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FULLY COHERENT INFERENCE!

By H. D. BRuUNK
Oregon State University

In a general setting in which prior distributions that may take on the
value » are admitted, an inference based on a posterior for a prior, u, that
is “minimally compatible” with the inference is shown to have a strong
property of expectation consistency, that implies a corresponding property

" of coherence: A nonnegative expected payoff function for a gambler’s
strategy is necessarily 0 almost everywhere (u). In the converse direction,
under appropriate regularity conditions involving continuity of the sam-
pling distribution and of the inference, a weaker version of coherence
implies that the inference is based on a posterior distribution.

1. Introduction. Dawid and Stone (1972, 1973) introduce and study the
concept “‘expectation consistency.” Let £ denote the domain of a random
observable X and let ® be a set of ‘“‘states of nature”’; each determines a
probability distribution for X. A statistician is given the sampling distribution
that has, for § € 0, density py(-|6) with respect to a prescribed measure, and
is required to select, for each x € &, an inference: a probability distribution
over ® conditioned on the observed value x of X. Let the inference have
density gg x(:|x) with respect to a prescribed measure.

The statistician suffers a prescribed loss g(6, x) when the actual value 6 is
later determined. Loosely and informally, the inference q is expectation consis-
tent if no loss function whose expectation according to ¢ given x is 0 for every
x € Z can have an expected value according to p given 6 that is strictly
positive for every 6 € 0. Instances of such loss functions occur in connection
with discussions of coherence of inference in terms of gambling systems
[Heath and Sudderth (1978); Lane and Sudderth (1983); Buehler (1976);
Freedman and Purves (1969); Cornfield (1969)]. One imagines a consulting
statistician with a client who describes an experiment that leads to a space 2~
of possible experimental results x. The statistician helps the client describe a
family of models, indexed by a parameter space ®. Each model prescribes a
probability distribution p(-|6) for the random element X of 2. Now the client
asks the statistician to provide a system ¢ of inference that assigns ““credibili-
ties” to subsets of the parameter space, conditioned on observed x € 2" The
client demands that the statistician be willing to test g against a gambler, as
follows.

The master of ceremonies (MC) selects 6§ € ® and chooses x € 2" according to
p(-16).
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The bookie (statistician) knows ©®, 2" and p(‘|-), and selects a strategy
(inference) q(-| - ): For Ac ® and x € &, q(Alx) is proportional to the
bookie’s conditional probability for A given x. For D c ® X £ and x € &,
let D* denote the x-section of D; then ¢(D*|x) is proportional to the
bookie’s conditional probability for D given x; a refinement is described in
Section 2.

The gambler knows ®, £, p(-| - ) and ¢(-| - ), and determines a strategy.

A strategy for the gambler (GS) consists of a finite collection of simple betting
systems. Using a simple betting system, the gambler selects two sets, C and D
for which the gambler disagrees with the bookie’s assessment of odds and sets
the amount of the wager accordingly. The gambler’s net gain g(6, x) is an
example of such a loss function—for the statistician—as occurs in the discus-
sion of expectation consistency. [Detailed definitions are given in Section 3.
The inspiration for this particular formulation of a simple betting system
comes from Armstrong and Sudderth (1989).]

1.1. ExamPLE. [A similar example appears in Lane and Sudderth (1983),
Example 3.2.] The sampling experiment is to draw successively, with replace-
ment, n marbles from a box that has proportion 6 of red marbles and
proportion (1-8) of green marbles. We set ® :=[0,1] and 2= {0,1,2,...,n}
(numbers of red marbles that will be drawn). The sampling distribution p(-|6)
is the binominal distribution with parameters n and 6. The bookie considers
. the following inference:

q(-10) assigns probability 1 to 6 = 0,

q(-In) assigns probability 1 to § = 1
and, for x €{1,2,...,n — 1},

q(-Ix) assigns probability 1 to 8 = 3.

The assignments g(:|x), x € £, do not seem reasonable, yet ¢ is a posterior
for a prior distribution that puts all its probability mass on 0 and 1, and one
who knew that either the marbles are all red or they are all green could not be
considered to exhibit incoherent behavior while using g. But if one is to take g
seriously as an inference in this example, one must consider 0, 3 and 1 as the
only possible values of 6; that is, one should have @ = {0, 3,1}. In other
terms, for a statistician who wishes seriously to consider g as an inference, the
trouble with a prior 7 that assigns probability mass 1 to {0,1} is that it is not
compatible with q: For x € {1,2,...,n — 1}, g({3}Ix) > 0 and p(x|3) > 0, but
m({3}) = 0. In the present paper we shall be interested in prior-inference pairs
for which the prior is compatible with the inference according to definitions
given in Section 3.

1.2. HSLS coherence. Heath and Sudderth (1978) and Lane and
Sudderth (1983) (HSLS) consider a general context in which (0, ) and
(Z, £) are measurable spaces: & is a o-field of subsets of ® and ¢ is a
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o-field of subsets of 2" Let g(6, x) denote the payoff function, the gambler’s
net gain corresponding to values x € £ and 0 € 0, and let f(6) denote the
expected payoff function, the gambler’s expected net gain or the statistician’s
net loss, calculated according to the probability distribution p(-|6) (see Section
3). Then g is HSLS-coherent (given p) if for every gambler’s strategy (GS).

inff(9) < 0.

Equivalently, g is HSLS-coherent provided that the only strategies for the
gambler that assure f(6) > 0 for all 8 have inf, f(6) = 0:

(HSLS) £(8) =0 forall 6 = inff(6) = 0.

