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ESTIMATING THE COMMON MEAN OF TWO
MULTIVARIATE NORMAL DISTRIBUTIONS

By WEI-Liem Lon

Purdue University

Let X,;, X, be two p X 1 multivariate normal random vectors and
Sy, S; be two p X p Wishart matrices, where X; ~ N,({, %)), Xp ~
N,(§,35), 8y~ W,(3;,n) and Sy ~ W, (35, n). We further assume that
Xl,X2, S, S, are stochastlcally 1ndependent We wish to estimate the
common mean ¢ with respect to the loss function L = E-orcrt+
22 1y ¢ — £). By extending the methods of Stein and Haff, an alternative
unbiased estimator to the usual generalized least squares estimator is
obtained. However, the risk of this estimator is not available in closed form.
A Monte Carlo swindle is used instead to evaluate its risk performance. The
results indicate that the alternative estimator performs very favorably
against the usual estimator.

1. Introduction. In this paper we consider the problem of estimating the
common mean of two multivariate normal distributions with unknown covari-
ance matrices. The precise formulation of this problem is as follows:

Let X,, X, be two p X 1 multivariate normal random vectors and S, S,
be two p X p Wishart matrices, where X; ~ N,(¢,3,), X, ~ N,(§,25), S; ~
W, (2, n), Sy~ W, (2,,n) with X;, X,, S, S mutually 1ndependent and
£ 21, 3 unknown We wish to estimate ¢ under the quadratic loss function:

L(£6,3,3,) = (E-¢)(3rt+337Y)(E - ).

The above loss function is a natural symmetric extension of the following
invariant loss function:

Lo(£;¢,3) = (£ - ¢)s~Y(é-¢),

which was first considered by James and Stein (1961) in estimating the mean ¢
of a multivariate normal distribution with unknown covariance matrix 3.

When p =1, there is a lot of research on this problem. In particular,
Graybill and Deal (1959) have shown that the unbiased estimator for ¢ given
by

£= (8,X; +8,X,)/(S, +85)

has smaller variance than either of X; or X, if n > 10. Other related
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literature includes Brown and Cohen (1974), Cohen and Sackrowitz (1974) and
Khatri and Shah (1974).

When p > 1, Chiou and Cohen (1985) discuss this problem by evaluating
unbiased estimators for ¢ using their covariance matrices as a criterion. Also,
Shinozaki (1978) considers the estimation of the common mean of £ multivari-
ate normal distributions, where the covariance matrices are known up to an
arbitrary constant.

We shall use the following notation throughout. If a matrix A has entries
a,;, we shall indicate it by (a;;). Given an r X s matrix A, its s X r transpose
is denoted by A’. |A| and A~! denote the determinant and inverse of the
square matrix A, respectively. The trace of A is indicated by tr A and I
denotes the identity matrix. If the p X p matrix A is diagonal and has entries
a,;, we shall write it as A = diag(a,,,...,a,,). Finally, the expected value of a
random vector X is denoted by EX.

2. Equivariant estimators. The problem that we are considering is
invariant under the group of affine transformations:
E>Aé+a, X, -AX, +a,
3, > A3 A, S, = AS, A,

where « € R?, A € GL(p, R), the group of p X p nonsingular matrices and
i = 1,2. For simplicity of notation, if x = (x;,...,x,) we define |x|' to be
(lell’ MR prlt),'

THEOREM 1. LetX; ~ N,(¢,3)), S; ~ W,(3;,n),i = 1,2, with X,, X,, S,, S,
independent. Then under the group of affine transformations, ¢ is an equivari-
ant estimator for ¢ if and only if ¢ can be expressed as
(1) é(Xl’Xzysp S;) = B7'®BX, + B7'(I - @) BX,,
where ® = ®(IB(X, — X,)I?, F) is a diagonal matrix, B(S, + Sy)B' =1,
BS,B' = F = diag(f,,..., f,) withf, = -+ = f,.

Proor. The proof is straightforward and we refer the reader to Loh (1988)
for details. O

The estimators that we shall be considering are special cases of (1).

- 2.1. Generalized least squares estimator. First suppose that the two co-
variance matrices 3, 2, are known. Then with respect to the loss function

L(£¢6,3,,3,) = (E-¢)Y(Srt+330)(€ - ¢),
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the best linear unbiased estimator f BE for ¢ is given by
= (371 +37Y) (30X, + 371%,).

