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ON THE CONSISTENCY OF POSTERIOR MIXTURES AND
ITS APPLICATIONS

By SoMNATH DATTA
University of Georgia

Consider i.i.d. pairs (8;, X;), ¢ > 1, where 6; has an unknown prior
distribution ® and given 6;, X; has distribution Py . This setup arises
naturally in the empirical Bayes problems. We put a probability (a hyper-
prior) on the space of all possible w and consider the posterior mean & of
. We show that, under reasonable conditions, P; = [Py d® is consistent in
L;. Under a identifiability assumption, this result implies that & is consis-
tent in probability. As another application of the L, consistency, we
consider a general empirical Bayes problem with compact state space. We
prove that the Bayes empirical Bayes rules are asymptotically optimal.

1. Introduction. In an empirical Bayes problem [Robbins (1951, 1956)]
one observes independent repetitions of a Bayes problem (the so-called compo-
nent problem) where the Bayes prior is unknown. Formally, let (X, 6,),
(X,,0,),... be a sequence of i.i.d. pairs where 6, is distributed according to
some unknown prior distribution » and given 6,, X; has distribution P, . The
goal of an empirical Bayes problem is to estimate the component Bayes rule
from the past X’s and then use it with the present X to take a decision about
the present 6.

The empirical Bayes problem is often closely related to the following estima-
tion problem considered by Blum and Susarla (1977) and many others: Let
X,,X,,... beiid. with distribution P, = [P, dw, where the mixing distribu-
tion o is unknown. The problem is to estimate @ from the X’s.

Note that, in the empirical Bayes problem, X’s are indeed i.id. with
distribution P,. Thus, once w can be estimated from the past data, an
empirical Bayes rule can be constructed by playing Bayes versus the esti-
mated w.

A well-known approach to solve the above problems is to put a hyperprior
on the space of possible w and to consider the posterior mean @ of w given the
X’s. A rule which plays Bayes versus & turns out to be a Bayes empirical
Bayes rule. Balder, Gilliland and van Houwelingen (1983) proved some admis-
sibility and complete class results for the Bayes empirical Bayes rules under
the compactness of the state space.

Rolph (1968) and Meeden (1972b) established that @ is consistent for w as
the number of X’s approaches infinity. They both considered cases where the
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X’s are nonnegative integer valued and used very special hyperpriors suitable
for the discrete case only. In this paper, we consider X’s which can take values
in any measurable space. We prove that, under reasonable conditions, & is
consistent for w in probability whenever the selected hyperprior is sufficiently
diffuse.

In the case of only finitely many P,’s, Gilliland, Boyer and Tsao (1982)
proved that the Bayes empirical Bayes rules are asymptotically optimal (see
Section 4); i.e., possess good asymptotic risk behaviors, if the hyperprior is
sufficiently diffuse. The only asymptotic optimality results known for the
Bayes empirical Bayes rules in an infinite state space case were due to Meeden
(1972a) where the component problems were (i) squared error loss estimation
of a Geometric parameter and (ii) linear loss estimation of a Poisson mean. To
reduce the complexity involved in establishing the -asymptotic optimality of
Bayes empirical Bayes rules for all possible priors, several authors considered a
parametric subclass (mostly one-dimensional) of possible w and put a hyper-
prior on that. Consequently, the asymptotic optimality holds for those priors
only. In this paper, we prove asymptotic optimality of Bayes empirical Bayes
rules for a general component problem with compact state space under reason-
able conditions on the component distributions and the risk function. Simi-
larly, a Bayes empirical Bayes rule versus a hyperprior on a compact subspace
of all possible w is asymptotically optimal for all w in that subspace.