If there is a prior distribution on ® that has g as posterior for it and p,
then g is HSLS-coherent. In particular, the ¢ described in Example 1.1 is
HSLS-coherent.

1.8. Cornfield coherence. In Cornfield (1969) we find a stronger version of
coherence, though Cornfield deals with finite ® only. For him, the bookie is
incoherent if there is a GS such that f(8) > 0 for all 6, and 3 6* such that
f(6% > 0.

So q is Cornfield-coherent if for every GS either 3 0, such that f(6,) < 0,
or f(6) < O for all 6; or again, ¢ is Cornfield-coherent provided that

(CC) £(8) =0 forall § = f(8) = 0.

Cornfield shows that if the bookie takes for ¢ the posterior for a prior 7 that
assigns a positive probability to each 6, the bookie is coherent. This is the
property of full coherence as defined in a more general context in Section 3. A
prior 7 is “minimally compatible” with an inference g if w(A) > 0 whenever
q(Alx) > 0 for all x in a set B € & such that p(B|6) > 0 for all § € A. Thus
when 0 is countable and a prior 7 assigns positive probability to each 6§ € 0,
7 is minimally compatible with every inference. In Theorem 3.5 we show that
if 7 is minimally compatible with ¢ and ¢ is a posterior for 7 and p, then
(C—m) f(6) =0 forall & =f(0)=0a.s. (7).

The debt owed by the present paper to investigations of Heath and
Sudderth and of Lane and Sudderth is obvious. But we broaden the scope of
the investigations along lines suggested by structures studied by Rényi (1970)
and by Dawid and Stone (1972). On the one hand the bookie would like to
know that if K is a subset of ® and if the gambler restricts bets to subsets of
K X &, then there is a point of K where the payoff function is nonpositive
(but the bookie can have more, by using a posterior for a prior that is
compatible with its posterior; see Theorem 3.5). On the other hand, we wish to
extend the domain of applicability of the results by accomodating both condi-
tional distributions over ©, such as those studied by Rényi (1970) and, like
Dawid and Stone, priors generated by possibly infinite measures. Thus a prior
1 on a measurable space (0, %) need not assign finite measure to ©; rather,
for certain subsets K of @ of positive, finite measure u determines a probabil-
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ity measure 7x by the prescription

r(AK)
n(K)

The gambler selects one from among a family of such sets K and restricts bets
to sets in K X Z. Of course, in many applications, ® will itself be such a
set K.

Section 2 introduces notation and terminology.

In Section 4 a weak form of coherence, “coherence for bets independent of
x,” is introduced. In appropriate contexts, it implies that inference is deter-
mined by a posterior distribution. Theorem 4.9 is closely related to Corollary
3.1 of Lane and Sudderth (1983). Corollary 4.13 is formulated in terms of
densities.

Section 5 includes some supplementary remarks.

Tg(A) =

2. Notation and terminology. Our most general setting has (0, %)
and (Z, %) as arbitrary measurable spaces: . and & are o-fields of subsets
of the parameter space ® and the observable space &, respectively. A sam-
pling model p is a function X @ — [0, 1] such that p(-|0) is a probability
measure on & for each 6 € ©, and for each B € #, p(B|-): ® - [0,1] is
Fmeasurable. That is, p is a transition probability [Neveu (1965), Chapter 3]
or kernel [Bauer (1981)]. We denote by % * & the o-field generated by
rectangles A X B with A € % and B € #. If ¢ is a function ® X 2" R, its
6- and x-sections are denoted by ¢,;; 2'— R and ¢*: ® — R, defined by
eo(x) == ¢*(0) == ¢(0, x). (The symbol := indicates that the left member is
defined to be equal to the right member.) We follow de Finetti in using p(-|6)
to denote not only the measure on #, but also the expectation functional it
determines:

p(918) = [¢4(x) p(dxl0);

similarly for other measures. Also, the same symbol will be used for a set and
its indicator. For example, if A € F * &, then A,(x) = A*(9) = A(0, x) = 1 if
(0, x) € A; otherwise each is 0.

We shall interpret ‘“‘inference”” somewhat more broadly than is usual. As a
technical term, an inference here is.a measure used to generate conditional
inferences, in the same way that a measure determines a Rényi system of
conditional probabilities. Thus an inference q is also a transition measure or
kernel: It is a function %X 2'— [0,] such that q(A|-): 2'— [0, ] is
#“measurable for each A € %, ¢q(-|x) is a measure on & for each x € 2 and
these measures are uniformly o-finite. For x € 2, A € % and K € & such
that 0 < ¢(Klx) < = we interpret

q( AKlx)

(AR = i)
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as the “credibility” that the inference g associates with A, subject to 6 € K.
[Note that to multiply ¢ by a positive, measurable function 2"— R does not
affect the ratio q(AKlx)/q(Klx).] If 0 < q(Blx) < » for x € 2, then
g(-1x)/q(®lx) is an inference in the sense in which the term is used in Heath
and Sudderth (1978) and in Lane and Sudderth (1983).

We shall refer to a measure 7 on & as supported on a set K € & provided
that m(A) = 0 when A € & and AK = J.

For K € %, a probability measure 7; supported on K and a sampling
model p determine a probability measure rx on & * ¢, supported on K X Z,
such that for A € % and B € ¢, we have

r¢(A X B) =[ p(Bl8)mg(d6).
KA
The probability 7 is one of the marginals of rg, the other being m g, defined
for B € £ by
mg(B) == rg(0 X B) = rg(K X B).

A o-finite measure u on % and a sampling model p determine a o-finite
measure r on & * & [Ash (1972), Theorem 2.6.2] such that for A € & and
B € £, we have r(A X B) = [, p(B|8)u{d6). The measure pu [=r(- X 2] is
one of the marginals of r, the other being m, defined for B € # by m(B) =
r(® X B).