The following proposition, which gives some support to the claim that the loss
function L is a natural symmetric extension of L, is needed in the sequel.

PROPOSITION 1. With respect to the loss function L, the risk of £BE is p
Proor. The proof is straightforward and is omitted. O

However, for the problem that we are concerned with in this paper, the
covariance matrices 3,3, are unknown. The usual practice would be to
replace 3, 22 in £BE by their maximum likelihood estimators S,/n, S,/n.
This results in the usual estimator £L8 for ¢ which is given by

= (ST + 851 (87X, + S51X,).

We observe that £1°5 can be expressed as in (1) with ® = F. Furthermore, we
note that £S is the generalized least squares estimator in the sense that it
attains

min ¥, (X, - £)'S;7Y(X, - £).
3 i

It is well known that the eigenvalues of (S;! + S;1)~1S;! are more spread
out than the eigenvalues of its expectation. The next estimator for ¢ tries to
exploit this by correcting this eigenvalue distortion.

2.2. Stein-Haff type estimator. With the notation of Theorem 1, we define
fori=1,...,p,

(2) ¢ = [BF/(1 - AP /1] + [BSH/(1 - )]},
where
el =n—-p-1+2(1- f)+21§1f; ;),
SH=n-p _1+2f_2,§, 7 f;f.

[The derivation of (2), which is elaborated in Section 5, uses the unbiased
estimate of risk techniques of Stein (1975, 1977a, b) and Haff (1982, 1988).]
Unfortunately, the natural ordering of the ¢,’s may be altered. The natural
ordering is given by ¢, > -+ > ¢, > 0. To correct for this, Stein’s (1975)
isotonic regression is applied to the a8 /f’s and the B?H/(l f.)’s. This
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results in ¢ and ¢, i = 1,..., p, respectively, where 0 < pf" < -+ < oSH
and 0 < yS" < .-+ < ¢7 For a detailed description of Stein’s isotonic re-
gression, see, for example, Lin and Perlman (1985). Now we define the
Stein—-Halff type estimator for ¢ ds

£5H = B-19SHBX, + B~Y(I - ®5H) BX,,
with ®5 = diag(45™, ..., 3™ and ¢SH = ¢SH /(oSH + ySH) whenever i =
1,..., p. It is easy to see that in this case we have ¢5H > --- > ¢§H > 0.
REMARK. Let p be fixed and let n tend to «. Then for a fixed set of
parameters 3, 3, we have
att ~n BSH ~ n. ‘

Hence ¢ ~ f; for 1 <i < p. This implies that £SH L £1S This is a reassur-
ing result since £1° is asymptotically efficient under these conditions.

REMARK. By adapting the ideas of Haff (1982) to this problem, it is shown
in Section 5 that the Stein—Haff type estimator also has an approximate
formal Bayes interpretation.

3. Monte Carlo study. Due to the rather complicated nature of its
construction, we have not been able to give an analytical treatment of the risk
performance of the estimator £5". We shall instead observe the risk behavior
of this estimator via a Monte Carlo study. For the simulations, the following
variance-reduction technique is used: First let

£ =B"'®BX, + B~'(I - ®) BX,,

where @®(F) = diag(é,,...,¢,), B(S; + S;)B' =1, BS;B' =F =
diag(fy,..., fp) with f; > -+ >f,.

ProproSITION 2. With the above notation,
R(££,3,,5,) =p + E(£ - £P°) (37" + 351)(€ - €7°).
Proor. We observe that
R(&:£,3,,%,) = E[(6 - £%) (371 + 357)(€ - €°F)
+(E% -y (3 + 23 )(E%F - ¢)
+2(€ - £8) (37 + 35)(€7° - €)]
: =p +E(E- ) (371 + 351)(E - €5).

Since E(£ — £BEY(S7! + 3, NEPE — £) = 0, the last equality follows from
Proposition 1. O
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LemmA 1. With the above notation, let
Y= (371 +3571) (€0~ g),
Z = (37 +35")(E - %),
Then Y and Z are conditionally independent given S, S,.

Proor. It is straightforward to show that ESvS:YZ' = 0. Also we note
that conditional on S; and S,, both Y and Z follow a multivariate normal

distribution. Hence we conclude that Y and Z are conditionally independent.
0

ProrosiTION 3. With the above notation, let
V= (£-EPR) (S0t + 351)(€ - €7,
W=(é-¢)(Z +3)(E - ).
Then Var[ E(VI|S,, S,)] < Var(V) < Var(W).

