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QUANTILE ESTIMATION WITH A
COMPLEX SURVEY DESIGN?

By CaroL A. Francisco AND WAYNE A. FULLER

Syntex Laboratories and Iowa State University

Estimation of the finite population distribution function and related
statistics, such as the median and interquartile range, is considered.
Large-sample properties of estimators constructed from stratified cluster
samples, and properties of large-sample confidence intervals, are estab-
lished. The results are obtained within the context of a sequence of finite
populations generated from a superpopulation.

1. Introduction. Researchers are often interested in estimating cumula-
tive distribution functions from analytical survey data. For example, Sedransk
and Sedransk (1979) examined the feasibility of using estimated cumulative
distribution functions to compare patient care at radiation therapy facilities in
a large-scale national survey of cancer patient medical records. Also of interest
are functions of the cumulative distribution function, such as quantiles and
the interquartile range. For example, median earnings are regularly reported
for wage and salary workers by the Bureau of Labor Statistics in the periodical
News. The medians are computed from a subsample of the Current Population
Survey, a stratified multistage sample.

Although large-scale surveys generally use some form of stratified cluster
sampling, much of the literature on quantile estimation for finite populations
is restricted to simple random sampling or to stratified random sampling.
Thompson (1936) and Wilks (1962) have given design-based exact confidence
intervals for the sample median under simple random sampling from a finite
population. Sedransk and Meyer (1978) and Blesseos (1976) investigated exact
confidence interval procedures for quantiles when sampling is from a popula-
tion divided into a small number of strata. In general, the design-based
approach to the construction of confidence intervals with known confidence
coefficients is not practical for stratified survey designs having more than two
strata. McCarthy (1965) and Smith and Sedransk (1983) give some lower
bounds for confidence coefficients applicable to larger stratified samples.

Bickel and Krieger (1989) investigated bootstrap confidence bands for the
distribution function of a finite population estimated from a stratified random
sample. Under certain conditions, confidence bands for the distribution func-
tion can be used to define confidence sets for quantiles.
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Woodruff (1952) proposed using a weighted sample median to estimate the
population median, where the weight assigned to each observation is propor-
tional to the inverse of its selection probability. Woodruff also suggested a
confidence interval procedure for the median that relied upon the asymptotic
normality of the sample cumulative distribution function. Gross (1980), follow-
ing Maritz and Jarrett (1978), presented an estimator of the variance of the
weighted sample median for stratified sampling without replacement, and gave
some large sample results for stratified cluster sampling. For stratified random
sampling, Binder (1982) derived expressions for confidence coefficients of
Bayesian prediction intervals for population quantiles. In large samples, the
Bayesian intervals are similar to those proposed by Woodruff (1952).

To introduce the problem of quantile estimation for complex designs, con-
sider simple random sampling from a population with a continuous cumulative
distribution function. The sample cumulative distribution function at a point
x, denoted by F,(x), is the fraction of elements in the sample whose values are
less than or equal to x. The variance of F,(x), denoted by Q (x), is n~'F(x) -
[1 — F(x)], where F(x) is the population cumulative distribution function and
n is the sample size. Under the assumption that F(x) is continuous, Q,(x)
is continuous. The unbiased estimator of the variance is Q (x)
(n — D7F(x)[1 — F(x)]. Both F(x) and Q,(x) are step functions. The
Jumps in F,(x) are of height n™!, and ‘the jumps in (n — 1)Q () are less than
n~! in height. The change in (n — 1)} (x) from x; and x, is bounded by the
change in F,(x) from x, to x,. Also, because F,(x) converges to F(x) in
probability, (n - 1)Q,(x) converges to nQ (%) in probability. Thus, under
simple random sampling, F,(x) and (n — l)Q .(x) are very well-behaved step
functions that converge in probability to the respective continuous functions.

In stratified cluster sampling, stable local behavior of F,(x) and (n — 1) -
Q o(x) is not guaranteed. For example, with stratified cluster sampling, it is
possible for the estimated variance to be zero for x in the support of F(x). It is
also possible for jumps in F,(x) to be much larger than n~! and for jumps in
the estimated variance to be large relative to the jumps in the estimated
distribution function. Therefore, to obtain limiting results for the estimated
quantiles with a complex survey design, restrictions on the sample design are
required to place bounds on the local behavior of F(x) and ) (x).