2.1. DEFINITIONS. Let ¢ be an inference, let K € &% be such that
q(K|x) < o for x € 2 and let 7 be a probability measure supported on K.
Define the conditional inference qx: ¥ X 2= R by

_ [4a(CKlx)/q(Klx), if q(Klx) >0,
(O = {0, if g(Klx) = 0

[in which case also ¢(CK|x) = 0 for C € & ]. Then q is a posterior for 7 and
p provided that for A € & and B € 4,

re(A X B) = f@ng(ﬂ)A(())B(x)p(dxl())'n'x(d())
(2.2) = [/ B(x)ax(Alx)p(dxl6)mx(d0)

= [ B(x)ax(Alx) m(dx).

It follows that for every bounded #measurable function ¢: 2"~ R and every
bounded ¥ * £measurable function ¢ with support on K X Z,

(23) [ [ p(0)1e(6,%) = ax(¢7x)] p(dxl6) mx(dB) = 0.

One verifies that if K’ € %, K' c K, and if ¢ is a posterior for p and 7, it is
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also a posterior for the normalized restriction 7' of 7x to K': For A € %,
w'(A) = mx(AK') /7 (K").

In Section 4 both ® and 2" will be locally compact spaces; %,  and ¥ * &
are then taken to be the classes of Baire sets. Let K be a compact subset of ©.
One can use the Riesz representation theorem to show that then if 2 is
o-compact, a sufficient condition that ¢ be a K-posterior for 75 and p is that

(2.3) [ S ¥ (0)[2(6) = ax(hlx)] p(dxlo)mg(d6) = 0

for continuous functions ¢: 2"— R with compact support and for functions A:
® —» R with continuous restriction to K, where for A € &, mx(A):=
w(AK)/u(K).

2.4. DEFINITIONS. Let u be a o-finite measure on % and let ¥ be a
family of members of % such that 0 < u(K) < « for K € %. Then q is a
Fposterior for u and p provided that for every K € ¥, qy is a K-posterior
for mx and p, where mg: % — R is defined by

r(KC)
n(K)

for C € . If p is a o-finite measure on %, q is a posterior for u and p if it
is a % -posterior, where %" is the class of all sets K in % such that
0 < u(K) < .

g (C) =

2.5. PROPOSITION. Let (0, %, A) and (2, £,v) be measure spaces. Let
be a measure on ¥ that is absolutely continuous with respect to A and set
h:=du/dA. For 0 € 0, let p(-|6) have positive bounded density p(-|0) with
respect to v and for x € 2 let q(-|x) have density o(-|x) with respect to A
given by
(2.6) a(0lx) =j(x)h(8)p(xl ")
where j is a positive, bounded, measurable function 2"— R. Then q is a
posterior for w and p. IfK € F and 0 < w(K) < «, then 0 < q(Kl|x) < « for
xe Z.

The proof is straightforward.

3. Expectation consistency and coherence. Let (0, ¥) and (2, %)
be measurable spaces, p a sampling model and g an inference, as defined in
Section 2. For K € % such that q(Klx) < » for x € &, a simple K-betting
system is a triple (C, D, s), where {C,D} c ¥ x4, C*UD*CcK for xe %
and s: Z"— R is bounded and #measurable. One thinks of C and D as sets
such that for at least some x € 2" the gambler disagrees with the bookie’s
assessment of odds q(C*|x): q(D*|x), s(x) is the amount of the wager (posi-
tive, negative or 0) set by the gambler, who makes a conditional payment of
s(x)qg(C*|x) for the privilege of playing. If it develops that (6, x) & D, the
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conditional payment is returned, while if (6, x) € C, the gambler is paid
s(x)qx(D*|x). The gambler’s net gain when 6 is announced will then be

(8.1)  &(6,x) =s(x)[C(8,x)qx(D*lx) — D(6, x)qx(C*lx)].

Note that if ¢ K, then C(9,x) = D(9, x) = 0. If for some x € 2" the gam-
bler’s probabilities for C* and D* are, respectively, P(C*|x) and P(D*|x) > 0,
the expected gain for the gambler, given x, is the product of
s(x)q x(D*|x)P(D*|x) by

P(C*)  qx(C*l)
P(D'k)  qx(D*R)

So when the gambler thinks the bookie has prescribed unrealistically small
odds qx(C*|x)/qgx(D*|x), s(x) will be assigned a positive value and s(x) < 0
for those x for which the gambler considers q(C*|x)/qx(D*|x) too large. A
finite collection of simple K-betting systems {(C;, D;,s;), i = 1,2,...,n}is a
K-strategy for the gambler. Let g, be the gambler’s net gain from the ith
simple K-betting system and let f be the gambler’s expected net gain given 6:

f(8) = p(&l6)

where g(0,x) = L?_,£,(0, x). The function g may be regarded as an instance
of such a loss—for the statistician—as plays a role in the discussion by Dawid
and Stone (1972, 1973) of expectation consistency. Loosely and informally,
expectation consistency excludes the possibility that expected loss according to
q given x be 0 for each x € &2, while expected loss according to p given 6 is
positive for all 6.

In the special case considered by Dawid and Stone (1972, 1973), § and 2~
are countable and ¥ is the family of finite subsets of 0.