Proor. From Lemma 1 and the proof of Proposition 2, we have
Var(W) = E Var(W|S,, S,) + Var E(W|S,, S,)
> E Var(VIS,, S,) + Var E(VIS,, S,)
= Var(V)
> Var E(VI|S,, S,).
This completes the proof. O

For the simulations, independent standard normal variates are generated by
the IMSL subroutine DRNNOA and the eigenvalue decomposition uses the
IMSL subroutine DEVCSF. Also we take p =5, n = 7,15,30 and p = 10,
n = 12,25, 50. Since Propositions 2 and 3 show that Var E(V|S,, S,) < Var(W)
and E(W) = p + E(V), a simulation is done to estimate E(V); this will permit
the estimation of R({;¢, 31, 25). We do this by computing the mean V of
E(V|S,, S;) based on 500 independent replications. Then we calculate the
average loss of the estimator £ by the formula L = p + V. Tables 1 and 2 give
the average losses and their standard deviations of the estimators £1S and
£SH. We further observe from Proposition 1 that the risk of £B is equal to p.
This serves as a lower bound on the risks of these estimators.

Compared with the naive Monte Carlo, this variance-reduction technique
on the average reduces the estimated standard deviations here by a factor of
roughly around 10. Also we note that in our simulation, for a fixed set of
eigenvalues of 3,3, the estimators are computed from the same set of 500
independently generated samples. This suggests that there is a high positive
correlation between the average losses of these estimators. Since we are more
interested in the relative risk ordering of these estimators, we conclude that
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TasBLE 1
Average losses of estimators for the common mean
(estimated standard errors are in parentheses)

Eigenvalues of $,5;! ELs §sH
p=5 n=17
1,1,1,1,1) 8.12(0.06) 6.34(0.04)
(10,0.1,0.1,0.1,0.1) 8.95(0.14) 7.77 (0.11)
(10, 10,10, 0.1,0.1) 8.58 (0.09) 8.29 (0.08)
(10,1,1,1,0.1) 8.21(0.07) 7.49 (0.05)
(10,10,1,0.1,0.1) 8.44 (0.08) 8.21(0.07)
(20, 5,1,0.5,0.05) 8.36 (0.08) 8.03 (0.07)
(10%°,5,1,0.5,10~19) 8.42(0.08) . 8.17(0.08)
5,2,1,0.5,0.2) 8.23 (0.07) 7.23 (0.05)
(16,8,4,2,1) 9.09 (0.11) 7.10 (0.08)
(10%,10719,107%9,107%9,10719) 7.66 (0.13) 7.66 (0.13)
(108,10%,1,1074,1078) 8.57(0.11) 8.60(0.11)
p=5 n=15
1,1,1,1,1) 6.12 (0.02) 5.36 (0.01)
(10,0.1,0.1,0.1,0.1) 6.04 (0.02) 5.78 (0.02)
(10,10, 10,0.1,0.1) 6.13 (0.02) 6.03 (0.02)
(10,1,1,1,0.1) 6.14 (0.02) 5.96 (0.02)
(10,10,1,0.1,0.1) 6.13 (0.02) 6.11 (0.02)
(20, 5,1,0.5,0.05) 6.14 (0.02) 6.12(0.02)
(10%°,5,1,0.5,10~1%) 6.13 (0.02) 6.09 (0.02)
5,2,1,0.5,0.2) 6.14 (0.02) 5.94 (0.01)
(16,8,4,2,1) 6.07 (0.02) 5.64 (0.01)
(10°,1071°,107%°,107%9,10719) 5.71(0.02) 5.71(0.02)
(108,10%,1,107%4,10°%) 6.11 (0.02) 6.12 (0.02)
p=5 n =30
1,1,1,1,1) 5.53 (0.01) 5.16 (0.01)
(10,0.1,0.1,0.1,0.1) 5.42 (0.01) 5.33 (0.01)
(10, 10, 10, 0.1, 0.1) 5.49 (0.01) 5.44 (0.01)
(10,1,1,1,0.1) 5.52 (0.01) 5.43 (0.01)
(10,10,1,0.1,0.1) 5.50 (0.01) 5.49 (0.01)
(20, 5,1,0.5,0.05) 5.51(0.01) 5.51(0.01)
- (10%9,5,1,0.5,10719) 5.50 (0.01) 5.50 (0.01)
5,2,1,0.5,0.2) 5.52(0.01) 5.49 (0.01)
16,8,4,2,1) 5.43 (0.01) 5.34 (0.01)
(10%°,10719,1071%,107%,10719) 5.30 (0.01) 5.30 (0.01)