In Section 2, the ratio estimator of the finite population distribution func-
tion is used to define a quantile estimator for stratified cluster sampling.
Conditions on stratified cluster designs sufficient for asymptotic normality of
the estimated cumulative distribution function are given in Section 2. The
limiting distribution of a vector of quantiles is derived by establishing a
representation for the quantiles in terms of the empirical distribution function
in Section 3. Theorem 4 of that section provides a large sample justification for
the confidence interval for a quantile proposed by Woodruff (1952). A new
confidence interval procedure for quantiles based upon monotone bounds for
the distribution function is introduced and justified in Theorem 5 of Section 4.
Results of a Monte Carlo study are given in Section 5.



456 C. A. FRANCISCO AND W. A. FULLER

2. Sample distribution function. In this section, limiting normality of
the sample cumulative distribution function for stratified cluster samples is
established. It is assumed that the sequence of finite populations is generated
by an infinite population, called the superpopulation. The superpopulation has
subject matter relevance because practitioners often make generalizations
beyond the finite population.

Let (£,)7_; be a sequence of stratified finite populations, with L, > L, _
strata. Suppose the finite population in stratum & of £, is a random sample of
size N,, > N,_, , clusters selected from an infinite superpopulatlon Associ-
ated with the jth element in the ith cluster of stratum & is a k-dimensional
column vector of characteristics. Let Y,,;; denote this vector, where h =
1,...,L,,i=1,...,N,,,j=1,...,M,,, and M,,; is the number of elements
in cluster rhi. Let the vector of cluster totals be

Mrhi

Y= Z thij’
Jj=1

where the cluster totals in the superpopulation generating stratum rs have
mean vector p,, and covariance matrix X,,. If the first element of Y,,;; is
always equal to one, then the first element of Y,,,; is M,,,.

Let a stratified random sample of clusters be selected without replacement
from the rth finite population, where n,, clusters are selected in stratum rh,
n,,=>2 for h=12,...,L, andnrh>nr1hforh—12 ., L,_;. The
total number of clusters (prlmary sampling units) in the overall sample from
£, is n,. For the rth population, let

Nrp th
(2.1) (70 Yin) = Z | mon 2 Y, Nt 2 Y,
i=1 i=1
“where W, = hN and, for notational convenience, we assume that the

first n,, items in stratum A are included in the sample. Here ¥,, is the
sample mean per cluster and Y, is the finite population mean per cluster.

We investigate the asymptotic properties of (§,,,Y,y) under the following
conditions.

ConDITION 1. The cluster totals have absolute 2 + 6 moments (5 > 0)
which are uniformly bounded by a finite constant.

CONDITION 2.

(a) sup n,W2n,2—>0 asr — .
l1<h<L,
L
(b) Y n,Wing =0(1).

h=1
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CoNDITION 3.
rh_rﬁ an{[(yrn - "’r),’ (yrn - ?rN)I] ,} =T,
where T is positive definite and p,: = E(¥,,) is the superpopulation mean.

The conditions are sufficient restrictions on the superpopulation distribu-
tions and the sampling design to admit the Lindeberg condition. Condition 2
determines how the sample clusters in the sequence of samples are allocated to
each stratum relative to the total number of clusters in the finite population.
Condition 2 also assures that the total number of selected clusters increases
without bound as r — « and that no single observation is important in the
sum. Finally, in Condition 3 it is assumed that the limit of the covariance
matrix for [(§¥,, — »,), (§¥,, — Y,»)1, when multiplied by the normalizing
factor n,, exists with a determinant bounded away from zero. The assumption
of a limit is not required for all results, but it facilitates a number of proofs,
with no loss of subject matter generality.

The multivariate central limit theorem of Theorem 1 is appropriate for
generalizations both to the finite population and to the infinite population. A
proof is available in Francisco (1987). Theorem 1 can be extended to multi-
stage designs by placing suitable restrictions on the subsampling.

THEOREM 1. Let the sequence of finite populations and samples be as
described. Under regularity Conditions 1-3,

VY23 — 1) (3w — Yon)] =1L N(O,T)

