The Annals of Statistics
1991, Vol. 19, No. 1, pp. 283-296

ESTIMATING COVARIANCE MATRICES

By WEer-Liem Lon

Purdue University

Let S; and S, be two independent p X p Wishart matrices with

~ W,(31,n,) and Sy ~ W,(3, ny). We wish to estimate (3, 2,) under

the loss function L(il, ﬁz,zl, 3) = L {te(Z; lﬁ ) — log|3; i | = p}. Our

approach is to first utilize the principle of invariance to narrow the class of

estimators under consideration to the equivariant ones. The unbiased

estimates of risk of these estimators are then computed and promising

estimators are derived from them. A Monte Carlo study is also conducted to

evaluate the risk performances of these estimators. The results of this

paper extend those of Stein, Haff, Dey and Srinivasan from the one sample
problem to the two sample one.

1. Introduction. A great deal of effort has been expended on construct-
ing minimax estimators for a covariance matrix 3 of a multivariate normal
distribution with the aim of getting substantial savings in risk when the
eigenvalues of 3 are close together. The literature includes Stein (1975, 1977),
Haff (1980, 1982, 1988) and Dey and Srinivasan (1985, 1986). A more complete
list of references can be found in Loh (1988). In this paper, the two sample
analogue is examined. Namely, we consider the minimax estimation of two
covariance matrices (2, 2,) of two multivariate normal populations with the
aim of getting substantial savings in risk when the eigenvalues of 3,3;! are
close together. For example, this would be useful in estimating (%, 3,) when
one has prior information that the eigenvalues of %;, i = 1,2, are likely to be
far apart and the 3,’s are approximately proportional.

We shall use the following notation throughout. If a matrix A has entries
a;;, we shall indicate it by (a,;). Given an r X s matrix A, its s X r transpose
is denoted by A'. |A| and A~! denote the determinant and the inverse of the
square matrix A, respectively. The trace of A is indicated by tr A and I
denotes the identity matrix. If the p X p matrix A is diagonal and has entries

a,;, we shall write it as A = diag(a,,, ..., a,,). Finally, the expected value of a
random vector X is denoted by EX.

The precise formulation of the problem is as follows: Let S, and S, be two
independent p X p Wishart matrices where S, ~ W,(3,,n,) and S, ~
W, (22, ny). We wish to estimate (21, 2,) under the loss function:

(1) L(3,3,3,3,) =Y {tr(z 13,) — logls; 13, - p).

i=1

This loss function is convex and is the natural extension of Stein’s loss in the
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one sample case, where Stein’s loss is given by
(2) Lg(%;3) =tr(37'%) — log[= 18| -

The loss function Lg was first considered by Stein (1956).

We shall first state the Wishart identity which was proved independently by
Stein (1975) and Haff (1977). A proof of this identity can be found in Loh
(1988).

A function g: R?*" - R is almost differentiable if, for every direction, the
restrictions to almost all lines in that direction are absolutely continuous. If g
on RP*" is vector-valued instead of being real-valued, then g is almost
differentiable if each of its coordinate functions are.

Let . denote the set of p X p positive definite matrices. Also for 1 < i < 2,
1<j,k <p, we write S; = (s'}) and
VO = (VD) ,xp» Where VP =3(1 +8,)3/9s%),
where §;, denotes the Kronecker delta.

TuEOREM 1 (Wishart identity). Let X =(X,,..., X,) be a p X n random
matrix, with the X, independently normally distributed p-dimensional ran-
dom vectors with mean 0 and unknown covariance matrix %,. We suppose
n>p. Let g: ./, > RP*P be such that x —» g(ax'): RP*" — RP*F is almost
differentiable. Then, with S; = XX', we have

Etr3;'g(8;) = Etr[(n —p - 1)S7'g(8)) +2V9¢(8S))],
provided the expectations of the two terms on the r.h.s. exist.