The above consistency and asymptotic optimality results are presented in
Section 4 and treated as applications of the following key result: Let P, denote
the joint marginal distribution of the X’s and P, denote the joint conditional
distribution of the X’s given the 6’s. For each n; let G, stand for the empirical
distribution of 6, 0,,...,6,. We prove that P, is L, consistent for P, and
conditionally L, consistent for Pg; , uniformly in' w and 9, respectively. These
results are stated in Section 3 and proved in Section 6. Section 2 gives a formal
definition of @ and interprets it in Bayesian terms. Some examples of families
of distributions satisfying the assumptions of the theorems are given in
Section 5. '

2. Various Bayes models. Let {P,: 6 € ®} be a family of probability
measures on some common measurable space £~ dominated by some o-finite
measure u. We assume that 0 is a metric space and consider the Borel o-field
on it. Suppose we have {p,: 6§ € ®} on 2" such that (a) py(x) is jointly
measurable in @ and x and (b) V 0, p, is a density of P, wrt u.

Let Q = {0:  is a probability on ©} with the Borel o-field corresponding to
the topology of weak convergence. For w € ), let P, stand for the mixture
fP,dw and p, denote its u-density [p, dw.

Let A be a probability on () and n be a positive integer. For probabilities
P,...,P,let X"_,P, denote their measure theoretic product. Consider the
following Bayes model on () X @™ X 2°":

(i) Bayes model: w is distributed as A and given w, 8 is distributed as
" = X7 _,0 and given § and w, X is distributed as P, = X[_ P, .
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The above model gives rise to the following two marginal models:

(ii) Bayes compound model: § = (4,,..., 6, ) is distributed as »7 and given
0, X=<(X,...,X,)is distribgted as P, where o} = A- 0", ie,

@ (By X -+ XB,) = [ Ulw(Ba) dA, for By,..., B, Borels of ©.

Let E, stand for the expectation under P,.

(iii) Bayes empirical Bayes model: w is distributed as A and given o, X is
distributed as P, = X" _,P,.

Let E, stand for the expectation under P,.

Let A be the posterior distribution of w given (X beees Xp) =L%q, 000, x,).
Then A is the probablhty measure on () with dens1ty proportional to
M7_,p(x,). Let & = Ao w.

The following interpretations of & are easy to prove. In the following, all
conditional distributions are regular.

ProposITION 1. (a) Under model (i) or (i), with n replaced byn+1,dis
the posterior distribution of 0, 1 given (X,,..., X,> ={xq,...,x,).
(b) Under model (i) or (iii), & is the postertor mean of w gwen X-= in the

sense that ¥ Borel B C O, &(B) is the posterior mean of w(B) given X

PrOOF. Proof of (b) is same as if w were a real parameter which is
standard [e.g., Berger (1985)] in decision theory. For part (a) it is sufficient to
show that

Prob(6,., € B,{X,,...,X,) €A, X --- X A,)

= a‘)(B)(/]::]poadaj{)d

A;X - XA,

Under model (i),

n
LHS = [1p,, d(u" x @;*1)
(@"XB)X(A;X -+ xA4,) 1

- (/ I1ps d(Aown“))dm,
AX oo xA\YO"xB1T

by the Fubini theorem on 2°" x @™+1,
By the Fubini theorem on ( X ®"*!, the inner integral equals

Jo(B) 1. = a(B)| [T1p,, a3

by the definition of & and another application of the Fubini theorem finishing
the proof. O
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Our main results are that under reasonable conditions on {p,} and A, P, is
unlformly L, consisient for P; under P, and is L1 consistent for P under

» Where G, is the empirical dlstrlbutlon of 6,,...,0,. These are presented in
the next section. .

3. Consistency of posterior mixture. From now on assume O to be
separable. Then by Theorem I1.6.2 of Parthasarathy (1967), Q with the weak
convergence topology can be metrized as a separable metric space.

For a measure m on a separable metric space ./, the support of m is
defined to be the set

S,, = N{F: F is closed and m(F¢) = 0}.
By expressing Sy, as a countable union of F¢ sets, it follows that m(S¢) = 0

Also note that s € S,,, iff for any open set O containing s, we have, m(O) > 0.
For w, 0’ in Q, let

IP, = P = [lp, = p,ldu
denote the (L,) distance between P, and P,. Note that this definition does
not depend on the choice of u and the u-densities.