— -1
as r — o, where f,, = n,, N,

L A A
r X 1- p
Vr — Z mﬁn;hl rh ) ( frh)A rh ,
h=1 (1 -frh)zrh (1 ~frh)2rh

n,p
A -1 _ — ,
Yp=(n,—-1) Z Yori= 9. ) (Vi = §,1.)'s
i=1
nrn
Von.=nm 2 Yo,
i=1

Related asymptotic results have been given by Fuller (1975), Krewski and
Rao (1981) and Bickel and Freedman (1984). Fuller (1975) gave a multivariate
central limit theorem using a sequence of finite populations similar to the type
employed in Theorem 1. Krewski and Rao (1981) considered multi-stage
survey designs in which clusters are selected with replacement within strata
and the number of strata increases without bound. Using a Lindeberg-type
cohdition, Bickel and Freedman (1984) established the asymptotic normality of
¥, for a sequence of stratified finite populations with very few restrictions on
stratum sizes and stratum sampling rates. Our Conditions 1-3 are sufficient
for Condition 3 of Bickel and Freedman (1984).
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Theorem 1 is now used to obtain the limiting distribution for the estimated
distribution function. Define the finite population distribution function for Y
by

! Lr th Mrhi
(2.2) Foy(x)=M'Y ¥ Y I{Y,,;; <z},

h=1i=1j=1
where M, is the total number of elements in the rth finite population and

1, ifY
Y i <Xy = ’ rhij =
(o ’ } {O, otherw1se.

The estimator of the cumulative distribution function is

Nrp rht

(23) (x) = IN Z hnrh Z Z I{yrhzj }
i=1j=1
where M, is the unbiased estimator of M,.
For convenience in presenting the asymptotic results for F,,(x), we assume
that a common overall superpopulation distribution function, denoted by F(x),
holds for all ¢,. That is, we assume

L, Ny M,
h=1i=1 j=1

for all r and all x in the support of F(x), where the expectation is with respect
to the superpopulation model. The estimator of the distribution function given
in (2.3) is a ratio of quantities of the form shown in (2.1). Hence it is a
continuous differentiable function of sample means, and the limiting distribu-
tion of the estimator follows from Theorem 1.

THEOREM 2. Let the sequence of populations and samples be as described.
Let the vector (1, I{Y, hij S x}) satisfy Condltzon 1 and let Conditions 2 and 3
hold. Let F(x) satisfy (2 4). Then, for fixed x° in the interior of the support of
F(x),

[3,(2%)] [ F.u(x°) = F(x°)] -, N(0,1),
[9F,,(2°) = Fuy(x9)}] [ F.u(2°) = Fon(2°)] >, N(0,1)

as r — o, where §%(x°) = V{Frn(x")},

nrh
V(F, . (x)} = Z(mhlr%m2(¢u—mhﬁ
= i=1

V{Frn(x) - FrN(x)} frh)(nrh - 1)_1nrh z_r:’; (drhi._ Jrh..)zv

I
||[\1P‘ |

rhz

drhi.=M hnrh Z [I rhij = } _Frn(x)]

and d,,__ is defined by analogy to ¥, .
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The estimator V{F,,(x)} of Theorem 2 is a variance estimator for a com-
bined ratio estimator of the mean per element. It is a Taylor series estimator
of the variance of the approximate distribution of [F, (x) — F(x)].

The test inversion confidence set for a superpopulation quantile is defined in
Corollary 1. For a given sample, the set need not be a closed interval and can
be the entire real line. An additional condition is required before we give the
corollary.

ConDITION 4. The cumulative distribution function F(x) is continuous and
has a continuous, positive derivative in a neighborhood of x°.

COROLLARY 1. Let the assumptions of Theorem 2 hold for x°, where
F(x°) = 4°. In addition, assume Condition 4 and let

Lo = {x: F..(x) + £,8,(x) >v°and F,(x) —t,8,(x) <v°},
where t,, is defined by ®(t,) = 1 — a2~ ! and ®(-) is the distribution function

of a standard normal random variable. Then, as r — «, the probability that x°
is in I, converges to 1 — a.

3. Quantiles. While Theorem 2 and its corollary provide a method for
constructing a confidence set for a given superpopulation quantile, additional
conditions are needed to justify the confidence procedure proposed by Woodruff
(1952). In this section we give results under which Woodruff’s procedure
attains the stated confidence level. The results can also be used to construct
confidence intervals for functions of quantiles such as the interquartile range.

Let q(y) = F~'(y) be the quantile function. The yth quantile of Y for finite
population ¢, is

(31) qu(Y) = lnf{x FrN(x) = 7}’
for 0 < y < 1. An estimator of g,,(y) is the yth sample quantile
(3.2) drn(v) = inf{x: F,,(x) = v}.

