH.
A1) f[o,t]l—Hn_ dH!

Theorem 1 of Shorack and Wellner [(1987), page 307] states that if A(2) is
the true cumulative hazard function of F, then
Vn (A,(2) — A(2)) »w W(C(2)),
where W(¢) denotes a Brownian motion process and the time transformation C
is given by
1-F
1-F

(3.7) C(¢t) = [[0 - H ) ""(1-AA)dA [1-AA=

For our problem where S,,...,S,, are the support points of the F;, the
empirical cumulative hazard function for the ith population is given by

Ai,n(t)=2(1_éij), i=1,...,N,
J=<t
while the true cumulative hazard function is given by
Ai(t)=2(1_0ij), i=1,...,N.
J=<t

Thus
Vr (8- 6,) = Vn[(1-6;) - (1-6,;)
Vr [(A(S)) = Ad(S;-1)) = (Aua(S)) = Ain(S,-1))]
= =V [(A0n(S)) = Ai(S))) = (Aiu(S;-1) = A(S,21))]-

Items censored before S, convey no information about the survival func-
tions of interest, and we assume they do not occur. Thus we take
(nqy1,n49;,...,nx5y) to be nonrandom and assume these are the number of
items initially put on test. We let n =X n;, and assume that vy, =
lim, , n; /n exists and is positive and finite. Then

ng; ngng; ny; 1 24 = —
— = = — Y Ix .oy - v, F(S; =)G,(S; -
n n on, n on, rgl [X,r28;]N[Y;, 2 S]] p Yi l( J ) L( J )

by the law of large numbers. Moreover, since the transfer function in (3.7)
corresponding to the ith population has increments

Ci(S;) = Ci(S;-1) = 6;;(1 = 6,;)[ Fi(S; —)Gi(S; —)] N

and since a Brownian motion process has independent increments, it follows
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that
\/Z(él P 0,' ) = — -1
Wi = = o, N(0, [%.Fi(S; )88, )] )
((r-8,)8)
if H, is true, and that all the W, will be asymptotically independent. We let
W indicate the vector which occurs when j is held fixed.

Suppose now that E_(x|H,) indicates the least squares projection with
weights w of the vector x onto the set of constant vectors, while E_ (x|H,) is
the projection onto the set of nondecreasing vectors. We can then represent @’
as L7'Q;, where

Q) =| B (W H,) - (Wl H) [,

w; =(ny;/n,...,ny;/n) and || - |l indicates the usual least squares norm
with weights w.

After noting the E(x|H;) is a continuous operator in both x and w, we
employ a continuity argument to express the asymptotic distribution of @’
(and @) in terms of normal random variables. This leads to the following
theorem.

THEOREM 3.1. If F, =F, = --- = Fy and the common distribution puts
positive probability on each of Sy, S,,. .., S,,; if there is a common censoring
distribution G such that G(S,,_) > 0; and if the sample sizes increase to © in
such a manner that y; = lim,, _,, n;, /n exists, positive and finite, then @' (and
Q) has a limiting distribution which is the same as the distribution of

m—-1 N _ .2
(3'8) E E (Z;;' - Zj) Yi»
j=1i=1
where the {Z,;} are independent, Z;; ~ N(0, y; "),
_ N
Zj = Z Z; iYi
i=1
and
Zj = E,(2,H,)
is the ith element of the antitonic 'regression of (Zyj,2,,...,2Zy;) with
weights (y1,...,vYn)-

i

Note that the distribution of the inside sum in (3.8) does not depend on j so
that the asymptotic distribution is that of a convolution of independent,
identically distributed chi-bar-squared random variables as discussed in
Robertson, Wright and Dykstra (1988).

If the numbers of items on test are initially nearly equal (n,; ~ ny ~
-+ ~ny;) and sufficiently large, the chi-bar-squared distributions of
LN (Z} —Z)%,; can be taken to be of the equal weight variety. These
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distributions are much more tractable than the unequal weight case and will
be discussed in Section 4.

If the censoring distributions are different but known for the various
populations, the asymptotic distribution still reduces to a convolution of
chi-bar-squared distributions. However, the summands need not be identically
distributed.