Consider the following assumption on the family of densities {p,: 6 € 0}.
Let A be a probability on Q. Let x,=x Vv 0, for x € R. We interpret log0
as —o,

Al. p,(x) is continuous in 6 for each x.

Al'. p(x) is continuous in w on S, for each x.

A2. With hy = V jllog(p,/py)l,

\/f(h;‘—M)+pod/.L—>0 as M — o,
)

A2. With h¥ = Vg [log(p,/p.),

\/fh*— ), p,du >0 as M — o,

w€ES,

A2'. With h* asin A2, [h¥p, du < =,V o € S,.

We now state our main theorems. The proofs of the theorems are interest-
ing but technical. They will be given in Section 6.
Let G, be the empirical distribution of 6,,...,80,.
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THEOREM 3.1. Suppose O is compact and Al and A2 are satisfied. If
S, = Q, then

(3.1) EQIIP,;, - PG,,” + 0, uniformlyin 9, asn — o,

CoroLLARY 3.1. Under the conditions of Theorem 3.1,
(3.2) E IP,-PJ -0 asn—>» VoecQ.

Proor oF CoroLLARY 3.1. For each x, p,(x) is continuous in 6 by Al and
bounded as @ is compact and hence p,(x) is continuous by the definition of
weak convergence. This implies that w ~» P, is continuous in || - | by the
Scheffé theorem. Let E be the joint expectation under which, for all n, § ~ "
and given 9, X ~ P,. Then G, —» w a.s. (E) by the Glivenko—Cantelli theorem
implying [|P; — P> 0 as. (E) by the continuity just noted. Hence by
D.C.T., EllP; — P,ll - 0. The conclusion now follows by taking w" expecta-
tion of (3.1), the triangle inequality and noting the fact that E||P, — P || =
E P, - PI. O

(3.1) can be viewed as a robust version of (3.2). In the next theorem we
generalize the consistency result in the empirical Bayes case to a large extent.
In particular, (3.2) holds under weaker conditions on the distributions.

THEOREM 3.2. (a) Suppose, S, is a compact subset of Q and Al' and A2"
are satisfied. Then

(3.3) EP,-PJ -0 asn—> o, Vo eS,.

(b) If, moreover, A2' is satisfied, then the above convergence is uniform
inwesS,.

RemARk 3.1. If S, is compact and equals (), then (3.3) is the same as (3.2),
Al and Al' are equivalent and A2 and A2' are equivalent. But A2" is still
weaker than A2.

REMARK 3.2. Assumption A2 forces the possible P,’s to be pairwise mutu-
ally absolutely continuous. Similarly, A2" forces two mixtures P, and P, to be
mutually absolutely continuous whenever w and o’ are in the support of A. In
the finite @ case, it is possible to obtain the conclusion of Theorem 3.2, when
S, = Q, without these requirements from the proof of Theorem 2 of Gilliland,
Boyer and Tsao (1982). Therefore it may be possible relax the assumptions of
the above theorems.

4. Applications. In this section we discuss some applications of the
Section 3 results in the problem of estimating a mixing distribution (see
Section 4.1) and the empirical Bayes problem (see Section 4.2). For an
application of Theorem 3.1 to a compound decision problem, see Datta (1988).
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4.1. Estimation of a mixing distribution. Suppose that {P,: 6 € 0} is as in
Section 2. Let X,,..., X, be ii.d. sample from P, = (P;dw for some un-
known mixing distribution € (). The problem is to estimate w on the basis
of X,,..., X,. In order that this estimation problem make sense, we assume
the usual identifiability condition,

(D w ~> P, is one-to-one on (1,

throughout this subsection.
The following are easy consequences of the Section 3 results and the

condition (I).

THEOREM 4.1. (a) Let ® be compact, S, = Q and Al' and A2" be satisfied.
Then ¥V w € Q, & — w in probability (P,). :

(b) If, moreover, A2' is satisfied, then the above convergence is uniform
in .