Let x° be a vector of & fixed, distinct quantiles for 0 < y? <1,i=1,...,k,
and y # y}, for i # j. The corresponding set of sample quantiles for the rth
sample in the sequence is denoted by

’A{r\: [qrn(Y?)’ q\rn(yg)’ MR q\rn(yl(e))], = (ﬁrl’ ctc ﬁrk)l'
Let ), (x) be the estimator of Q,(x) and let ©,,(x) be the estimator of Q_,(x),
where
ﬁr(x) = v{ [Frn(xl) - F(xl)a ey Frn(xk) - F(xk)],}
and
QrN(x) = V{ [Frn(xl) - FrN(xl)’ LR Frn(xk) - FrN(xk)]l} .

Let A, A,,..., A, be intervals of finite positive length in the interior of the
support of F(x) that contain x?, xJ,..., x?, respectively, as interior points. Let
A=A XA, X --- XA, and let B be the union of A, A, ...,A,. We
assume that Condition 4 holds on A and introduce three additional regularity
conditions.
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Conprtion 5. For x in B, n,V{F, (x)} and n,V{F,,(x) — F,\(x)} are posi-
tive and continuous in x.

ConpITION 6. For some 0 < 'C < «, V{F Ax +8) —F, (x)} < Cn; 18], for
all r and for all x and x + & in B.

ConpITiON 7. The covariance matrices ©,(x°) and Q,,(x°) are positive
definite. Furthermore, for every ¢ > 0, there exists an M, depending only on
g, such that

P{ sup 7, Q,(x) - Q. (x)| > Msn,‘lﬂ} <e
xX€EA .

and

P{ sup nr” ﬂrN(x) - QrN(x) ” = Men;l/z} <g,
x€A
where ||C|| denotes the largest absolute value of the elements of the matrix C.

Conditions such as 5 and 7 are required for the Woodruff procedure because
the variance of the cumulative distribution function at the true population
quantile is approximated with the estimated variance at the estimated quan-
tile. Condition 7 guarantees that the estimated variance is converging to the
true variance in probability at a sufficiently fast rate. Taken together, Condi-
tions 5 and 7 guarantee that the variance estimators at the true quantile and
at the estimated quantile become close to each other and close to the true
variance at the true quantile as the sample size increases. These conditions
will hold for most sampling schemes.

Condition 6 is an assumption about the correlation between estimators of
the distribution function at different points. It is used in the development of
an approximation to the difference F, (x + 8) — F,,(x), where § is a function
of the standard error of F,,(x). Even though the error in F, (x)is O,(n;'/?),
this is not sufficient for the required local properties of the estlmated dlstrlbu-
tion function. We note that all assumptions are satisfied by simple random
sampling.

It is now demonstrated that the sample quantile §,,(y?) can be expressed
asymptotically as a linear function of the empirical distribution function
evaluated at q(y)). The theorem is a weak version of the result known as the
Bahadur representation of the sample quantile [Bahadur (1966)]. The method
of proof parallels that used by Ghosh (1971) for simple random sampling.

TrEOREM 3. Let Conditions 1 through 7 hold for x in the interval A,
containing q(y{) as an interior point. Then the sample quantile,

(3:3) 4,.(7) =a(¥) - [F(a(y)] [Fnla(1)) = Fla(1))] + RE(),

with R}, (y) = 0,(n;'/2) uniformly in vy for y in H,, where H, = {y: F(x) = y
and x € A,}.
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Proor. Let T, (y) = n¥/%(4,,(y) — q¢(¥)). Then T, (y) < c is equivalent to
Z,,(v) <c,,(y), where
Z,.(v) =/} F(q(y) + cn; /%) = F(q(y) +en; )} Fa(y)]
(3.4) '

c,n(y) = n¥*{F(q(y) +cen;*?) = F, (4, (¥} F(a(v))]
and c is a fixed constant. By Conditions 4 and 7,

F(q(y) +en;'%) = F(q(v)) + en;Y%f(q(v)) + 0,(n;'?),

2

where the equality holds for all y such that y and y + cn,'/2 are in H,.