It is an appealing aspect of the proposed test that it is an asymptotically
similar test. That is, the asymptotic distribution of @ under the null hypothe-
sis does not depend on the common F,. This is in contrast to the likelihood
ratio test for standard stochastic ordering for two populations discussed in
Robertson and Wright (1981), where the asymptotic distribution varies with
the common F;. Note that the test is invariant under a common, increasing
transformation of the samples.

Assuming that there is a constant censoring distribution G [with G(S,,_) >
0], the hypotheses H, and H, are equivalent to

Hy:1-FG=1-F,G= --- =1-F,G
and
H:1-FG=1-F,Gx= -+ =1-F,G.

Of course, if one does not distinguish between censored and complete observa-
tions, but treats them all as being complete, the appropriate cdf’s would be

- F@G,...,1 - FyG. Thus, if a test is constructed by treating censored
observations as if they were complete, the resulting test will still be testing the
correct hypotheses. Moreover, the asymptotic distribution of @ and @ under
H, will be the same as before, although, of course, the value of the test
statistic will be different. One might conjecture that this test would not be as
powerful, since it makes no use of the knowledge of whether an observation is
censored. We have not investigated the power properties of this test, however.

4. Equal weights case in hypothesis testing. The distribution of the
inner sum of (3.8) has been studied extensively. It is called a chi-bar-squared
distribution and its survival function is given by

N

(4.1) ¥ B N)P(xty > %),
=1

where X denotes a central chi-squared random variable with J degrees of
freedom ( x& = 0). The weighting element, P, 2({, N) is the probability that the
vector, Z* = E (Z,|H,) has exactly ! distinct values. The quantlty P(l,N)is
called a level probablhty and is generally difficult to compute since 1t depends
on the variances of the Z;; [cf. Robertson, Wright and Dykstra (1988), Chapter
L If yy=y,= -+ = yN, Bartholomew (1959) conjectured and Miles (1959)
proved the recurrence relation

1 N-1
(4.2) P(I,N) = ZP(l~1,N~1) + P(I,N - 1),
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where P(0O, N — 1) = P(N, N — 1) = 0. (It is customary to omit the weights
when they are equal.) This recurrence relationship makes it easy to compute
all necessary values of the P(l, N)’s. Once these values are known, it is
straightforward to compute p values and critical points for the distribution
given in (4.1) when y, = y, = - -+ = yy. (See Robertson, Wright and Dykstra
(1988), Table 4.4.]

The moment generating function of the distribution associated with (4.1) is
given by

N
my(t) = On(s) = IZ P(I,N)s'!
=1

with s =(1 —2¢)"%2 for ¢ <1/2 (s > 0). In the case y; =y, = *** = yx,
the recurrence relation, (4.2), implies that
s+N-1
(43) @N(S) = —N———GN_I(S), N=2,3,... .
Assuming henceforth that vy, = y, = -+ = yy, the sum in (3.8) is the sum

of m — 1 independent random variables each having moment generating
function given by 0,(s). Using (4.3), the moment generating function of the
sum in (8.8) is given by

m—1 S +N— 1 mot m-—1
Dy, m(8)=0x(s) = _—1\7_] [@)N—1(S)]
(4.4)

s+N-1

m-—1
N ] q)N—l,m(S)'

By expanding ((s + N — 1)/N)™ "', expressing n®y ,(s) and ®y_, ,, as poly-
nomials in s and equating coefficients on the two sides of (4.4), we can
conclude that the random variable in (3.8) has a chi-bar-squared distribution
whose level probabilities satisfy a recursive formula. This result is summarized
in the following theorem.

THEOREM 4.1. Assume the conditions of Theorem 3.1 and vy, =1y, =
- = yyn. Then the asymptotic survival function of @ and Q' under H, is
given by

N(m-1)
(45) Z R(l’N:m)P[Xlz—(m—l)>x]:

l=m-1
where the R(l, N, m) satisfy the recurrence relationsﬁip
R(I,N,m)

(4.6) k-1 1

“E ()R] me e
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forl=(m —1),...,N(m — 1). We take R(Il, NNm)=0 ifl<m —1orl>
N(m - 1).