2. Unbiased estimate of risk. The problem which we are concerned
with is invariant under the following group of transformations:

(3) Ei —)AEiA,, Si_‘)ASiA' VAE GL(p, R), l = 1,2,
where GL(p, R) denotes the set of all p X p nonsingular matrices.
THEOREM 2. Let S, ~ W,(3,n,) and S, ~ W(Ez,nz) with S,, S, inde-

pendent. Then under the group of transformatlons given in (3), (21, ﬁ ) is an
equivariant estimator of (3,,3,) if and only if (3., 3,) can be expressed as

i1(81’ Sy, ny,np) = B™'W(I—-F,ny,ny)B'~ L
$,(8,,S,,n,,n,) =B '®(F,n,,n,)B' 71,
where @,V are both diagonal matrices, B(S, + S;)B' =1, BS,B' = F and
fiz -+ =f, with F = diag(fy,..., f,).
Proor. Suppose (3, $,) is an equivariant estimator of (3, 3,). Then
(4) 3,081, 85, n,,ny) =A718,(AS A, AS, A ny,ny) AT,
for all A € GL(p, R). We observe that 3 B € GL(p, R) such that B(S; +
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Sy)B' =1 and BS,B’' = F, where F = diag(f,,..., fp) with f1 > -+ = f,.
Hence it follows from (4) that
2:(81,85,ny,n,) =B 8,(I - F,F,n,,n,) B 1.
By invariance again, we have
3.(I-F,F,n;,n,) =D3,(I~F,F,n,,n,)D, VD =diag(+1).
This implies that 3,(I — F, F, ny, ny) is diagonal for i = 1, 2. Writing
W(I~-F,ny,n,) =3(1-F,F,ny,n,),
®(F,ny,n,) =3,(I-F,F,n,n,),
proves the necessity part. For the sufficiency part of the result, the proof is

straightforward and is omitted. O

Next we state a rather technical lemma. Its proof, which uses the calculus
on eigenstructure techniques of Stein (1975) and Haff (1988), is tedious and we
refer the reader to Loh (1988) for details.

Lemma 1. Let B, ® = diag(¢y,...,¢,) and ¥ = diag(yy,...,4,) be de-
fined as in Theorem 2. Then

trVO(B'WB'Y) = ¥ [‘“ +ﬁ0_(—1(f_f) YL if ]
i i J#ilj [

tr VOB 0B ) = T ["”’ +a "ﬁ)???i > ; :;J
i i Jj#ilj i

The next two propositions follow from the Wishart identity and Lemma 1.

PROPOSITION 1. Let 3, be an estimator for 2, where
$1(81, 83,m1,m) = B'W(I = Fyny, ny) B,

¥ = diag(y,, ..., ¢,), B(S; + S,)B' =1 and BS,B' =F = diag(f,,..., )
with f; > -+ > f,. Suppose ¥ satisfies the conditions of the Wishart identity
in the sense that E tr(37'3)) = Etr2VD(E) + (n, — p — 1)S713,]. Then
under Stein’s loss, the risk of 3, is given by

-p-1 f;
R 2;2 =E{Z u—%—&#,{: - + 2¢;
S( ! 1) i 1-f; jaeifi_f}
ay; b 2
+2f"a—(-]-__—fl) b lOgl——TL - loanl—i+1 - 1]}'

PROPOSITION 2. Let 3., be an estimator for 2, where
$2(S1,S3,n,,n,) = BT'®(F,n,,n,)B' ",
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® = diag(¢y,...,¢,), B(S; +S,)B'=1 and BS,B'=F = diag(f,,..., )
with f > -+ > f,. Suppose ® satisfies the conditions of the Wishart identity
in the sense that E tr(35'3,) = E tr{2V®(3,) + (n, — p — 1)S;13,]. Then
under Stein’s loss, the risk of 2, is given by

—-p—-1 1-F
Raltz) B[ X |2 s s 208 270 0y,
i 2 J*FEL 1t J
dd. .
+2(1- 1) a(;il - 10g% - IOngz—iﬂ - 1]}

An immediate consequence of Propositions 1 and 2 is:

THEOREM 3. Let (3, 3,) be an estimator for (24, 25) where
i1(S1, Sa,ny,ny) =B™'W(I - F,ny,n,)B'"?,
SZ(SI, SZa ny, n2) = B_IQJ(F’ n2a nl)B,_l'

Then under the conditions of Propositions 1 and 2, the risk of (3,,3,) with
respect to the loss function L is given by

R(Sp iz? 21’ 2‘12)

—p-1 :
=E{Z [ml_f_¢i_2¢iz L + 2¢;

i fi j*ifi_fj
Y, ¥; ng—p-1
+2fi0(1—f,~) _IOgl—ﬁ + r &,
1-f; ¢,
2¢. — 4+ 2¢, + 2(1 — f,)—