Using Condition 2(a), Condition 4 and (3.2), it can be shown that
F(q(v)) = F,i(d:a(7)) = o(2;?),

and c,,(y) > c as r - », for all y in H,. Now,
Z,.(v) = G.,(v) = n'*[F(q(y) + cn;*/?) = F(q(7))

~{F.(a(y) + en;'?) = F (gD} [ Fa(o))] 7,
where G, ,(y) = /[ F(q(y)) — F.,(qg(y)] f(g(y)]~ . By Condition 6, we have

F.(x +cn;'?) = F,(x) = F(x + cn; /%) = F(x) + 0,(n;%*),
uniformly for all x and x + cn; /2 in A,. Thus
Z,(v) = Ga(y) = Oy(n;/*) and Z,,(v) — G..(7) —p 0,

uniformly for y in H,. Hence, because c,,(y) = ¢ as r = », we have for every
e >0,

lim P{T,,(y) <c¢,G,,(v) = ¢+ ¢}
= lim P{Z, () <¢,,(¥),G..(y) =¢c+¢} =0,

uniformly for y in H,. This establishes the first condition of Lemma 1 of
Ghosh (1971). The second condition of that lemma is obtained using similar
arguments. Therefore,

Trn(‘Y) - Grn(Y) = n1r/2R;kn(Y) ——)P O
as r — o, uniformly in y for y in H,. O

The asymptotic representation of §,,(y) given in Theorem 3 is used in the
following theorem to prove the asymptotic multivariate normality of X,.

THEOREM 4. Let X, = (%,,%,5,...,%,,) be the vector of estimated quan-
tiles associated with (y?,vY3,...,vY). Let the vector of true quantiles x° be in
the interior of the support of F(x). Let Conditions 1 through 7 hold for x in A.
" Let f)r be the diagonal matrix with d,; on the diagonal, where, for 1 <i <k,

& A 1-1[ 4 a A a
dri = [2tasri] [qrn(‘YiO + tasri) - qrn(YtO - tasri)]’
8,, = 58,(%,,) is the square root of the ith diagonal element of Q,(x) and t, is
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defined in Corollary 1. It is understood that §,,(7) is the smallest observed x if
¥ < 0 and that §,,(y) is the largest observed x if y > 1. Then

(3.5) [D,0,(%,)D,] *(&, — x°) >, N(0,T)
as r — o, where Q,.(&,) is the estimated covariance matrix of the vector
obtained by evaluating the sample distribution function at the k elements
of X,.

Also

(3.6) [D,8,5(%,)D,] (%, - x,5) =1, N(0,),
where
X,N= [%N(‘Y?): qu(Yg)’ ce Q\rN(‘Yl?)]"
D, = diag(d,,,...,d,),
= [2t,5,: 17 [Gn(¥2 + ta8,0) — drn(¥? — 225,5)]
and §,; = §,(9‘c”~) is the square root of the ith diagonal element of Q yx).

Proor. We prove (3.5). A proof of (3.6) is given by Francisco (1987).
Representation (3.3) of Theorem 3 for a sample quantile yields

qrn(‘YL + ta rl) - é\rn(‘YiO a rl)
—q(yz +ta rz) q(yz a rl)

—[f(xi + 31ri)] [Frn(xi +e1,;) — F(x) + 31ri)]

+[f(x~° - E2ri)] _1[ x) — 52n') - F(xlo - 82”-)] + op(nr'l/z),

where ¢,,; = q(y) + ¢,5,,) — q(¥} ) and &,,.; = q(y)) — q(y? - t,8,,). By Con-
ditions 3, 4, 5 and 7, ¢;,;, = O,(n;'/?) for j = 1,2, where the bounds are
uniform for x in B. Thus, from Condition 4 it follows that the third and
fourth terms on the right of (3.7) can be written as

- [ f(xlo)] _I[Frn(xio + 51ri) - Frn(xio - 32ri)

—{F(x? + &1,;) = F(x) = £3,)}] +0,(n7172).

Using Theorem 5.4.4 of Fuller (1976), it can be shown that the expectation
of the sample distribution function differs from the true distribution function
by a quantity that is O(n,;'). By the expectation result, Condition 4 and
Condition 6, we have

Frn(xio + 81ri) - Frn(xio - €2ri) = f(xio)(elri +Eg) + Op(n:l/z).

Substituting this expression into (3.7) and using a Taylor expansion of F(x), it
follows that

(3.7

qrn(‘yL + ta rl) qrn(‘YL O(Arl)

3.8
(3.8) = Ztas”[ f(x?)] +o, n,‘l/z).
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From Conditions 5 and 7, we have §,;' = 0,(n'/2). Hence, from (3.8), D, -, D
as r — «, where the uth element of the dlagona.l matrix D is [ f(xo)] 1 By
Condition 7, n (82, —s2) = Op(n‘l/ %), where s2; = W{F, (%,,)}, and by Theo-
rem 3, £, — x? 0 (n_l/ 2). Thetefore, n, D, (x )D,. converges in probabil-
ity to n DQ (x°)D The results follow, because under the conditions,

[DQ,(x°)D] *(%, — x°) -, N(0,I). o
REMARK 1. The proof of Theorem 4 furnishes a justification for the confi-
dence interval procedure of Woodruff (1952). From (3.5), as r — «,
P{G,,(v?) — tu8id,i <%0 < §,,(v?) + t.8,d,)} > 1 - a.
By the expansions used in the proof, )
Gra(?) £ tudyidys = Gon(¥? £ 8,8,) + 0,(n 7).