Proor. Let d be a metric metrizing the topology of weak convergence
on ().

The mapping w ~> P, is one-to-one by (I), continuous by Al’ and the Scheffé
theorem, and onto its range &= {P,: w € Q}. Hence, because () is compact, it
is a homeomorphism and & is compact. So P, ~»  is uniformly continuous
on &£,

So given ¢ > 0, 3 § = 8(¢) > 0 such that d(w, »') < ¢ whenever ||P, — Pl
< 8. Thus,

P(d(é,0) >¢) <PIP, — P,>8) <6 'E,|P,— P, -0

as n — o, by Theorem 3.2(a).
The last convergence is uniform in o, if A2’ is satisfied, by Theorem 3.2(b).
O

REMARK 4.1. A careful inspection of the proof shows that if we replace the
assumptions of the compactness of ® and S, = ) by the compactness of S,
alone, we still get the consistency for w in S, provided we have, in addition,
P(6&S,) —0as n— o for all w € S,. Part (b) holds if the last conver-
gence is uniform in v € S,.

REMARK 4.2. By standard arguments it follows that if d is a bounded
metric metrizing the weak convergence topology on () then,
E d(d,w) 20 asn — o Vo,
if the conclusion of Theorem 4.1(a) holds, and the convergence is uniform on Q
if the conclusion of Theorem 4.1(b) holds.

REMARK 4.3. Rolph (1968) and Meeden (1972b) established the strong (a.s.
P,) consistency of & in cases where & is the set of nonnegative integers.
Rolph considered the case when p,(x) is continuous in 6 and © = [0, 1].
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Meeden extended the consistency result to the case where p,(x) satisfies
continuity in 6 plus some other smoothness conditions and ® = [0, ). Both
the authors considered very special priors with full support. On the other
hand, our weak consistency results apply to general 2" and compact ©.

Computation of &. Meeden (1972b) said that it was not possible to calcu-
late @ in practice from the data since its expression involved infinitely many
integrals each over an infinite dimensional space. Below we obtain a form of &,
which holds quite generally, involving only finitely many integrals over ©. So if
0 is a subset of the real line, say, then it is possible to evaluate this expression,

at least numerically.
For a set A, let [ A] denote its indicator function. From the definition of &

and some Fubini arguments, it follows that
J10,.1 € BITIZ_,py(X,) d(@}*")
IHZ=1p0a(Xa)d( Wy ,

(4.1) &(B) =

for any Borel B of 6.
Let w® denote the posterior mean of w given 8, = (8,,...,6,) under model
(i) of Section 2. Then, by repeated conditioning, it follows that

doy(8,) = [l del-1(6,), Vn=x>1,
a=1
where 0% = [w dA.
Using this in (4.1), we get
* [[6,4, € B]IZ ~1Pe (X, MIZEL dw-1(6,)
[ fHZ=1poa( XTI dol- 1(6,)

(42) &(B) = /

ExampLE 4.1. Let ® = [c,d] € (-, x). Let y be a finite measure on [c, d]
with support(y) = [c, d]. Then for A = Dirichlet prior with parameter y [see
Ferguson (1973)], we have support(A) = Q and

wgll—(y+26 /('y[cd]+z—1) i>1,
where 8, stands for the probability measure degenerate at 6.

4.2. Empirical Bayes problem. As our second application we consider the
empirical Bayes problem of Robbins (1951, 1955). In this formulation we have
{P,: 0 € 0}, i.i.d. pairs (6,, X,),(0,, X,),..., where 0, is distributed as w and
given 6,, X, is distributed as P, . {P,: 6 € B} is known but » € Q is unknown
to the stat1st1c1an

" At stage n, a decision ¢, = ¢,(X,,..., X,) about 6, has to be taken with
loss L(¢,,6,) and risk R,(¢,, w) = [(L(t,,0,) dP, dw". The loss function L is
independent of n and satisfies appropriate measurability condition. {t,: n > 1)
is called an empirical Bayes rule. The standard for evaluating the empirical
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Bayes rules is taken to be the component Bayes envelope
R(w) = A\ R(t,0),

where R(¢,w) = [(L(t, ) dPydw and the infimum is taken over all compo-
nent rule ¢. An empirical Bayes rule (¢, ) is called asymptotically optimal (a.o.
hereafter) if

R, (t,,0) > R(w) asn > o, Vo € Q.