(108,10%,1,104,10°%) 5.48 (0.01) 5.48 (0.01)
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TABLE 2
Average losses of estimators for the common mean
(estimated standard errors are in parentheses)
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Eigenvalues of 3,3, ! gLs ESH
p=10 n=12
1,1,1,1,1,1,1,1,1,1) 17.71 (0.08) 12.33 (0.06)
(10,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 22.87 (0.24) 15.73 (0.16)
(10,10, 10,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 19.33(0.16) 16.99 (0.13)
(10, 10, 10, 10, 10,0.1,0.1,0.1,0.1,0.1) 18.18 (0.12) 17.08 (0.11)
(10, 10, 10, 10, 10, 10, 10, 10, 0.1, 0.1) 20.00 (0.18) 16.21(0.12)
(10,9/2,8/3,7/4,6/5,5/6,4/7,3/8,2/9,1/10) 17.90 (0.09) 15.02 (0.06)
(10,10,10,1,1,1,1,0.1,0.1,0.1) 18.01 (0.10) 16.18 (0.07)
(512,256,128, 64, 32, 16, 8,4,2,1) 23.09 (0.28) 14.73(0.14)
(32,16,8,4,2,1,1/2,1/4,1/8,1/16) 18.02 (0.10) 16.48 (0.08)
(720, 360, 120, 30,6,1,1,/6,1,/30,1,/120,1,/360) 18.23 (0.12) 18.17(0.12)
(101°,10710,10719,10-10, 101, 16.06 (0.62) 16.06 (0.62)
10—10’ 10~ 10, 10~ 10’ 10~ 10, 10~ 10)
(10%°,10%°,10%°,1019, 1010, 18.29 (0.14) 18.29 (0.14)
10—10, 10—10’ 10—10’ 10—10, 10—10) )
(105,10%,10%,102,10,1,107%,1072,1073,10 %) 18.25(0.13) 18.25(0.13)
p=10 n =25
(1,1,1,1,1,1,1,1,1,1) 12.67 (0.02) 10.48 (0.01)
(10,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1, 0.1) 12.35 (0.03) 11.18 (0.02)
(10, 10,10, 0.1,0.1,0.1,0.1,0.1,0.1,0.1) 12.58 (0.03) 12.05 (0.02)
(10, 10, 10, 10, 10,0.1,0.1,0.1,0.1,0.1) 12.65 (0.03) 12.31(0.02)
(10, 10, 10, 10, 10, 10, 10, 10, 0.1, 0.1) 12.50 (0.03) 11.69 (0.02)
(10,9/2,8/3,7/4,6/5,5/6,4/1,3/8,2/9,1/10) 12.68 (0.02) 12.08 (0.02)
(10,10,10,1,1,1,1,0.1,0.1,0.1) 12.69 (0.02) 12.30 (0.02)
(512,256, 128, 64, 32, 16, 8,4,2,1) 12.13 (0.04) 11.07 (0.02)
(32,16,8,4,2,1,1/2,1/4,1/8,1/16) 12.67 (0.02) 12.47 (0.02)
(720, 360, 120, 30, 6, 1,1,/6,1,/30,1,/120, 1 /360) 12.61 (0.03) 12.62 (0.03)
(10%°,10710,10-19,10~10, 1010, 10.98 (0.02) 10.98 (0.02)
10~ 10’ 10~ 10’ 10~ 10’ 10—10’ 10~ 10)
(10%°,10%9,10%° 101, 1020, 12.56 (0.03) 12.56 (0.03)
10710,10710,10719,1010 1019)
(105,10%,10%,102,10,1,1071,1072,1073,10~%) 12.59 (0.03) 12.59 (0.03)
p=10 n=>50
1,1,1,1,1,1,1,1,1,1) 11.18 (0.01) 10.17 (0.01)
(10,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 10.81(0.01) 10.47(0.01)
(10,10, 10,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 11.07 (0.01) 10.88 (0.01)
(10, 10, 10, 10, 10,0.1,0.1,0.1,0.1,0.1) 11.16 (0.01) 11.02 (0.01)
(10, 10, 10, 10, 10, 10, 10, 10, 0.1, 0.1) 10.96 (0.01) 10.71(0.01)
(10,9/2,8/3,7/4,6/5,5/6,4/1,3/8,2/9,1/10) 11.17 (0.01) 11.05 (0.01)
(10,10,10,1,1,1,1,0.1,0.1,0.1) 11.17(0.01) 11.00 (0.01)
(512,256, 128, 64, 32, 16, 8,4,2, 1) 10.69 (0.01) 10.49 (0.01)
(32,16,8,4,2,1,1/2,1/4,1/8,1/16) 11.16 (0.01) 11.15(0.01)
(720, 360, 120, 30,6,1,1,/6,1,/30,1,/120, 1,/360) 11.14 (0.01) 11.14 (0.01)
(101°,10710,10719,10-10, 1010, 10.41 (0.01) 10.41 (0.01)
10719,1071° 10710 1010 10-19)
(10%°,1019,101°, 1019, 1010, 11.13 (0.01) 11.13 (0.01)
10~ 10’ 10—10, 10~ 10’ 10—10, 10~ 10)
(105,10%,103,102,10,1,107%,1072,1073,10~%) 11.13 (0.01) 11.13 (0.01)
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the estimated standard deviation (as given in Tables 1 and 2) is probably a
conservative indicator of the variability of the relative magnitude of the
average losses.