Therefore, P{x? € I(x?)} - 1 — @, where

(39) IW(sz) = [érn(Yzo a rt) qrn(yt + tasrt)] .
Similarly from (3.6), as r — », P{x,y; € Iyn(x,5;)} = 1 — @, where
(310) IWN(eri) = [érn('yzo a rt) qrn('Yz + ta rz)]‘

The interval Iy n(x,y;) is the approximate (1 — «) confidence interval for
%, = 4,8vY), proposed by Woodruff.

REMARK 2. The asymptotic theory of Theorem 4 provides a procedure for
estimating the covariance matrix of a set of quantiles. One divides the Woodruff
(1 — @) confidence interval for each quantile by 2¢, to obtain an estimate of
the standard error of the quantile. Rao and Wu (1987) studied the standard
error estimated in this manner. Their Monte Carlo results and Monte Carlo
results of Section 5 suggest that the 95% interval works well as a basis for the
standard error. The estimated covariance matrix is completed by noting that
the estimated correlation between two estimated quantiles is equal to the
estimated correlation between the two corresponding estimated distribution
function values. Using the estimated large sample covariance matrix of
[4,,(0.25), §,,(0.75)], one can estimate the large sample variance and con-
struct approximate confidence intervals for the interquartile range.

4. Quantile confidence intervals based on test inversion. Fewer
assumptions are required for the construction of the test inversion confidence
set of Corollary 1 than for construction of the Woodruff (1952) confidence
interval. However, the test inversion confidence set can contain disjoint sub-
sets. Given a smooth distribution function and a smooth variance function, it
ig natural to construct pointwise confidence bounds for the cumulative distri-
bution function that are monotone nondecreasing. The monotone confidence
bounds for the distribution function can then be used to construct a large
sample confidence interval for a quantile.
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Three conditions beyond the conditions employed to justify the Woodruff
procedure are used to extend the confidence set procedure of Corollary 1.
Condition 10 of Theorem 5 is a smoothness condition on the variance of the
sample distribution function amd Condition 8 insures that the estimated
variance function is well behaved. Under simple random sampling, the esti-
mated variance of F,, (x) is a step function with steps whose absolute value is
less than n 2. As noted in the introduction, a change in the estimated variance
is bounded by the change in the estimated distribution function. Condition 8
imposes a similar restriction on the estimated variance for the general case.
Also, Condition 1 is replaced by Condition 9, a stronger condition on the
stratum sampling rates. The stronger condition places tighter bounds on the
height of possible jumps in F,,(x). Under these assumptions, the Woodruff
interval and the inversion interval for the finite population quantile are
asymptotically equivalent. Before giving the theorem, we will state Conditions
8, 9 and 10.

ConDITION 8. The maximum absolute value of a change in the estimated
variance of F,,(x) and in the estimated variance of F,,(x) — F,y(x) from a
point x, to a point x, is bounded by a multiple of n} |y, — v,| for all  and all
%, and x, that are elements of one of the sets, A;, where F,(x,) =y, and

Frn(xZ) = y2'

ConpITION 9. 0 <c¢; <n,W,,n;! <cy <®, where c¢; and ¢, are fixed
numbers.

ConpiTioN 10. For x in B, n V{F, (x)} and n V{F,(x) — F,5(x)} have
derivatives that are continuous in x and bounded for all r.

THEOREM 5. Let

N 1/2 .
FrnU(xr(i)) = Frn(xr(i)) + ta[V{Frn(xr(i))}] ’ forz = 1’
X 1/2
= maX{FrnU(xr(i—l))’ F (%) + ta[V{Frn(xr(i))}] },
fori>1,
\ 1/2 .
FrnL(;xr(i)) = Frn(xr(i)) - ta[V{Frn(xr(i))}] ’ for 1= mr’
. 1/2
= mln{FrnL(xr(i+1))’ Frn(xr(i)) - ta[V{Frn(xr(i))}] }’
fori <m,,
where x,), Xy, - - - » Xy Qre the ordered observed values and m, = m is the

total number of elements in the sample. It is understood that F,,;(x) = 1, if
the right side of the definition equals or exceeds one and that F,,;(x) = 0, if
the right side of the definition is less than or equal to zero. Let the inverses
of F,,y(x) and F,, (x) be defined as in (3.2). If no value of F,,;(x) is less
than vy, then F. %, (y) = —«. If no value of F,,;(x) is greater than v, then
F.h(y) = .
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Assume Condition 1 and Conditions 3 through 10. Letx1 =q(y?) =F1»?
be the yth superpopulation quantile, where 0 < y? < 1. Let x5, = q,5(y)
be the finite population quantile. Let