(t,) is called a.o. relative to Q, C Q if the above convergence takes place for
all w € Q,.

We assume that for all w € (), there exists a- component Bayes rule 7,
versus o, i.e., there exists 7, such that R(w) = R(7,, »).

The following theorem gives a general scheme for obtaining a.o. empirical
Bayes rules. Let & = &(X,,..., X)) be an estimator of w.

THEOREM 4.2. Suppose that ® is compact and

(1) R(r,, w) is continuous in ' for each w,
(ii) w ~ P, is one-to-one and continuous,
(iii) P, — P, in probability (P,), V w.

Then the empirical Bayes rule {,, (X, . ) = 7.(X,, ), n > lis a.o.

Proor. Compactness of ® and (i) imply that R(r,, ») is bounded as a
function of w'. From (ii) and (iii), it follows, as in the proof of Theorem 4.1,
that @ — w in probability (P,) V w. Hence by (i), R(7,, ®) — R(w) in probabil-
ity (P,) and hence in L,(E,) because of its boundedness. So

|Rn+1(£n+1’w) _R(w)ISEwIR(T&nw) _R(w)|_>0, Vo. O

REMARK 4.4. The following more general version of the above theorem can
be proved in the same way. Let (), C Q be compact and (ii) and (iii) hold for &
in Q, only. Moreover, let R(r,, ®') be continuous in w on Q, for all 0’ € Q,
and P (& ¢:Q,) > 0as n - «, forall w € Q. Then #,, (X, ;) = 7.(X,, ) is
a.o. relative to Q.

It can be shown that the empirical Bayes rule 7, , (X, ,) = 7,(X,, ) is the
Bayes empirical Bayes rule versus A. The above theorem and the remark
imply the following asymptotic optimality results for the Bayes empirical
Bayes rules.

CoROLLARY 4.1. Let (i) of Theorem 4.2, A1l', A2" and the condition (1) hold.
If S, = Q is compact, then the Bayes empirical Bayes rule f,, (X, .,) =
17X, 1) is a.o.
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Proor. That (ii) of Theorem 4.2 holds is given by (I) and A1’ with the
Scheffé theorem. (iii) with & = @& is guaranteed by Theorem 3.2(a). The
conclusion then follows by Theorem 4.2 with @ = &. O

COROLLARY 4.2. Let S, be compact, R(7,, »') be continuous in w on S,, for
each o' € S,, Al', A2" and the condition (I) hold. If P (& ¢ S,) - 0 as
n - o, for all ® €S,, then the Bayes empirical Bayes rule ,, (X, .,) =
175X, 1) is a.o. relative to S,.

Proor. The conditions of Remark 4.4 are satisfied by Q, = S, and & = &.
Hence the conclusion follows by Remark 4.4. O

REMARK 4.5. Often Bayes empirical Bayes rules are admissible. For exam-
ple, if the component problem is the estimation of ¢(6) under squared error
loss L(¢,0) = (¢t — ¢(8))?, ¢ being a measurable function on ©, and P, u V
0 and for some w, then any Bayes empirical Bayes estimator is unique up to
risk equivalence and hence admissible. So in this case (fn) is an admissible a.o.
empirical Bayes rule.

5. Examples. We list a few families of distributions which satisfy the
assumptions (see Section 3) of our theorems. In these examples, ® is compact
and hence Al and Al’ are equivalent.