—log% —log X;z.l—i+1 - 10gX7212—i+1 - 2]}
3. Usual estimators and minimax risk. The usual estimators (3, 3,)
of (34, ;) are of the form (c,S,, c,S,) where c,, c, are constants. The best
usual estimator is that usual estimator which minimizes the risk among the
usual estimators. It is easily shown that with respect to the loss function L,
the best usual estimator (33Y, $8Y) of (3, 3,,) is (S,/n;, S,/n,) and that

R(33Y, 2Y;3,,3,) =E|plogn, + plogn,

(5)
X (l0 e + o 1)

Next we state a one sample minimax result of Stein (1956).
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THEOREM 4. Let S ~ W,(3, n). With respect to Stein’s loss, the best estima-
tor equivariant with respect to linear transformations 3 —» UXU', S - USU’,
where U is nonsingular lower triangular, is 3MM(S) = TDT', where the jth
diagonal element of the diagonal matrix Dis 1/(n +p — 2j + 1), j =1,..., p,
and S = TT', with T lower triangular. This estimator is minimax with risk

Rg($M;3) =E| Llog(n +p - 2j+1) = Llogxi ju1]-

J J

We shall now give a two sample analogue of Theorem 4. To do so, we shall
consider the class of equivariant estimators of (2, 3,) under the group of
transformations )

(6) 3, - UxU/, S, -» U;8,U/, i=1,2,

where U, is a nonsingular lower triangular matrix.

THEOREM 5. Let S; ~ W,(3,n,) and S, ~ W,(3,,n,) with S; and S,
independent. With respect to the loss function L , the best estimator equivariant
under the group of transformations (6) is (MM, $MM) — (T, DT}, T,D,T}),
where, for i = 1,2, the jth diagonal element of the diagonal matrix D, is
1/(n; +p —2j+ 1) and S; = T,T/, with T, lower triangular. This estimator
is minimax and has constant risk given by

R(ii\maigm§21a22) = E{ZZ: [Z log(n; +p—2j+1) - Z IOngzzi—j+1]}‘

i=1] Jj J

The proof of Theorem 5 is similar to its one sample counterpart and we
refer the reader to Loh (1988) for details. We observe from (5) and Theorem 5
that (3BY, $BU) is not minimax and that (XM, $MM) dominates (37U, 35Y).
This implies that in evaluating the risk performance of an alternative estima-
tor for (3, 3,), the estimator to compare with is (3, $¥M) not (33Y, $BU).

4. Alternative estimators. It is well known that the eigenvalues of
S,(S; + S,)~! are more spread out than the eigenvalues of its expectation. By
correcting for this eigenvalue distortion, we construct alternative estimators
which compare favorably with the constant risk minimax estimator
(MM $MM)  Fyurthermore, these estimators give substantial savings in risk
when the eigenvalues of 3,3 ! are close together.

"4.1. Adjusted usual estimator. The best usual estimator (3BY, $8Y) can
be written as

( 113U,22BU) — (B—I\I,BUB:—I’ B—lq)BUBl—l),
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where the jth diagonal element of the diagonal matrix ¥BV and ®BY is
(1 —f})/n, and f;/n,, respectively. A natural way to improve on this estima-
tor would be to consider estimators of the form

(2.,%,) = (B"'wB'~, B '®B'Y),

where for some constants c »dj, J=1,..., p, the jth diagonal element of the
diagonal matrix ¥ and ® is ¢; = (1 — f;)/c; and ¢, = f;/d , respectively. We
define the adjusted usual estimator to be

(i{\U’ 2€U) - (B—I\I,AUBr—l, B—lq)AUBr—I)’

where, for j = 1,..., p, the jth diagonal element of the diagonal matrix ¥4Y
and ®4Y is ¢V =1 ~f)/(n, - p—1+2j) and ¢V =f;/(ny +p +1—
2j), respectively.

ProposITION 3. Under Stein’s loss, 22V is a minimax estimator of 3,
i=12

Proor. This follows easily from the comparison of the unbiased estimate
of the risk of 22V (which can be obtained from Propositions 1 and 2) and the

minimax risk. O

THEOREM 6. With respect to the loss function L, (34U 34V) dominates
GMM SMM) - Hence (349, $2Y) is a minimax estimator of (2, 3,).