The definitions of full coherence and full expectation consistency to follow
make use of the concept of compatibility. Let K € #. Suppose there are sets
A€ ¥ and B € # such that q(AKl|x) > 0 [equivalently, qx(Alx) > 0] for
x € B and p(Bl§) >0 for § € A. One would not consider using such an
inference q in the presence of p unless one felt that it was stochastically
possible that (9, x) € A X B. But if 7 is a probability on %, supported on K,
with 7(A) = 0, and r is the probability distribution on % * # determined by
p and 7, then r(A X B) = 0, so that one would not consider such a probability
7 to reflect adequately opinions of a bookie using g. There are other possible
compatibility conditions that could be of interest, so we refer to the present
condition as minimal compatibility.

3.2. DEFINITION. Let K € % and let = be a probability measure on %,
supported on K. Then 7 is minimally K-compatible with q (in the presence of
p) provided that w(A) > 0 for every A € & for which there exists B € &
such that p(B|#) > 0 for § € A and q(AK]|x) > O for all x € B.If ¥ c % and
if u is a o-finite measure on % such that 0 < u(K) < o for K € %/, then u is
minimally F-compatible with q provided that 7y := u/u(K) is minimally
K-compatible with ¢ for every K € %",
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Where densities are available as in Proposition 2.5, a prior is minimally
compatible with a posterior whose conditional density o is given by (2.6).

Note that in Example 1.1, if K := ® and 7 concentrates its probability on
{0, 1}, then q is a posterior for 7 and p; but 7 is not minimally K-compatible
with q.

Loosely, q is fully K-expectation consistent with p if, when expected loss
according to g given x is 0 for each x € 2, a nonnegative expected loss
according to p given 6 is necessarily 0 almost surely, with respect to some
probability supported on K that is minimally compatible with q.

3.3. DEFINITION. Let #'C #. An inference q is fully #expectation con-
sistent with p if for every K € % there is a probability 7 supported on K and
minimally K-compatible with g, such that for every bounded % * “measura-
ble g with the properties

(1) q(g*lx) =0 forall x € 2
and

(ii) f(8) =p(g,l0) >0 forall 6 €K,
one has f(8) = 0 for m-almost all 6.

Note that for a gambler’s K-strategy the bookie’s net loss g satisfies (i)
above. An inference q is fully J#-coherent if for every K € % there is a
probability 7 supported on K and minimally K-compatible with g, such that
for every gambler’s K-strategy for which (i) holds, one has f(8) = 0 for
m-almost all 6.

The following proposition is a consequence of (2.2), (2.3) and Definition 3.2.

3.4. ProposiTiON. Let K € &, K, € &, K, C K and let q be an inference
that is a K-posterior for p and a K-prior 7 such that 0 < q(K,|x) < « for
x € 2. Then q is also a K,-posterior for the normalized restriction , of m to
K,: For A € &,

If 7 is minimally K-compatible with q, then m, is minimally K,-compatible
with q. ‘

Note that (2.2) with A = K, and B = 2" implies that 7(K,) > 0, since

/ IE) 116y > 0 forallo < 0
o q(Klx) '

3.5. THEOREM. Let %' C ¥ and let q be a F“posterior for p and a o-finite
measure u on & such that 0 < W(K) < » for K € %; and let u be minimally
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J~compatible with q. Then q is fully J#expectation consistent with p. A
fortiori, q is fully J-coherent.

It follows from Proposition 3.4 that then g is fully K-expectation consistent
with p for every K € % that is part of some member of %, such that
0 <qg(Klx) <o forx € Z.

Proor oF THEOREM 3.5. Let K € % and let g be bounded and measurable
and satisfy (i) and (ii) of Definition 3.3. For 6 € 0, define f(8) = p(g,|0). Since
q is a Fposterior for p and u, it follows from (2.3) that

fo(o)n-K(do) = fogg(O,x)p(deB)wK(dB)

=ff 9x(&%1x) p(dx|0)me(d6) = 0,
K a2

where mx(A) = u(AK)/uw(K) for A€ #. Thus f>0 on K implies f=0
a.e. (mg). By hypothesis, 7 is minimally K-compatible with ¢, so that ¢ is
fully #<expectation consistent with p. O

In Example 1.1, there is no family % that includes a set K € % that
contains {0, 3, 1}, such that q is fully #expectation consistent with p. To see
this, note first that if {0, 3,1} c K, a probability supported on K that is
minimally K-compatible with ¢ must assign positive probability to each of the
singletons {0}, {3} and {1}. On the other hand, suppose {0, 1,1} ¢ K € %. Then
for x € 27, qg(-lx) = q(-|x) since q(Kl|x) =1 for x € 2. Set C = {3,0},
D: =KX Z, s(0):=1 and s(x) = 0 for x # 0. Then q(g*lx) = 0 for x € Z,

g(0,x) = s(x)[C(6,x)q(D"lx) — D(6,x)q(C*Ix)],
&(z,0) = q(K10) > ¢({0}/0) =1,

g(6,0) =0 for o + %,

g(0,x) =0 forx>0,0€c0.

So f(6) == p(gyl6) = 0if 6 # 3, but f(3) = (2)". Since f(8) > 0 for 6 € ® and
since, if 7 is minimally K-compatible with g, 7({3}) must be positive, there is
no probability 7 minimally K-compatible with q, such that f(8) = 0 for
m-almost all 6. That is, ¢ is not fully #<expectation consistent with p, no
matter what # may be, so long as it has a member K that includes {0, 1, 1}.
In particular, if % has the single member @ := [0, 1], q is not fully #expecta-
tion consistent.