ExampLE 5.1 (Finite ©). Let ® ={1,2,..., m}, for some positive integer
m. In this case, Al is trivially satisfied. A2 holds iff P, and P; are mutually
absolutely continuous for all 1 < i, j < m. Thus our Corollary 4.1 in the finite
O case is weaker than Theorem 2 of Gilliland, Boyer and Tsao (1982) which
arrives at the same conclusion without the above requirement. In this case,
condition (I) amounts to the linear independence of P,, P,,..., P,,.

ExampLE 5.2 (Location family on R). Let f be a nonnegative continuous
function on R satisfying the following conditions.

(i) There exists a <b € R, such that f is increasing on (—, a) and
decreasing on (b, ),
1) [f(x)dMx) =1,
(i) [llog f(x)If(x + c)dAM(x) < =, ¥V ¢ € R,
where A denotes the Lebesgue measure on R. Let —o < A < B < . It is easy
to check that the family of Lebesgue densities

Dpo(x) =f(x —0), x€R,0€0=[A, B]

 satisfies A1l and A2.

In this case, for any o € (), the characteristic function of P, is the product
of the characteristic functions of f and . Hence (I) holds if f has a
nonvanishing characteristic function.
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A special case of this example is the Cauchy location family with compact
location parameter.

ExampLE 5.3 (Exponential family). Let © = IT%_[a;, b;] c R*, where II
denotes the set theoretic product and V 8 € ®, p,(x) = c(8)e’?, for some
measurable function T = (T,,...,T,): 2 — R* and c(8) = 1/[e’T dp. Fur-
ther assume that

k
(5.1) I'T{a,,b,} c interior of {0: fe"'T du < oo}.
i=1

Then c is positive and continuous by (5.1) and Lemma 3.5.8 of Fabian and
Hannan (1985). Hence, Al holds and c* = V,.gc(8) < o, |logcl* =
V ycollog c(8)| < . Clearly,

and

k
llog p,| < llogcl* + Y b,|T;l, forall 6.
i-1

The above inequalities immediately show that A2 hold because
k

(5.2) fITiIed'po<oo, Vi=1,...,kand d € [[{a; b},
i=1

by Lemma 3.5.8 of Fabian and Hannan (1985).

If £ = 1, then Al follows by the monotone convergence theorem and (5.2) is
sufficient to guarantee A2 [and (5.1) is not required].

In this example, no easy criterion for condition (I) can be given in general.
However, if £ = 1 and T(x) = x, then the following sufficient condition can be
stated. If there exist x, < %1, X5,... € S, such that T, _ (x; — x4)~! = o, then
(D) holds. A proof of this statement can be given using Miintz theorem [see
page 384, Dunford and Schwartz (1957)].

Several examples of full support A in the case ® = [c,d] € R have been
given in Datta (1988).

6. Proofs. We first introduce a few lemmas which will be used to prove
Theorems 3.1 and 3.2.
“For any w, o' € Q, define

(6.1) 8,(®) = [108(P/P,) AP
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Let
" p
(6.2) 7= Vot S g 22X | + ()|,
w . 1 '
(63) VA,a)’ = V n E lOg _(Xa) + Aw’(w)
w€eS, 1 Py
and
(6.4) Us(o') = {A, <8} CQ,
for ' € Q, probability A on Q and 6 > 0.
LeEmMMA 6.1. For each 6 > 0 and o' € Q,
1 $ e—(1/2)n5
=P, — P II<V26 + |# , > —| + ——.
glPo = Pl V20 > 5[ Rt
Proor. By definition of &,
”P(ﬁ _Pw'” = f fpod(f\ow) — Py d/“‘"
©5) = J|f(Jpsdo - p.) ahco) | au

(by the Fubini theorem on Q X ©)

< [ [l = poldA(w) du = [IIP, = P,lldA(o).
For any w, by (3.6) of Hannan (1960),

3P, = Pl < /A (o) .
Clearly, the LHS above is less than or equal to 1 everywhere and, by the above,
less than V28 on %,;(w"). Combining this with (6.5), we get

(6.6) HIP, = Pl < V28 + A((Z25(0)) ).