Proor. This theorem follows directly from Theorem 5 and Proposition 3
since the loss function under consideration is the sum of the respective loss
functions of these two problems. O

We remark that the one sample analogue of the adjusted usual estimator
was obtained independently by Stein (1975) and Dey and Srinivasan (1985).

4.2. Dey-Srinivasan-type estimators. In the estimation of a covariance
matrix, Dey and Srinivasan (1985) constructed a class of minimax estimators
for 3. In this subsection, we shall derive an analogous class of minimax
estimators for (3, 3,) with the aim of achieving substantial savings in risk
when the eigenvalues of 3,3;! are close together. First we need some
additional notation. We let

i{)s — B—lq,DSB:—l’ i]z)s — B—I(DDSB¢—1’
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where ¥ = diag(y75, ..., y2°) and ®P5 = diag(475, ..., $25) with
1-f,
DS _ L +(1-F)8,;
! n,—p—1+2i (1 =£)B:
f,
DS = ! + f.v.
¢ ng+p+1-2i fovio

fi
o= Ty )

i [a(u)log( 1 ff”/w W,
! ;;fl)]/(d+u),

a,b: R*— R being suitable functions and ¢, d being suitable constants.

Yi = [b(u)log(

PROPOSITION 4. In the estimation of 3., under Stein’s loss, 3P dominates
34U whenever

@) a(u)20and a'(u) >0 forallu >0,
(i) sup,.qa(uXn; +p — 1/2Vc) =x < 1,
(iii) sup, . ,a(u)3 — x)/[6(1 — x)] < 2(p — 2)/(n, +p — D2

Hence $P5 is minimax.
Proor. First we note that for i =1,...,p and u > 0,
((ny—p = 1+ 20)B;| <a(u)(ny, +p —1)/(2Vc)
and
—log[l+ (n,—p—1+2i)B]
™ <(n;—-p-1+2i)°gA3-x)/[6(1-x)] — (n,—p— 1+ 2i)B,.

Hence we observe from Proposition 1 and (7) that the difference in risk
between 3PS and $AU satisfies

Rg(3P%;3,) - Rg(32Y;3))

<EY |(2-2)B,+2% (- £)B: — fi(1 - £)B;
" i<i f; =1
3-—x
CiE)

(8)

9 i .
—2ﬁ(1—ﬂ)a—[;+ (ny—p—1+20)°62|.
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Next we observe that

(1=7F)8. —F(1=F)8.
®) Z[(z—zi)ﬂﬁz; E ’3)"1]30,
J<t J 4

l

9B, 3—x 9
(10) Z[—Zf,(l—f,)ﬁ+6—(—1—:—x—)(nl—p—1+2z) Bf]SO

1

We now conclude from (8), (9) and (10) that 3PS dominates $AV. Minimaxity
follows from Theorem 6. O

The proof of the next proposition is similar to Proposition 4 and is omitted.

_ PROPOSITION 5.  In the estimation of 3., under Stein’s loss, 32 dominates
32V whenever
@) o(u)=0and b(u) =0 forall u > 0,
(i) sup,,ob(uXn, +p — 1)/@2Vd) =y < 1,
(iii) sup,,6(u)3 —y)/[6(1 — ] <2(p —2)/(ny +p — D%

Hence 328 is minimax.
An immediate consequence of the above two propositions is

THEOREM 7. In the estimation of (3,,3;) under the loss function L,
(3D8,308) dominates (34Y, $4Y) whenever

() a(u)=0and a(u) 20 forallu >0,

(i) b(u) >0 and b'(u) =0 forallu > 0,
(iii) sup, . oa(uln, +p — 1)/@Vc) =x < 1,

(v) sup, .o b(uXn, +p — 1)/(2Vd) =y < 1,

(v) sup, . a(u)3 —x)/[60 —x)] <2(p — 2)/(n, +p — 1),

(vi) sup, . o b(uX3 — ¥)/16(1 — Y] < 2(p — 2)/(n, + p — D2

Hence (38, 32%) is minimax.

Analogous to Dey and Srinivasan (1985), one can construct adapted versions
of these minimax estimators. For details, we refer the reader to Loh (1988).