We shall now summarize the results of this numerical study:

1. The risk of the estimator £ compares very favorably with that of £LS. In
particular, when p and n are of comparable magnitude, significant savings
in risk are achieved in most parts of the parameter space. This is most
evident when the eigenvalues of 3,3 ! are close bogether For example, in
the case of p = 10, n = 12 and the eigenvalues of 3,3 " being all equal to
1, approximately 30% savings in risk is achieved with the use of £SH over
that of £Ls,

2. However, when the eigenvalues of 3,37 ! are far apart, there does not
appeaxé 1+t10 be any significant difference in risk among the two estimators £1S

dé¢

3. There are a few cases where the average loss of f SH exceeds that of f LS,
These occur when the eigenvalues of 3,37 ! are extremely far apart; for
example, when p =5, n =7, 3,37 = diag(108 104, 1,10%,1078). Even
though the differences between these average losses in these situations are
well within the estimated standard dev1at10ns due to the high positive
correlation between the average losses of ¢ £LS and £SH it seems likely that
£SH does not dominate £1S. However, in these cases, the average loss of £SH
exceeds that of £S by at most 1% of the average loss of £LS_Since this is
usually acceptable in most applied work, this study indicates that the
Stein-Haff type estimator offers an attractive alternative to the usual
generalized least squares estimator.

4. For a fixed set of parameters (¢, %, 3,), the study also shows that the
savings in risk of £5H over £'S increase with p and decrease with 7.

4. Unbiased estimate of risk. We shall state the normal and Wishart
identities. These identities are crucial in the derivation of the unbiased es-
timate of risk of an equivariant estimator in the problem that we are con-
sidering.

First we need some additional definitions. A function g: R?** > R is
almost differentiable if, for every direction, the restrictions to almost all lines
in that direction are absolutely continuous. If g on R?*" is vector-valued
instead of being real-valued, then g is almost differentiable if each of its
coordinate functions are.

THEOREM 2 (Normal identity). Let X =(X,,...,X,) ~ N, (§3) and g:
RP — RP be an almost differentiable function such that E[Z; ;10g,(X)/dX;l]is
finite. Then

E[37Y(X - §)g'(X)] = E[Vg'(X)],
where V = (0/3X,,...,0/0X,).
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The normal identity was first proved by Stein (1973). Let ./, denote the set
of p X p positive definite matrices. Also we write for 1 < i, j <p,

V= (ﬁ- where ?ij =(1/2)(1 + 5;;) 8/3s,;,

lf)po’

where §,; denotes the Kronecker delta.