If we fix m and arrange the R(I/, N, m) in a “triangle’’ similar to Pascal’s
triangle with R([, N,m), I =m — 1,..., N(m — 1), forming the Nth row,
then (4.6) says that each row is formed by taking a convex combination of the .
elements in the proceeding row [where R(m — 1,1, m) = 1 for m > 2]. This is
analogous to Pascal’s triangle and can be used to generate as many of these
values as necessary.

If yy=v,= -+ =1, the moment generating function corresponding to
the distribution given in (4.1) can be explicitly calculated as

(s+1)---(s+N-1)
my(s) = NI )

where s = (1 — 2¢)7'/2 and ¢ < 1/2 [Robertson, Wright and Dykstra (1988),
page 81]. From this, the mean and variance for the corresponding distribution
can be calculated as T ,j7! and TN (37! — j~2), respectively [Barlow,
Bartholomew, Bremner and Brunk (1972), page 151].

If the weights R(I, N, m) are taken to be a probability mass function in I,
the respective mean and variance of this distribution will be

N N
(m-1)) j " and (m-1)Y (j*-j?).
j=1

Jj=2

Since the ratio of these two values converges to one as N — o, one might
suspect that this distribution can be well approximated by a Poisson distribu-
tion if N and m are sufficiently large. Our experience indicates that a Poisson
distribution with mean (m — 1DZ . ,(j~! — j~2) which has been translated
m — 1 units to the right gives a significantly better approximation than a
straight Poisson. This approximation to the weighting distribution is quite
good even for N and m as small as 5. The approximating distribution for the
asymptotic distribution of @ formed by replacing R(I, N, m) in (4.5) by its
Poisson counterpart is generally quite accurate.

Of course, the central limit theorem ensures that the normal distribution
may also be used as an approximation for the asymptotic distribution of @ if
m is large enough. This can be easily implemented since the mean and
variance of the asymptotic distribution of @ are given by

N N
(m-1)Yj ! and (m-1)) (3;7* -Jj7?).
Jj=2 Jj=2
In the event that the y,’s are not all equal, matters become much more
intractable. Although the asymptotic distribution of @ is still of the chi-bar-
squared type, the correct weightings will generally be unknown. Robertson and
Wright (1983) have investigated the chi-bar-square distribution and conclude
that this distribution is quite insensitive to different values of the 7,’s as long
as their ratios do not differ from 1 by too large a factor. They conclude that as
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long as all ratios stay between 1/4 and 4, the equal weights chi-bar-squared
distribution will serve as an adequate approximation. If this is not the case,
they propose other approximations.

5. Example. To illustrate the methods discussed in earlier sections, we
consider some data given in Data Set II from Kalbfleisch and Prentice (1980).
These data consist of survival times for patients with carcinoma of the

TaBLE 1
Survival time in days for carcinoma of the oropharynx

Group Pop 0 Pop 1 Pop 2 Pop 3
Group I 38 81 105 11 90* 112 147
0-160 107 154 128 11 94 112 147
103 15 99 127 159

74 99 134
89 112 144

Group II 167 216 170 162 182* 213 255
161-260 172 254 184 172 192 219 256
191 222 173 205 219
238 228 174 208 235
243 230 177 209 245
Group III  276* 343 275 338 279 262 270 307 334
261-360 296 351 301 347 291 264 272 308
324 324 310 266 274 317
336 328 346 270 293 327
Group IV~ 372 445* 382 395 363 414 513
361-540 374 446 532 407 369 459 517
376 446 465 370 461 526
404 498 477 407 480 532*
432 525 518 413* 494
Group V 541 553 546 544 637
541-700 545 575 608 546*  672*
560 599 661 548 696
561 600* 666 593*
651* 631 637
Group VI 714 723* 751* 726 782 805
701-900 755 733* 822* 731* 785
763 825* 757 794*
854* 760* 800
Group VII  943* 1823* 929 915 1089* 911* 1377*
901-1850 998* 933* 918* 1307* 911 1446*
1219* 1086* 928* 1312* 914* 1472*
1234* 1092 932* 1455* 916 1565
1460* 1317 1058* 1489* 1095* 1565*
1574 1317 1060* 1495* 1250*
1766* 1609* 1064 1644* 1312*

*represents censored observation.
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oropharynx and several covariates. A substantial portion of the survival time
entries are censored.