3.6. ExampPLE. Let © :=(0,1) and, as in Example 1.1, let n be a positive
integer. Set 2=1{0,1,...,n} and for 6 € O, let p(:|6) be binomial with
parameters n and 6. O is locally compact and o-compact in the usual topology
of the reals and 2" is compact in the discrete topology. For 8 € O, p(-|6) has
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density
p(xl0) = (3 )1 - 0)"

with respect to counting measure » on . Let A denote Lebesgue measure and
let #={K,,K,, ...} where K, cK,c ..., U%_,K, =0, A(K,) >0, and
where for n = 1,2,..., K, is a compact subset of (0,1). Let u have density
with respect to A on (0, 1) given by

du

For x € &, let q(:|x) have density o(-|x) with respect to A, given by
o(flx) =6 (1 -6)""""",  0<6<1,

so that ¢ is a Jposterior for u and p. Since u and g have positive densities
with respect to A, u is minimally #compatible with ¢. By Theorem 3.5, ¢ is
fully and strongly #<expectation consistent. In particular, if f is a nonnega-
tive expected payoff function for a K-strategy with K € %, then f= 0 a.e. (u)
and hence a.e. (1) (cf. Example 4.14).

Lane and Sudderth (1983) observe that q is not ®-coherent; of course O is
not contained in K, for any n.

3.7. ExamMPLE. Set £":= 0 := R and let each of % and ¢ be the class of
Borel subsets of R. For B € 4 and 6 € R define

1 2
p(Blo) = ‘/——2—_7;—f3exp[—(x -9) /2] dx.

Let u denote Lebesgue measure on R, and for A € % and x € R set

1 2
q(Alx) = ‘/——2—_7;—fAexp[—(0 - x) /2] dx.

Let % denote the family of sets K € % such that 0 < u(K) < «. Lane and
Sudderth (1983) remark that ¢ is coherent, but not derivable from a proper
countably additive prior on ® := R. But q is a J#posterior for u and p, and m
is minimally #compatible with ¢. For arbitrary K € %, if a K-strategy for
the gambler produces a nonnegative expected payoff function, it is 0 a.e. (u).

4. Expectation consistency implies Bayes. In Section 3 we gave con-
ditions under which a Bayes inference is fully expectation consistent and
coherent. In the present section we obtain results in the converse direction for
cases in which ® and & are locally compact spaces. The o-fields %, & and
F » & are the classes of Baire sets. The key tool is Lemma 4.1, that follows. It
is essentially Lemma 1 of Heath and Sudderth (1978) [cf. also Heath and
Sudderth (1972); Pierce (1973)].
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4.1. LEMMA. Let S be a set and L(S) the normed linear space of all
bounded functions S — R, with the supremum norm. Let L be a subspace of
L(S) that contains the constant function 1 [defined by 1(s) =1 for s € S].
Let F C L. Then the following are equivalent:

(i) There is a positive linear functional l on L such that I(f) >0 forfe F
and I(1) > 0.

(ii) Every nonnegative combination of functions in F has a nonnegative
supremum.

Proor. To prove that (i) implies (ii), suppose the contrary, that there exist
a positive integer n, a positive number ¢ and, for i = 1,2,...,n, a positive

number a; and a function f; in F such that

Y a;f(s) < —¢ forallseS.
i=1
Then

l( i aifi(s)) <lIl(-¢el(s)) = —¢€l(1) <0,

i=1

a contradiction. The proof that (ii) implies (i) is based on the separating
hyperplane theorem [cf., e.g., Pryce (1973), Theorem 8.14, page 119). O

4.2. CoROLLARY. Let O be locally.compact and let K C ® be compact. Let F
be a vector space of bounded Baire functions ® — R whose restrictions to K
have nonnegative suprema. Then there is a Baire probability measure g,
supported on K, such that w(hK) = 0 for all Baire h € F that have continu-
ous restriction h|K to K.

Proor. This follows from Lemma 4.1 and the Riesz representation theo-
rem. O

Let % be a family of compact subsets of the locally compact space ® such
that g(Klx) < for x € 2 and K€ %. For K€ %, for x € 2 and for
bounded Baire ¢: ® X 2°—> R, qx(¢lx) is defined by (cf. Definition 2.1)

q(¢*Klx) /q(Klx), if ¢(Klx) >0,

ax(el) = {o, if g(Klx) = 0.

4.3. DeFiNiTIONS. For fixed K € %, the sampling model p is K-continu-
ous if for bounded continuous kh: 2'— R the restriction to K of p(k|-):
® — R is continuous. The inference q is K-continuous if for bounded Baire A:
® — R with continuous restriction to K, qg(k| - ): Z'— R is continuous.
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For given p and q and a given compact subset K of 0, let #= #(p, q, K)
denote the class of functions ® — R of form

(4.4) K(6) [ s(x)[(8) ~ gx(hlx)] p(dxlo),

where s: 2"— R is a continuous function with compact support and H: ® — R
is a bounded, nonnegative Baire function with continuous restriction to K.

4.5. LEMMA. Let K be a compact subset of O, let p be a K-continuous
sampling model and let q be a K-continuous inference. If every finite linear
combination of function in #(p,q, K) has nonpositive infimum in K, then
there is a probability distribution wy on %, supported on K, such that qy is a
posterior for p and .