4.3. Stein-type estimator. By an approximate minimization of the unbi-
ased estimate of the risk of an almost arbitrary orthogonally invariant estima-
tor of a covariance matrix, Stein (1975) constructed an estimator whose risk
compares very favorably with the minimax risk. In particular, substantial
savings in risk is obtained when the eigenvalues of the population covariance
matrix are close together.

In this subsection, this technique is applied to construct an alternative
equivariant estimator (257, $57) for (3, 3,). Let (£, $,) be an estimator for
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(24, 2,) where
il(Sl’ S2’nl’n2) = B_I\P(I - F7n1’n2)B,_l’
5:2(81, Sy, ny,ng) = B_I‘D(F ny, nl)BI_l

® = diag(¢y, ..., ¢,), ¥V = diag(yy, ..., ¥,), B(S; + S,)B’' =1 and BS,B' =
F = diag(fy,..., f,) with f; > --- >f,. Under loss function L, we observe
from Theorem 3 that

n,—-p+1 fi
— . — 20

R(il’ 22; 217 22) = E{ Z

i

R F eyt e R et

—log X2, ;41 + ”i_—,‘;im +26.L ; i;,
+2£(1 - )af ((;) - log% —log x2,—is1— 2]}
By ignoring the derivative terms in the unbiased estimate of the risk, we get
-l _I——fj_l—%_zd”glﬂff oo
~Elog x2, ;41 + ni_T’jJr—l«m = ; :';J

—log% —Elog Xr212—i+1 - 2]-

Now we minimize R with respect to ¢, and ¢;, i = 1,..., p. This gives
dR/oy, =0, OR/3p, =0, Vi.

On simplification, we have

— - 1oy FAZR)
¥ =1 f;)/[nl p+1 2j§i fi=T, ],

(11)
d;=fi]|na—p-1+2Y —|(—— £t -1) , i=1,...,p.
J#i f f
We observe that the ¢;’s and ¢,’s should follow a natural ordering:

O<yy< - <, 12 2,20

However with the ¢,’s and ¢;’s defined by (11), this ordering may be altered.
By applying Stein’s isotonic regression [Stein (1975)] to these ;’s and ¢,’s, we
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arrive at a new set of ¢;’s and ¢,’s, denoted by ¢" and ¢{7, i=1,...,p,
which satisfy

0<yfT< - <7, T2 - 2¢5720.

For a detailed description of Stein’s isotonic regression, see for example Lin
and Perlman (1985). We now define

337 = B-WST(I - F,ny,n,)B' 7Y,
EST = B_lq)ST(F’n2’n1)B’_1’

where ®5T = diag(¢$",...,¢5") and VST = diag(y{",...,yST). This con-
cludes our construction of the Stein-type estimator.

4.4. Haff-type estimator. Haff (1988) constructed an estimator for a co-
variance matrix which has a similar functional form to that of the Stein (1975)
estimator. Here we apply Haff’s method to obtain an alternative estimator,
denoted by (3EF, 3IF) for (3,,3,). We note that an equivariant estimator
¢,,3,) for (21, 2) must be of the form

21(‘S1’ S2’nl’n2) = I\P(I - F7n1’n2)B,_1a

i:2( S1,85,n,ny) = B~ '®(F, ny, nl)B’_l’
where @ = diag(é,,...,¢,), ¥ =diag(y;,...,¥,), B(S; + Sy)B' =1 and
BS,B' = F = diag(f,,..., f,) with f; > --- >f,. Since the ¢’s and ¢/s
follow the ordering 0 < ¢, < - <y, and ¢, > - = ¢, > 0, we write for
each i,

U;(F) = X e2(F), ¢(F)=2 €i(F).
k=i k>i

Hence from Theorem 3, the unbiased estimate of the risk of an almost
arbitrary equivariant estimator for (3, 3,) can be expressed as

R- E Zek 2) &) +2) &}
i i k=i k>i J*Lfi f k>i
382 Ez )
2F£Y ———— -1 —_—
’ f’k{:iﬂ(l—f) °g(kz>,~1—f-
ngy
R A ﬁ E;ekJrzgt Jg,fz 7 +2k§z€k
€;
+2(1—f)k§: 3—[;— log k):?)