THEOREM 3 (Wishart identity). Let X = (X,,..., X,) be a p X n random
matrix, with the X, independently normally distributed p-dimensional ran-
dom vectors with mean 0 and unknown covariance matrix 3. We suppose
n>p. Let g: S, > RP*? be such that x — g(xx'): RP*" > RP*P is almost
differentiable. Then, with S = (s;;) = XX', we have ‘

Etr37'g(S) =Etr[(n —p — 1)S7'g(S) + 2Vg(S)],

provided the expectations of the two terms on the r.h.s. exist.

The Wishart identity was proved by Stein (1975) and Haff (1977) indepen-
dently. Now in what follows, let X; ~ N,(¢{,2)), S;~ W,(3,n), X, ~
N,(¢,3%,) and S, ~ W (3,,n). For i = 1,2and 1 <j, k < p, we write

V0= (0 T FO = (5),0,,
where
P =(X));, VP=4d/0x?,
s = (S;) j, 6j(/f;) = (1/2)(1 + §;,) 8/3s$.

We observe that there exists B € GL(p, R) such that BS,B’' =1 — F and
BS,B’ = F, where F = diag(f,,..., f) and fi= -+ =f,. We shall now
compute the partial derivatives of B 1 and F with respect to S; and S,.

LEMMA 2. Let X; ~N,J¢3) and S; ~ W,(3;,n), i = 1,2. Then with F,
=(b,)and B! = =" (") as defined above we have

Vj(}?f'_ fz ij zk’
V_](kZ)f = (1 _f)sz ik>

. 1 fi

Vj(lpbiz 2bzlszbzk 2 kgibk'z(bijbk'k + bikbk'j)—“*‘“ﬁ 7

- 1 1-f£;

Vﬁ)biz bzlsz ik ‘2‘ kg.bk’l(bijbk'k + bikbk’j)—f. s
12 12

1 fi
2 Zlb (btjblk +blkblj)f f
v #E

1 — f
5 élb“ (by;by + bi’kblj)?;___—f:'
1 l

_o 1 .

_ 1.
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The proof of this lemma uses the calculus on eigenstructure techniques of
Stein (1975, 1977a) and Haff (1982, 1988). We refer the reader to Loh (1988)
for the proof. Now we shall compute the unbiased estimate of risk of a subclass
of equivariant estimators for ¢ of the form

=B '®BX, + B"Y(I - ®)BX,,

where ® = diag(¢,, ..., $,) depends only on F. It is clear that estimators of
this kind are unbiased. First we need a couple of rather technical lemmas.

LeEmMA 3. With the notation of Theorem 1, for ® = ®(F) we have
VO[BNI-®)B(X, - X))] = -p+ L ¢,

VO [B 1®B(X, - X,)| = =% ¢;-

Proor. We observe that
VO[BY(I- ®)B(X, - X,)]

d
= Zl: zj: W[B—I(I_ (D)B]ij(XZ - X)),
- Z [B~X(I- ®)B],
-pt Zd’i'

The second part of the lemma can be proved similarly. O

LEMMA 4. With the notation of Theorem 1, for ® = ®(F) we have
L teVO{[B-Y(I-®)B(X, - X,)|[B (I~ <I>)B(X2 -x)|’}

, {[B(X - X)) (1 - &) ngf =7

+2[B(X, - X,)];(1 —¢,-)f,-a—‘

- T (B - X)L - 6)(1 - )L f}
. J#*Fi
2. tr VO{[ B'®B( X, —X2)][B‘1<I>B(X1 -X,)]'}
=X {[B(X - X,)]? ¢mfi 2

+2[B(X, - X,)]%,1 —fi)ai‘

—fi
_§Z[B(X1 Jf f}
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Proor. First we observe that
(VO[B-}(I - ®)B(X, — X,)]},
= ¥ VP[e/1 - )by ) (X, — Xy),

Jr k1

bjlblkz (bmzbmem ;) )

1
= =b,;6,,(1 —
gl[z li lk( ¢l = f fl

3 ~5 £ bubi(i - ) }(X - X)),

k#l

2o
"‘bzz[B(X - X)), flaf

1
= Zl: {Ebli[B(X2 =X)L - d”)z'l f fl

__Zbkz[B(Xz Xl)]k’(l d’l)_fl_k}~

kael

Here the second last equality follows from Lemma 2. Hence we have
tr VO{[B-Y(I - ®) B(X, — X,)][B~X(I - ®) B(X, - X,)|'}
= 2tr[VOB-Y(I - ®) B(X, - X,)|[B~}(I - ®)B(X, - X,)]'
=2y [VOB-Y(I - ®)B(X, - X,)],[ B~(I - ®) B(X, — X,)],

;{[mx X)) - ¢>Jzﬁf =

a
+2[B(X1 _Xz)]iz(l - ¢i)fia;¢;~l

- X [B(X, - X,)]5(1 - ¢)(1 - )fff}

J*i
The last equality follows from (3). The second part of this lemma can be
proved similarly. O

Now we shall prove the main result of this section.