Since A has density wrt A proportional to exp(Z *log p,(X,)) and %, o 18
the sup norm of

1 1

on S,, one easily gets [cf. equation (iii)’ of the addendum of Gilliland, Hannan
and Huang (1976)]
M(oaa(@))) e

AMZ5(0")) _A(%a(w'))e,\",’;f‘"%
by bounding Y7 log p (X,) above on S, N (Zy(@))° and below on S, N

(6.7)
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Zs(o"). Since A is a probability, the LHS bounds A((%,,(w")°); while on the
set [7; . < /4], the RHS is bounded by (e "°/2)/A(%;("). Using these in
(6.6), we get the asserted bound. O

The following L, law of large numbers for random continuous functions
will be used in the proof of Lemma 6.3. This result is a trivial generalization of
Theorem A.3 of Datta (1988).

LeMMA 6.2 [Theorem A.3, Datta (1988)]. Let (S, d) be a compact metric
space and || || denote the supnorm on C(S), the space of real continuous
functions on S. Let {Q,: v € .#'} be an arbitrary family of probability mea-
sures. [We use the measure to denote the corresponding expectation and use the
superscript * to denote deviations of random elements from the values of their
@, expectations.] Let A, denote the uniform expectation on {1,...,n}. Let *
denote the (iterated) operation limsup, V, A, X Q,.

If

(i) Under each Q,, for every n>1, H,,;,H,,,,...,H,,, are indepen-
dent C(S) wvalued random elements with expectations belonging to

RS Q. H,,,Xs) =Q,H,,,(s)V s),
(i) *(||H,f’,’,).|| - M)+ 10 asM 7w,
(i) Ve>0ands €S, withV,,,, = VIH,LI: d(s,t) <p},
*(Vipn> |10 asplO,

then
A, HS I = 0.

Proor. The proof is the same as that of Theorem A.3 of Datta (1988) with
H, replaced by H,,, throughout. O

REMARK 6.1. Let (ii + ) and @ii + ) denote (ii) and (iii), respectively, with-
out the centerings ¢’. Then (ii + ) implies (i) and (i + ) and (iii + ) together
imply (iii). The proof of these statements can be found in Datta [Remark A.3
(1988)1. .

LEMMA 6.3. Let O be compact and Al and A2 hold. Then
VE7 —0 asn— .
0

-PrROOF. The conclusion readily follows by an application of Lemma 6.2
with S = Q, d equals any metric metrizing the weak convergence topology on
Qa '/I/= ®w, Qa = X:=1P0a fOI‘ Q € ®m’ HOna(w) = lOg(pw/pGn)(Xa)’ o€ Qa
n>11<ac<n. B



350 S. DATTA

(S, d) is a compact metric space by Theorem I1.6.4 of Parthasarathy (1967).

A2 implies that, for each 6, log(p,,/ps X X,) is finite valued for all w, except
possibly on a P, null set. Continuity of o ~» pw(x) follows from the continuity
of 0 ~ py(x) and its boundedness on compact ®. Thus H,, s satisfy (). We
verify (ii + ) and (iii + ) of Remark 6.1 in the present situation.

(ii + ) holds because

*(IHg | = M), < V Ey(2h5 — M), 10, as M 1,
[’]

by A2.
For any o' € Q,

V E, Vv {|Hgna]:,l:d(w,w') <p> =V f Y { iog;)—wlz d(w, o) <p} dP,
] ‘] '

decreases to 0 as p | 0 by A2, because the integrand decreases to 0 a.s. and is

dominated by 2A%. [Use the above facts to prove convergence along any

sequence {6,} C ® as p = p, | 0.] This completes the verification of (iii + ).
Also

S

|4, HR| =V ‘1zlog—<x )~ n 1Eflog1f—;dP9a -

® 1

Hence by Lemma 6.2, *7; = limsup, V,E,7; =0. O

LemMA 6.4. Let S, be compact and Al' and A2' hold. Then
V E\V,,—~0 asn— =

w' €S,

Proor. We apply Lemma 6.2 with S = S,, d equals any metric metrizing
the weak convergence topology on Q, #=8,, @, = X._,P, o' €S,
H,, (o) =1og(p,/p,(X,) for all 1 < a < n. Then

|A,HS | = V —121og—(x ) —n-lzn; flog&dpw, =
1 Py

w €S,

o' eS,.