IWN(erl) = {qArn['YI(.r - tagr(‘f:rl)] ’ q\['yg + tagr(‘f:rl)]}’

where a?c,l =4, (v?), be the vector defining the Woodruff confidence interval for
q,n(v]). Let ITN(x,Nl) be the vector defining the test inversion conﬁdence
interval for q,n(v?). I;n(x,n1) is defined by functions of the type F, (X))
and F,, (x,.) with WF. (x) — F.\(x)} replacing V{F,,(x)}. Then, as r— o,

(4.1) P{ FLu(y)) <xf < rnL(‘)’l)} l1-a,
(4.2) Plg.n(7v}) € Ipn(2,3)} 21—
and

(4.3) n?[Lyn(%,31) = Irn(%,51)] =5 0.

ProoF. We prove (4.1). Statement (4.3) implies (4.2) and a proof of (4.3) is
given in Francisco (1987) By Conditions 4, 5 and 10 there exists an interval
A, and an r, such that x? is an interior point of A; and F(x) + t [V{F, (x)}]'/?
is continuous with a continuous positive derivative on the interval A, for
r > ro. Hence, if r > ry, x,,,,, € A; and x,;, € A,, then

Fapen) + ta[V{Frn(xraH))}]l/z - F(x,) — ta[V{Frn(xr(i))}]1/2 >0,

with probability 1. By Condition 9, W,,n ;! = O(n; ). Therefore, the differ-
ence between F,,(x,,) and F, (x,.) is O(n;h).
By Condition 8, for §,,(y,) and §,.(y2)in A,

[V(F,[d..(vO1}] " = [V{F.[drn(y2) ]

where M < ». Therefore, for y, > v, §,.(v)) €A, and §,,(y;) € A,, the
inequality

1/2 1/2

| < M7 2Ly, — i,

1/2

Frn[érn(YZ)] + ta[V{Frn[érn(Yz)]}]
Frn[érn()’l)] + ta[V{Frn[an(Yl)]}]

1/2
is possible only if

— gy, <t Mn; %y, — y,| <tZM?n;".

Let x,4, be the largest order statistic less than or equal to x?. Then
F.(x,4) = F,(x)). By Condition 9, a finite number of observations are
required to move F. (x) through an interval of length t2M?n'. Therefore,
only a finite number of the values of

A . 1/2
Arn(b _J) = Frn(xr(b—j)) + ta[V (xr(b_J))}]
say j = 0,1,...,q, are possible candidate values for F,,;(x,.)). Let &; > 0 be
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given. By Conditions 5, 7 and 9, there exist M, < » and r; such that
A 1/2 1/2 -

P{ (V[Frn(xr(b))]) - (V[Frn(xr(b))]) ‘ > Msnr 1} <&y,

for r > r,. Using Conditions 4 and 6, it can be shown that

Fo (%) = Fru(%,5-5) = F(x,4y) = F(%,4_;)) + 0,(n;"),
for j =1,2,...,q. It follows that

A

Gr"_ G ’=Arn(b - q +J) _Arn(b _q) - [Arn(b - q +J) _Arn(b _q)]

rj

= Op(nr_l)’

where
b-gqg+j)—4..(b-q),
b-q+j) — A, (b-q)
and
A (b—j)=F(x.4_;) + ta[V{Frn(xr(b—j))}]1/2’

Now G,, > -+ > G,, and the G, are estimators of G,; with an error that
is O,(n;"). It follows that the maximum of the G,,, denoted by G,., is an
estimator of G,, with an error that is O,(n ). Therefore,

FrnU(xr(b)) - Frn(xr(b)) = Arn(b - Q) + érq - Frn(xr(b))

is an estimator of ¢ [V{F,, (x,)}]'/? and of ¢ [W{F,, (x))}]*/2, with an error
that is O,( n;1). An analogous argument holds for the lower bound. Hence, for

a fixed x?,

rq?