Proor. Let F denote the vector space of finite linear combinations of
functions in #(p, q, K). By the remark preceding Definition 2.4, it suffices to
show that there is a probability measure =y supported on K such that
[k f(@)m(d6) = 0 for every function f€ F. By hypothesis, for feF
we have inf{f(6): # € K} < 0. Since f< F implies —f € F, also sup{f(8):
6 € K} > 0. By Corollary 4.2 there is a probability measure 7w, on %, sup-
ported on K, such that 7 (jK) = 0 for every function j € F whose restric-
tion to K is continuous. But since p and q are K-continuous, every function
in F has continuous restriction to K. Thus [x f(0)mg(d6) =0 for f€ F,
completing the proof. O

In Section 3 we gave conditions under which inference based on a posterior
distribution has a rather strong property of expectation consistency. That
property implies the analogously defined property of coherence. In.the con-
verse direction, under appropriate regularity conditions, an apparently weaker
form of coherence of expectation consistency is seen to imply that the infer-
ence is based on a posterior distribution. Let J#" be a family of sets belonging
to &. For a positive integer n and a set K € ¥, we consider a K-strategy
{(C;, D;,8),i=1,2,...,n} (Section 3) such that, for i = 1,2,...,n, D,=K
and C; is independent of x: for some C;/ € %, C\(0, x) = C/(0) for 6 € O,
x € . For such a strategy the bookie’s loss from the ith simple bet indepen-
dent of x is

(4.6) 8:1(0, %) = K(0)s,(x)[C/(6) — qx(C/Ix)],
the total loss from the K-strategy is
(4'7) g(O,x) = Z gi(o’x)

i=1

and the expected loss given 0 is

This motivates the following definition.
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4.8. DEFINITION. An inference ¢ is weakly K-expectation consistent with p
if the validity of (4.6) for every bounded #measurable s;(-) and every C; € #,
i=12,...,n, implies

inf{ £(8): 6 € K} <0,

and weakly J#-expectation consistent with p if weakly K-expectation consistent
with p for every K € ¥. Such an inference may also be termed weakly
K-coherent (J-coherent) for bets independent of x.

For coherence as defined in Heath and Sudderth (1978) (with K := @) the
sets C; are allowed to depend on x, so that weak ®-coherence is at least
apparently weaker than coherence, since the class of available loss functions g
is smaller for weak ®-coherence.

4.9. THEOREM. Let ©® and Z be locally compact and o-compact. Let K be
a compact subset of ©® and let p and q be K-continuous. If q is weakly
K-expectation consistent, then q is a K-posterior for p and a K-prior mg.

Proor. It suffices to show that g, satisfies the hypothesis of Lemma 4.5. A
finite linear combination of functions in &#(p, q, K) is a sum of such func-
tions. Approximating the functions A that appear in (4.4) by nonnegative
simple functions, one finds that the linear combination is the expected payoff
function for a gambler’s K-strategy of bets independent of x. Since ¢ is weakly
K-coherent for bets independent of x, the infimum is nonpositive. O

Note that on setting K = ® we have a conclusion of Corollary 3.1 of Lane
and Sudderth (1983) with the weaker coherence hypothesis.

For most stochastic models in common use, given a sampling distribution p
and an inference g, there is at most one prior 7 such that g is a posterior for
7 and p. An obvious counterexample has

7r: an arbitrary probability measure on .%;

for 6 € O, p(-|0) is the probability measure degenerate at 6: p(B|8) = B(8) for
B e &,

for x € 2, q(-|x) is the probability measure degenerate at x: q(Alx) = A(x)
for A € &,

(The author is indebted to D. L. Hanson for a more interesting example
involving disjoint rectangles in ® X £°). But it is an essential hypothesis of
Proposition 4.11 that follows, that p and ¢ fail to admit multiple K-priors,
according to the following definition.

4.10. DeFINITION. For K € %, a sampling distribution, p and an inference
q fail to admit multiple K-priors provided that there is at most one K-prior 7y
such that g is a K-posterior for w4 and p.
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The following lemma gives sufficient conditions in order that p and q fail to
admit multiple marginals.

4.11. Lemma. Let (O, F,A), (Z,Z,v) and (O X X, F*Z, A Xv) be
measure spaces. Let a joint probability distribution on ©® X 2" have marginal
densities 6™: ® > R with respect to A and 6™: Z'— R with respect to v,
conditional density p(-10): 2" R with respect to v for 8 € O, and conditional
density a(-|x): ® > R with respectto A forx € X . Set "= {0 € 0|6™(9) > 0}.
If p(x16) > 0 for (0,x) € O*X X, then there is (to within A-equivalence) no
other marginal density 87: ® - R with respect to A such that p and o are
conditional densities. That is, such a marginal density 87 must be a version of
™.

The proof is given in the appendix.

The term “bunch” in the statement of Proposition 4.12 is used in Rényi’s
(1970) sense: a bunch of subsets of © is a class closed under union, to which
the empty set does not belong, such that ® is a countable union of sets in the
class.

4.12. PROPOSITION. Let ® and & be locally compact and o-compact. Let
% be a bunch of compact subsets of ® and let (K,) be an expanding sequence
of sets in ¥ such that ® = U%_,K,. For K € % let q satisfy 0 < q(K|x) <
for x € &, let p and q be K-continuous and fail to admit multiple priors and
let q be weakly -expectation consistent. Then there is a Js“prior u such that q
is a J“posterior for u and p.

Proor. By Theorem 4.9, for each K € % there is a K-prior 7y such that
q is a K-posterior for p and 7. Let {K, K'} ¢ %, K c K'. By Proposition 3.4,
q is a K-posterior for p and the normalized restriction of 7 to K. Since p
and g do not admit multiple marginals, 7y is itself the normalized restriction
to K of mg: for A € &F, mx(A) = w7 (AK) /7y K). The system P(:|-):
Fx #,(A, K) — P(AIK) = 7 (A) is a conditional probability [Rényi (1970)].
By Theorem 2.2.1 of Rényi there is a o-finite measure u on % such that
0 < w(K) < wand mx(A) = P(AIK) = u(AK)/u(K) for A € &#, K € % . The
measure u is determined uniquely up to a constant factor, and ¢ is a
J¢“posterior for p and p. O

Corollary 4.13 gives regularity conditions which imply that a weakly expec-
tation consistent inference is a posterior.