() holds by A1’ and the fact that under P,, log(p,/p.,XX,) is finite valued
for all w € S,.

Verifications of (ii + ) and (iii + ) are similar to those in the proof of the
previous lemma. (Change 6§ € O to o' € S,,  to S, and use Al’ and A2’ in
place of Al and A2.)

" Hence Lemma 6.2 implies that

*7\.» = limsup \Y E, 7, ,=0.0

n w' €S,



CONSISTENCY OF POSTERIOR MIXTURES 351

LeEMMA 6.5. Let S, be compact and Al' and A2" hold. Then

E, 7 w0 asn—> o, Vo' €8,.

w , '

Proor. Fix o' € S,. The proof follows, once again, by an application of
Lemma 6.2 with S = S,, d equals any metric metrizing the weak convergence
topology on Q, 4= {0}, Q, = X__,P,, H,, (®) =1log(p,/p,NX,), w €S,,
l<acx<n.

As shown before, [|A, HS)Il = 74 - () and (ii) hold as before. Verification of
(iii + ) is more direct in this case since for any " € S,,

IR

w€E€S,

d(w, ") <p}pw dul0 aspll

log—
Dy

'

by (i), A2” and the dominated convergence theorem. O

LEmmMA 6.6. (a) Let Al' and A2" hold. Then
A(%s(w')) >0, foranyd > 0and o' €8,.
(b) If, moreover, S, is compact and A2' holds, then
A MZ;(w')) >0, foranys > 0.

w' €S,

Proor. (a) Fix 6 > 0 and o' € S,. The continuity of the function w ~
[ log(p,./p,) dP, on S, follows by the dominated convergence theorem since
the integrand is continuous as noted before and is bounded by k7, which is P,,
integrable by A2". So the set %;(w) NS, is open in S, and thus equals
N N S, for some N open in (. Hence

(6.8) MZy(@)) = A(N) >0,

since o ENNS,.

(b) Fix 6 > 0 and o' € S,. Observe that the functions A, converge to A,
pointwise on S, by Al’, A2', the Scheffé theorem and the domlnated conver-
gence theorem, and hence in A-distribution, if S, 2 w, — «'. Hence by a
defining property of the latter convergence [see Billingsley (1968), Theorem
2.1.iv]

liminfA({A,, <8}) 2 A({A, <8}) ifw, o, w,ES,.
" ,

This shows that the function o’ ~» A(%;(")) is lower semicontinuous on
S,. Hence it attains its infimum on S, because it is compact.

The proof now ends by part (a). O

“ProoF oF THEOREM 3.1. Since S, = Q, 7} g = 7 . Fixa § > 0. Consider
the E, expectation of the bound in Lemma 6. 1 with o’ = G,,. Now, as n — ,
the E expectation of the second term goes to zero by Lemma 6.3. The thlrd
term is nonrandom and goes to zero uniformly in 6 since Lemma 6.6(b) applies



352 S. DATTA

in view of Remark 3.1. Thus

limsup V E P, — P; |l < 2v25 .

n o8

The proof ends, § > 0 being arbitrary. O

PrOOF oF THEOREM 3.2. (a) Fix & > 0. This time consider the E  expecta-
tion of the bound in Lemma 6.1 with o' = w. The expectation of the second
term goes to zero by Lemma 6.5 and so does the third term by Lemma 6.6(a).
The proof ends, once again, & > 0 being arbitrary.

(b) Since A2’ holds, Lemma 6.4 and 6.6(b) apply in this case to conclude that
the above convergences of the expectations of the second and the third terms
are uniform in ® on S,. This finishes the proof as before. O
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