THEOREM 4. Let £ be an estimator for &, where
(X, X,,8,,8,) = B"'®BX, + B~'(I — ®) BX,,

¢ = &(F) = diag(¢y,...,¢,), B(S, + S,)B' =1, BS,B' =F = diag(fy,..
fp) with fy > -+ > f,. Suppose ® satzsﬁes the condltlons of the normal and
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Wishart identities, then the risk of & is given by

B l—fj n—p-1 B 2
+2J§i¢i(¢i ‘f’j)fi —f, + 1-7, (1-4;)
¢
+4fz(1_ f i f f]}

Proor. We observe that
R(é;f,zl, 22)
=E({-&)(37M+331)(é6-¢9)
=Etr{2p + 2(X, — ¢£)S'B7Y(I - ®)B(X, - X))
+371[B~(I - ®) B(X, - X,)][B~(I - ®) B(X, - X1)]
+2(X, — £)S;'B '®B(X, - X,)
+3;1 B '®B(X, - X,)|[ B"'®B(X, - X,)]'}.
Since ® satisfies the conditions of the normal and Wishart identities, we have
R(£;¢,%,,3,)
= Etr(2p + 2VY[B-Y(I - ®)B(X, - X,)]
+(n—-p—-1)87 (B (I - ®)B(X, - X,)]
X[B~YI- ®)B(X, - X,)|
+2VO{[B~Y(I - ®)B(X, - X,)|[B~Y(I - ®)B(X, - X,)|'}
+2V@[ B 1®B( X, — X,)]
+(n-p-1)S;[B'®B(X, - X,)][B'®B(X, - X,)|'
+29®([ B-10B(X, - X,)|[ B'®B(X, - X,)]'}}
Now it follows from Lemmas 3 and 4 that

R(£¢,3,,3,)

~ o n— 2 B 99;
fj n—-p-1 _ 2
+215;‘,l¢(¢ ¢)f f+ =7 (1-¢,)

+4f(1—¢)—+22(1—¢>)(¢ d>)

f J#i f.‘ljl}

This completes the proof. O
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5. Derivation of the Stein-Haff type estimator. In view of Section
2.2, it suffices to derive (2). Let £ be an equivariant estimator for £, where

f(Xl’Xz’Sl’SZ),_ lq)BXI + B~ I(I CI))BX2’
® = &(F) = diag(¢,,...,¢,), B(S; + S;)B' =1, BS,B' = F = diag(f,, ...,
f,) with f; > -+ >f,.
LeEmMA 5. With the above notation, for 1 < i < p we have
ESvS[B(X, ~ X,)]; = ESv5[B(3, + 3,) B,

where ESv52 denotes conditional expectation given S;, S,.

Proor. We observe that .
ESeS{B(X, - Xp)]? = B ST byb(xf = x2) (+(0 - 212)
Jok

= ES], SZZ bijbik(21 + Ez)jk
Jk
= ESvSB(3, + 3,) B,y :

For i=1,2, by replacing 3, in the above lemma with its maximum
likelihood estimator S;/n, we get the following approximation:

(4) ESv5:[B(X, - Xz)]iz =~ ESv52[B(S, + 8,)B'],;/n = 1/n.

Next it follows from Theorem 4 that the unbiased estimate of the risk of £ can
be expressed as

k=Y [B(X ~X2)]?[3—ﬁ——¢2 +4(1-£)9; a‘;
1-f; n-p-1 2
2L ¢l — ¢, 1- ¢,
L o4 ¢)f~—fj T (1)
f;
+4f(1—¢t)—-+22(1—¢l ¢~ ¢, }
of, P2 e m ) g