4.13. COROLLARY. Let ® and £ be locally compact and o-compact. Let %
be a bunch of compact subsets of ©. For 6 € O let p(-|0) have positive density
p(+160) with respect to a measure v on &. For x € 2" let q(-|x) have positive
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density o(-|x) with respect to a measure A on &, such that 0 < q(K|x) <
wand 0 <MK)<w forKe ¥. Let p(:| * ): ZXx0® - Rand o(:| - ): O X &
— R be bounded and measurable ¥ X &. For x € 4, let p(x| - ): ® > R be
continuous, and for 0 € O, let o(-|0): 2" R be continuous.

(a) For compact K € ©, p and q are K-continuous, so that if q is weakly
K-expectation consistent then q is a K-posterior for p and a prior .

(b) If q is a weakly J#-expectation consistent then there is a J<prior, u,
such that

(i) q is a posterior for p and u;
(ii) u is minimally % '-compatible with q, where

K ={Ke 710 < u(K) <o} 2%,
(iii) q is fully % -expectation consistent with p and fully % -coherent.

The proof of Corollary 4.13, which adapts the proof of an analogous
theorem of Dawid and Stone (1972) to the present context, is given in the
appendix.

4.14. ExaMPLE. As in Example 3.6, n is a positive integer © := (0, 1),
2+=1{0,1,...,n}), and for 8 € ®, p(-16) is the binomial distribution with
parameters n and 6. O is locally compact and o-compact in the usual topology
of R, and 2  is compact in the discrete topology. For 8 € 0, p(-|6) has density

p(xl8) = (%)o=(1 - 6)" "

with respect to counting measure v on £". Let ¥ be a bunch of compact
subsets of O that contains an expanding sequence (K, ) such that U5 _, K, =
0. By Corollary 4.13, if, for x € 2, q has positive density o(:|x) with respect
to Lebesgue measure on (0, 1) such that 0 < g(K|x) < = for K € % and if q is
weakly J#<expectation consistent with p, then there is a J¥prior x, minimally
compatible with ¢ such that ¢ is a posterior for p and u, fully J¥"-expec-
tation consistent with p and fully %"-coherent, where ¥’ ={K € |0 <
w(K) < o} ¥

4.15. ExaMPLE. As in Example 3.7, let © := £2":= R and let each of % and
# be the class of Baire (= Borel) sets in R. Again, for B € # and 6 € R, let

1
p(Blo) = 7—2_;[3 exp| — (x - 0)*/2] dx.

Let each of A and v be Lebesgue measure on R, so that

1
p(x10) = o exp[—(x - 0)2/2] > 0.
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Let % be a bunch of compact subsets of ® that contains an expanding
sequence (K ) such that U5 _,K, = 0. By Corollary 4.13, if, for x € 2, q has
positive density o(-|x) with respect to Lebesgue measure on R such that
0 < q(Klx) < o for K € % and if q is weakly #<expectation consistent with
p, then there is a #prior u, minimally compatible with g such that ¢ is a
posterior for p and u, fully J#’-expectation consistent with p and fully
J%"-coherent, where %" := {K € 10 < w(K) < o} D ¥

5. Remarks. In the papers by Heath and Sudderth (1978) and by Lane
and Sudderth (1983) a simple betting system (an HSLS system) has K = 0,
Ce F«&and D=0 x 2\ C. The class of HSLS systems is (when K = @)
intermediate between the two classes introduced in the present paper. A
simple ©®-betting system dependent of x (Section 4) is an HSLS-system; in
turn, an HSLS system is a simple O-betting system as described at the
beginning of Section 3. So the gambler is given least latitude in the case of bets
independent of x, and most latitude in the case of the systems described in
Section 3. These latter systems are essentially equivalent to those described by
Regazzini (1987).

Suppose one admits gambler’s strategies that consist of countably many
simple K-betting systems [cf. Skala (1986)]. Assume that for x € 2" the partial
sums L”_,g7* are dominated by a g-integrable function and that 7_,g,(-, )
converges on ® X 2 to a function g(-,-) dominated by a p-integrable
function 2°— R, uniformly on 0. Since q(gflx) = 0 for x € £  and for all i,
we have (cf. Definition 3.2)

(i) q(g%lx) =0 forx e &
also
(ii) g(0,x) =0 for(0,x) e K°X X

Thus full K-expectation consistency implies full K-coherence even when the
gambler’s strategy may consist of countably many (sufficiently regular) simple
K-betting systems.

APPENDIX

Proor oF LEMMA 4.11. Suppose the contrary, that another joint probabil-
ity distribution has the same conditional densities p and o. Then there are
versions 67 and 87" of its marginal densities such that for (9,x) € ® X &,

87(0)p(x16) = 81" (x)o(blx)
and
8™(0)p(x10) = 8™ (x)o(0lx).
Since 6™(8) > 0 and p(x|8) > 0 for (6, x) € (O*X Z°), also §™(x) > 0 and
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o(6|x) > 0. Dividing each member of the first equation by the corresponding
member of the second, we find that

87(0)/8™(0) = 87" (x)/8™(x) for(0,x) €O X Z.

Since 87" is a probability density, there exists x, € 2 such that §*(x,) > 0.
Then for all 6 € B,

87(6)/87(6) = 81" (%) /8™ (o) > 0.