-E IOngZ:I—i+1 —Elog xn,-i+1 ~ 2}'

Next we put a prior distribution on the parameter space {(2,, 2,): 2, %, being
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positive definite matrices} and let m(F') denote the marginal density of F. The
average risk of this estimator is

. W ap, ad i
.[é fl’.,"fp;(l’l""’!ﬁp;d)l"”’ p;a—f]]:’ ' fp afll ' ’a_f: dF’

where G = mR. The solution of the Euler-Lagrange equations minimizes the
average risk. These equations are
A ad A
G¢.= Z _Gaw./af’ G¢ = Z _éadr/af’ Vi=1,...,p,
i ; J f:] i 7 3 7 aJ f:] i J
where é(,,l =4 /0Y;, etc. Evaluating the above set' of equations for each £,
1 <% < p, we have

-p-1 f dlog m
I —) ; =0
Zk[ A A T } ’
(12) .
neg—p-— log m
—_— +2 l—2(1- =0
€ki§kl; fl ‘]Z#z t fl+4 d) ( f) afl }

Next we set m(F) = IT,1/[f,(1 - f)]. Thls is motivated by the observation
that in order for the estimator (2 EHF) to compete favorably with
(MM $MM) and (34U, $AU) the form of (2 , 3HF) should approach that of

(34V,32V) when the eigenvalues of 3,(3, + 22) ! are far apart. Thus (12)

simphﬁes to
n;-p+1 fi
D M) LN ! 0,
kisk[ 1-1; jeifi =1 }

ny—p+1 _f
Zk[ o TRL ey “’J

These equations can be solved by using an algorithm due to Haff. For a
detailed description of Haff’s algorithm, see Haff (1988). We denote the
solution of the above equations by ¢'F and €'F, 1 < i < p, and write

HE(F) = ¥ ef™(F), PF(F) =Y F(F).

k>i k>i

We now define
SHF = B-WHF(I — F,ny,n,) B’ Y,
! ggm =B '®"(F,ny,n,)B' 7,

where ®7F = diag(¢1"™,...,6;") and ¥HF = diag(y], ..., y'). This com-
pletes our construction of the Haﬁ‘ -type estimator for (21, 35).
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5. Monte Carlo study. From the rather complicated nature of the
Stein-type and Haff-type estimators, it appears that an analytical treatment of
the risk performances of these estimators is not possible at this point. Using
Monte Carlo simulations, we shall study the risk performances of the alterna-
tive estimators for (2, 3,) that we have developed in previous sections. For
the simulations, we take p = 10, n; = 12,25 and n, = 12,25. Independent
standard normal variates are generated by the IMSL subroutine DRNNOA
and the eigenvalue decomposition uses the IMSL subroutine DEVCSF. The
average loss and its estimated standard deviation of each estimator for (3, 3,)
are computed over 500 independent replications. For brevity, we write
(3BU $BU) = BU, (34Y, $AU) = AU, etc. As it is, the estimator (3PS, 3D9) is
not well defined. In thls study we take

a=6(p—2)/[5(n, +p - 1),
b=6(p—2)/[5(ny +p - 1),
c=58(p—2)7%/(n,+p-1)>%

d=58(p—-2)?%(n,+p-1)>~

These values are chosen with the aim of doing well when the eigenvalues of
3,37 " are close together. Table 1 gives some of these simulations. We also
wish to remark that in our simulations, for a fixed set of eigenvalues of 3,3 %,
the estimators are computed from the same set of 500 independently gener-
ated samples. This suggests that there is a high correlation among the average
losses of these estimators. Since we are more interested in the relative risk
ordering of these estimators, we conclude that the estimated standard devia-
tion (as given in Table 1) is probably a conservative indicator of the variability
of the relative magnitude of the average losses. For more details on the
simulations, we refer the reader to Loh (1988). The results of this numerical
study indicate that:

1. For the estimation of (3, 2,), the risk of the alternative estimators com-
pare very favorably with the minimax risk. Maximum savings in risk are
achieved when the eigenvalues of E o321 ! are all equal and the savings
decrease as the elgenvalues of DI S get more and more dispersed.