From (4), we observe that R can be approximated by

A n—p-— 9 d d’i fz_]
R = Z{———¢,-+4(1 f)¢[ af(f)+ﬂ_

fi
1—f —p—
+2Z¢i(¢i_¢j)f_?+ lff (1-4¢,)"
J*i i J i
a 1-— ¢, 1- ¢,
(5) +4£,(1 —%){(1 —fi)a(l — ( . _?) + 7 _j:]
_ _ f;
+2j§i(1 é;) (o d’j)fi_fj}
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By ignoring the derivative terms in R, we get

1 [n-p-1 1-f, 1-f,
k== 2 ‘42 + 2 (). — &, J
nzi: fl ¢l +0 fl ¢l+ jzaei(bl(qbt ¢j)f‘l_ s
n_p_]- 2 ft 2
+—T_Ti_(1_¢i) +1__—fi4(1_¢i)
fi
1-6.)(p, — ¢; .
Now we minimize R with respect to ¢;, i = 1,..., p. This gives
oR
07 %
-p-1 1-f, 1-f
Il Inb Pl FPRPY) et/ R Y
fi fz . jséifi Joo i
(6)
n—p-1 fi
__T_—Ti—(l_‘bi)_l—__fvi'4(1_¢i)
£21-6)E L+ T (1-9).

Jj*i f; _fj Jj*i

Solving (6) would lead us to an estimator for ¢{. However, we observe that in
the problem of estimating a normal covariance matrix, Haff (1988) achieves a
slight improvement over the Stein (1975) estimator by using an approximate
formal Bayes method. Motivated by this, we shall introduce a prior on the
parameter space and use (6) as a guide to the choice of m which is defined
below.

Put a prior distribution on the parameter space {({, 2, 2;): § € R” and
3., 3, being positive definite matrices} and let m(F) denote the marginal
density of F. It follows from (5) that the unbiased estimate of the risk of £ can
be approximated by R. This implies that the approximate average risk of this
estimator is

fé(fl’--~’ fp;¢17-“’¢p;a¢l/af1""7a¢p/afp)dF’

where G = mR. The solution of the Euler-Lagrange equations minimizes the
above integral. These equations are given by

A d )
G¢i= Z af‘éad;i/afj’ Vi=1,...,p,
J J
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where Gd,i =G /9¢,, etc. Evaluating the above equations gives for i = 1,..., p,

0=l[(n_P—1)¢i+2¢iZ f( —fi)

fi J#i f f * 2ﬂ¢l

log m
—f. . —9F
fiL 6= 21 - 6" 7 }

1
(M —l_f{(n—p—l)(l—«m)
1—F)F
-2(1-4¢,) % (f—_f%& +2(1-/)(1-¢,)
FED i J
a1l
~=R) L (-8 + 2A(1-H)(1 - 6) = |
J#*1 4
Next we set

m(F) = Ul/[ﬂ(l—fi)]-

This choice of m is motivated by the following reasons: (i) by equivariance, m
should be a symmetric function of the f;’s and (1 — f;)’s, (ii) by that choice of
m, (7) should resemble (6) as much as possible. This leaves us with

i F-£) o
O'ﬁ[(” Do+ 26,5 S+ 21 ), figidy]

-1

—l_fi[(n—p—1)(1—¢i)—2(1—¢,~>j2# 7

+2fi(1-¢)-(1-f) X (1 - ¢j)]‘

J#i

For computational simplicity, we ignore the last term in each of the square
brackets. We observe that these terms do not contribute significantly to the
r.h.s. of the above equation. Solving for ¢,, we get

o= [B5/(1 - )] AlafH/1] + [BH/(1 = )]}
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where
a§H=n_p_1&2(1_ﬂ)+22f"_(l__fj),
j*i fi_fj
1-£f)f
SH _ ,, — p — . — - v
B =n—-p—-1+2f 2j§i o

6. Final remarks. The main obstacle in using the unbiased estimate of
risk to get good estimators is the fact that risk is a ‘“smooth version” of the
unbiased estimate of risk and hence the unbiased estimate of risk does not
reflect exactly the behavior of the risk. This is self-evident since we need to
integrate the unbiased estimate of risk to get to the risk. Thus except for
special cases, proving theoretical dominance over the usual estimator is gener-
ally not possible with this method, assuming of course that the usual estimator
is inadmissible. However, as this paper indicates, the unbiased estimate of risk
does possess a good deal of useful information. If this is exploited carefully,
possibly with the help of a computer, one can obtain an alternative estimator
which competes very favorably against the usual estimator.
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