Thus the ratio 87(8)/87(6) is constant on ®F; also §7(8) = 0 for 6 & O™,
Since numerator and denominator are probability densities with respect to A,
they must coincide a.e. (A). O

ProoOF OF COROLLARY 4.13. (a) Let Baire h: 2°— R be bounded so that
there is a positive number M such that |h(x)| <M for x € Z". Let 6, € K.
Then for 6 € K,

| p(R16) — p(Rl6,)| < M [|p(x18) — p(x18,)|v(dx).

By Scheffé’s theorem the right member converges to 0 as 8 — 6,,, establishing
that p is K-continuous. Let Baire A: ® — R have continuous restriction to K.
By hypothesis A(K) > 0 and o(8|x) > 0 so that g(Kl|x) > 0 for x € 2. Fix
xo € Z. For x € &, we have

qx(hKlx) — ‘IK(hleo)

= [ R(®)[o(8lx) = o(8lxo)]A(20) /a(Klx)

+a(Ki) ™" - q(Klxo) '] [ (8)(01xo)M(d0).

Applying Scheffé’s theorem, we find that ¢(Klx) — q(Klx,) as x = x,. Thus
the second term on the right converges to 0 as x — x,. Another application of
Scheffé’s theorem shows that the first term on the right also converges to 0 as
x — x,, completing the proof of the assertion that q is K-continuous. Conclu-
sion (a) now follows from Theorem 4.9.

(b)(i) We begin by using Lemma 4.11 to show that for K € ¥, p and q fail
to admit multiple K-marginals. It will then follow from Proposition 4.12 that
there is a Jprior u such that ¢ is a J#posterior for p and wu. A brief
supplementary argument will complete the proof of (b)i).

In order to use Lemma 4.11 to conclude that, for K € ¥, p and ¢ fail to
admit multiple K-marginals, it suffices to show that the K-prior 7, guaran-
teed by (a), is absolutely continuous with respect to A and the corresponding
marginal m g is absolutely continuous with respect to v. Define the measure
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rg on & & by

re(A X B) = fKAp(BIO)fn-K(dO) forAc ¥, Be 4, or
(Al)  rg(AXB) = fKA[pr(xIO)v(dx)]wK(dG)

- [B[/KAp(xIO)wK(dO)]v(dx)

and let m g be the other marginal: for B € &, m x(B) = rix(K X B). Since q
is a K-posterior for p and w7, on setting ¢ == 1/q(Klx) for x € 2 we have

re(A X B) = [ ax(Alk)mg(dx)
(A2) = [ () [ o(81)A(d0)m(dx)

= [ K(6) [ o(0lx)dx(x)mg(dx)A(d6) for Ac F,Bes.
A B
But from (A1) we have, for B € 4,

m(B) = [ | [ p(al0)mi(6) (o),

so that m g is absolutely continuous with respect to ». Also, from (A2), for
Ae 7,

7 (4) = [ K(0)| [ 4x(x)o(0) m(d) [x(d0),

so that my is absolutely continuous with respect to A. We conclude from
Proposition 4.12 that there is a J%<prior u such that g is a #<posterior for u
and p.

The measure u provided by Proposition 4.12, is determined uniquely to
within a constant factor; a version with w(K;) =1 is given for A € &,
Ke ¥, K 2K, by w(AK) = mx(AK) /mx(K,). For A € &,

k(A) = lim u(AK,) = lim me (AK,) /m (Ky).
Since, for n € N, 7 is absolutely continuous with respect to A, also A(A) = 0

implies uw(A) =0 and u is absolutely continuous with respect to A. Let
h=du/dX.For K€ % and A € %,

W(AK) = me(A)p(K)
and for an appropriate version of 8%,

K(0)h(0) = n(K)6%(6) for6 €K.
Set K*:= {0 € K|6%(0) > 0}. In order to apply Lemma 4.11 in the present
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context, we must replace o(6|x) in Lemma 4.11 by the present conditional
density

(dgx/dA)(0lx) = ¢ (x)o(0lx).

We have, for appropriate versions of 8% = dmg/dA and 83 = dmy/dv,
8k (0)p(x160) = 6% (2)Yx(x)o(6blx),

each member being a version of drg/d(A X v). Since the left member is
positive for § € K* and x € &, also §(x) > 0 for x € 2. By hypothesis,
Yx(x) > 0 and o(8lx) > 0 for 6 € ® and x € Z, so that §%(0) > 0 for § € K.
Then for 6§ € K,

h(8) = K(6)h(0) = w(K)55(8) > 0,
h(8)p(x16) = w(K)OE(8)p(x10) = w(K)5F ()b (%) (6)
for 6 e K, x € &, and
o(8lx) = h(0)p(x16)/[n(K)SZ(x)Yg(x)] forxe 2,0 €K.

Since ® = U%_,K,, for § € O thereisa K € ¥ such that § € K. Since ¥ is
a bunch, if K, € % and K, € %, then K, UK, € ¥. It follows that
u(K)SZ(x)Pg(x) is independent of K in ¥ for x € Z, so that the hypotheses
of Proposition 2.5 are satisfied, and ¢ is a posterior for x and p.

(b) (ii) and (iii). We recall that to say that ¢ is a posterior for u and p is to
say that ¢ is a J#posterior for u and p, where %" is the class of all sets K in
& such that 0 < u(K) < ». As we noted above, h(8) > 0 for § € K € %,
which implies that A(6) > 0 for § € ®. We observe as follows that u is
minimally J%"-compatible with q. Let K € %", x € 2, A € % and let qx(Alx)
be positive. Then [, z0(8lx)A(d6) > 0. Hence A(AK) > 0; and since A > 0,
also u(AK) > 0 and mx(A) = u(AK)/u(K) > 0.

By Theorem 3.5, q is fully % -expectation consistent with p and fully %"
coherent. O
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