These patients were classified into four populations, depending on the
amount of lymph node deterioration upon entry into the study. Population 0
indicates no evidence of lymph node metastases, while populations 1, 2 and 3
indicate the presence of sequentially more serious tumors. [This classification
is indicated under the variable N in Kalbfleisch and Prentice (1980).] Since
this example is for illustrative purposes only, we ignore other concomitant
information. The survival time data for the four populations are given in Table
1. Note that the sample size corresponding to population 3 is significantly
larger than the sample sizes corresponding to the other populations.

It would seem reasonable that the survival times for the four populations
should be stochastically ordered since lymph node deterioration is an indica-
tion of the seriousness of the carcinoma. It is not clear whether uniform
stochastic ordering should hold, however, since this is a considerably stronger
condition.

Figure 1 shows estimates of the survival function of the four populations
obtained by the Kaplan-Meier (1958) approach. As we would expect, the

1 T

T T ™ T T T
0 200 400 600 800 1000 1200 1400 1600 1800

DAYS

Fic. 1. Kaplan-Meier estimates (MLE'’s) of survival functions from data in Table 1.
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Fic. 2. MLE’s of survival functions from data in Table 1 subject to uniform stochastic ordering
restrictions.

survival function of population 3 lies substantially below that of the others.
However, the survival functions of the other three populations cross a number
of times and the survival function of population 0, surprisingly, lies below
those of populations 1 and 2, particularly beyond 350 days.

The mle’s of the survival functions of the four populations under uniform
stochastic ordering (F, = F, » F, = F;) are given in Figure 2. Since uniform
stochastic ordering is a rather stringent restriction, the estimates become
substantially separated, especially in the far right tails of the distributions
where there is little information.

To illustrate the testing procedure, the data are grouped into seven classes
as indicated in Table 1. We treat the grouped exact data as occurring at the
interval midpoints, and the grouped censored data in an interval as occurring
after the midpoint. The n;;’s and d,;’s for the grouped populations (as
discussed in Section 2) are given in Table 2. The groups were chosen rather
arbitrarily. We tried to roughly balance the survival times corresponding to
each group and to have at least a minimal number of observations from each
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TABLE 2
Number of survivals and deaths for grouped data

Pop 0 Pop 1 Pop 2 Pop 3
Group Interval n d n d n d n d

I 0-160 39 3 28 2 37 2 91 17
II 161-260 36 5 26 2 35 5 73 16
III 261-360 31 5 24 6 30 4 56 13
v 361-540 25 9 18 2 26 5 43 12
\% 541-700 15 4 16 4 21 4 29 5
VI 701-900 10 2 11 1 17 0 21 6
VII 901-1850 8 1 7 2 14 2 12 3

n is the number surviving at the beginning of the interval; d is the number of
deaths in the interval.

Koy

Pop. 0 ———————
Pop, b IR
POP. 2 m— e e
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031 ::1
021 - _
0.1
0.0
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0 200 400 600 800 1000 1200 1400 1600 1800
DAYS :

Fic. 3. Kaplan-Meier estimates (MLE’s) of survival functions from grouped data in Table 1.
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Fic. 4. MLE’s of survival functions from grouped data in Table 1 subject to uniform stochastic
ordering restrictions.

population in each group. The choice of groupings could have a considerable
effect on the outcome of the analysis.

For the grouped data, the unrestricted mle’s (Kaplan and Meier) are given
in Figure 3, and the restricted (uniform stochastic ordering) mle’s are given in
Figure 4. As indicated previously, populations 0, 1 and 2 seem to be quite
similar, while population 3 tends to be substantially smaller.

The p value of the likelihood ratio statistic discussed in Section 3, where
equality versus uniform stochastic ordering is tested, is 0.04 [where the
approximation in (4.5) is used). A p value this small seems somewhat surpris-
ing since the graphs in Figure 3 would not appear to support stochastic
ordering. However, they also do not support equality. Population 3, with its
large number of observations, lies well below the other three populations. The
fact that it nearly satisfies the uniform stochastic ordering constraints appar-
ently has a large impact on the test statistic and is the main reason for the
small p value.
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