P{FrnL(x?) =< F(x{)) = FrnU(x{))} 2 1l-a

and P{F ;L (y)) <x? < FL(y)) > 1 —aasr >« O

5. Monte Carlo study. A Monte Carlo simulation was conducted to
evaluate the performance of the statistics investigated in previous sections. A
set of 1,000 finite populations of size 500 was generated. Each finite population
had ten strata with stratum sizes of 40, 40, 50, 50, 60, 60, 70, 50, 50 and 30.
The observations in the strata were generated as simple random samples from
10 lognormal distributions. The superpopulation means and standard devia-
tions for the 10 strata were (4.69, 1.44), (8.00, 3.33), (8.85, 3.68), (24.05, 15.83),
(13.80, 7.36), (6.55,2.73), (5.18, 1.59), (6.55,2.73), (24.05,15.83) and
(61.56, 58.29), respectively.

One stratified random sample of size 100 was selected from each finite
population. The sample was composed of 10 elements selected from each of the
10 strata. The simple random samples in each stratum satisfy the conditions of
Theorem 5 because the stratified superpopulation has a mixed lognormal
distribution with a density. The stratified sample also satisfies the conditions
because the range of values is (0,®) for all strata, and no stratum sample
dominates the sum.
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The 25th, 50th and 75th quantiles, the interquartile range and variance
estimates for each estimator were computed for each sample. Two different
procedures for calculating 95% confidence intervals for quantiles were used.
The first method for computing’ confidence intervals was the large-sample
confidence interval of Woodruff (1952) described in (3.9). The second procedure
was a smoothed version of the large-sample test inversion procedure of Theo-
rem 5. In this procedure, the upper and lower bounds were monotone nonde-
creasing continuous functions composed of linear segments. The procedure has
been implemented in a program for the personal computer. See Fuller,
Kennedy, Schnell, Sullivan and Park (1986). The normal approximation and
the variance estimator constructed using the procedures described in Remark
2 in conjunction with the test inversion confidence interval were used to
determine the 95% confidence interval for the interquartile range.

Monte Carlo averages of the finite population parameters agreed well with
the corresponding superpopulation values. Averages of the finite population
quantiles for y-values of 0.25, 0.50 and 0.75 were within one Monte Carlo
standard error of the respective superpopulation values. The same was true for
the interquartile range. The approximate variance of the sample quantiles, as
obtained from the representation of Theorem 3, also agreed well with the
Monte Carlo variance of the sample quantiles.

Coverage probabilities for the test inversion and the Woodruff confidence
interval procedures were similar for the three superpopulation quantiles, and
the obtained confidence coefficients were near the nominal level of 95%. See
Table 1. Coverage probabilities of Woodruff confidence intervals for the three
finite population quantiles averaged between 90% and 93%, while the test

TaBLE 1
Coverage probabilities of 95% confidence intervals from stratified random samples of size 100

Estimated coverage

probability Average length
Test Test
inversion Woodruff inversion Woodruff
Parameter procedure procedure procedure procedure
Superpopulation
q(0.25) 0.963 0.952 1.26 1.32
¢(0.50) 0.966 0.956 217 2.19
q(0.75) 0.953 0.949 6.22 6.41
Interquartile range 0.950 6.46

Finite Population

q:(0.25) 0.955 0.931 1.14 1.20
qn(0.50) 0.964 0.915 1.95 1.96
qn(0.75) 0.958 0.900 5.56 5.70

Interquartile range 0.943 5.77
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inversion procedure produced somewhat shorter intervals with coverage proba-
bilities closer to the 95% nominal level. '

We conjecture that the test inversion procedure performed better because it
uses information about the variance at points close to the estimated quantile.
The Woodruff procedure uses only the estimated variance at the estimated
quantile. The confidence interval for the interquartile range had end points
equal to the estimate plus or minus two standard errors, where the standard
error is the square root of the estimated variance. For both the superpopula-
tion and finite populations, the coverage probabilities were quite close to the
nominal value.

Kovar, Rao and Wu (1988) report a Monte Carlo study of confidence interval
procedures for the median. The Woodruff method performed well in a popula-
tion sample configuration that displayed smoothness characteristics consistent
with Conditions 1-7. In a heavily stratified situation that violated smoothness
Conditions 5-7, the Woodruff method performed poorly. Our limited investiga-
tion suggests that the test inversion procedure outperforms the Woodruff
procedure for such nonregular cases.
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