2. Among the estlmators, (357, 35T) and (3HF, $HF) perform best when the
eigenvalues of 3,3 ! are close together w1th risk reduction of about 30 to
40% with respect to the minimax risk. Furthermore it is worth not1ng that
1n no instance in this simulation did the average losses of (2 EST) and
(3HF $HF) exceed that of (EMM $MM)  Also it appears that (3HF EHF) has
shghtly smaller risk than (35T iST)

"~ 3. Although it has been proved that (3D8,$D8) dominates (34Y, $4Y), this

Monte Carlo study reveals that the dlﬁ'erence in risk between these two

estimators is rather small at best. However as pointed out by a referee, the

significance of the Dey-Srinivasan-type estimators is not in achieving sub-
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TABLE 1
n; =12 nyg =12
Average losses of estimators for the estimation of (3., 3,,)
(estimated stamfard errors are in parentheses)

Eigenvalues of

5,311 BU MM AU DS ST HF
1,1,1,1,1, 1471 11.62 8.89 8.84 7.85 7.63
1,1,1,1,1) (0.09)  (0.08)  (0.08)  (0.08)  (0.08)  (0.08)
(10, 10, 10, 10, 10, 1471 11.62 9.54 9.51 9.07 9.00
1,1,1,1,1) 0.09)  (0.08) (0.0 (0.0 (0.0  (0.07
(25,25, 25, 25, 25, 1471 11.62 9.57 9.56 9.72 9.69
25,25,25,1,1) 0.09)  (0.08) (000 (0.0 (0.0  (0.07
(30,30,30,1,1, 1471 11.62 974 . 9.72 9.27 9.20
1,1,1,1,1) 0.09 (008 (000  (0.07 (0.0  (0.07)
(50,1,1,1,1, 1471 11.62 9.44 9.41 8.83 8.72
1,1,1,1,1) 0.09)  (0.08)  (0.07  (0.08)  (0.08)  (0.08)
(20, 20, 20, 5, 5, 1471 1162 9.58 9.56 9.27 9.24
5,5,1,1,1) 0.09)  (0.08) (0.0 (0.0 (007  (0.07)
(512,256, 128, 64, 32, 1471 1162 1017 1016 1042  10.43
16,8,4,2,1) (0.09) (008 (0.0 (0.0 (0.0  (0.07)
(0.50, 0.45, 0.40, 0.35, 0.30, 1471 11.62 9.19 9.16 8.80 8.71
0.25, 0.20, 0.15,0.10, 0.05) (009  (0.08) (0.0 (0.0 (0.0  (0.07)
(10,0.1,0.1,0.1,0.1, 1471 11.62 9.48 9.47 9.55 9.49
0.1,0.1,0.1,0.1,0.1) 0.09)  (0.08)  (0.08)  (0.08) (0.0  (0.07)
(10,5,1,0.1,0.1, 1471 11.62 9.85 9.84 9.72 9.70
0.1,0.1,0.1,0.1,0.1) 0.09)  (0.08) (007  (0.07) (0.0  (0.07)
(10,10,10,0.1,0.1, 1471 1162 9.87 9.85 9.65 9.61
0.1,0.1,0.1,0.1,0.1) 0.09)  (0.08) (000 (0.0 (007  (0.07)
(10,10, 10, 10, 1, 1471 1162 1007  10.06 9.88 9.88
1,1,0.1,0.1,0.1) 0.09  (0.08) (0.0 (007  (0.00  (0.07
(10,10,5,5,1, 1471 11.62 9.95 9.93 9.73 9.73
1,0.4,0.4,0.1,0.1) 0.09 (008 (007 (0.0 (007  (0.07
(20,6,8/3,14/9, 1, 1471 11.62 9.94 9.92 9.75 9.77
2/3,4/9,2/7,1/6,2,/27) 0.09  (0.08) (007 (0.0 (0.0  (0.07)
(81,27,9,3, 1, 1471 1162 1043 1042 1044 1048
1/2,1/4,1/8,1/16,1/32) 0.09)  (0.08) (007 (007 (0.0  (0.07)
(10,102, 25, 5,2, 1471 1162 1102  11.02  11.23  11.25

1/2,1/5,1/20,1072,1073) 0.09 (0.08) 0.07) 0.07) 0.07) (0.07)

stantial risk reduction over (3£, $4Y), but in showing that (34Y, $AV) jg
inadmissible.

4. For the estimation of 3, under Stein’s loss, the study indicates that 35T
and 31 are close to being minimax.
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