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goals, the former can have noticeable impact on the latter. For the model
selected by MDL, the value of GCV = 0.16 is a reasonably good estimate of
CV = 0.17; whereas, for the model selected by GCV, the minimum GCV value
of 0.15 does not give as good an estimate of the corresponding CV = 0.22.
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This is an exciting piece of methodology. The highest compliment I can pay
is to express my feeling that I wish I had thought of it.”” The basic idea is
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simple and powerful. The examples are interesting and illuminating. My sense
of it is that this is a methodology that will become widely used in applications.
Naturally, I have a few reservations and questions. But first, I want to express
my sense of wonderment that this article is published in the Annals of
Statistics. .

There is not a single theorem, lemma or proposition in the whole paper.
Have my senses taken leave of me? What, no asymptotics or results concerning
the rate at which MARS approaches the ‘“true model” as the sample size goes
to infinity? For one of the few times in its history, the Annals of Statistics has
published an article based only on the fact that this may be a useful methodol-
ogy. All is ad hoc; there is no maximum likelihood, no minimax, no rates of
convergence, no distributional or function theory. Is nothing sacred? What
kind of statistical science is this? My thanks go to the editor and the others
involved in this sacrilegious departure.

Now on to issues concerning Friedman’s article:

If one fits a linear regression to data, then one is projecting the data onto a
fairly small space—the set of all linear combinations of the x-variables. But
now, suppose that one has 100 x-variables and perhaps 200 data cases and we
are trying to find the best linear predictor of y based on a subset of the
x-variables.

There are billions of different subsets of the x-variables. There are a few
standard methods for choosing between these subsets. Forward variable addi-
tion can be used and so can backwards variable deletion, and with enough
computing power, the minimum RSS least-squares regression equation using a
specified number of variables can be found.

The procedure Friedman proposes is analogous to forward variable selec-
tion. There are a very large number of variables, consisting of all tensor
products of spline functions. Forward stepwise addition is used up to a point,
followed by stepwise deletion. The dimensionality of the final model is gov-
erned by what Friedman calls generalized cross-validation, but what is actually
an adjusted residual sum-of-squares, with only a distant connection to true
cross-validation.

MARS defines a very large class of candidate models by the specification of a
large set of basis elements. Model selection is equivalent to selection of a
subset of basis elements, since the coefficients are then defined by least-squares
regression. For data with 10 variables and a sample size of 100, there are 1000
univariate splines and 450,000 bivariate spline products, where I am counting
only splines zero to the left assuming that to each data value of each variable,
there is a spline with knot at that point. The number of different candidate
models using, say, 10 of these basis elements is staggering.

In principle, the way Friedman would get the best of all candidate models is
to compute the PSE for all such models and select the one having the lowest
PSE. Since this is not possible, the GCV is used as an estimate for the PSE
and basis elements are found by a stepwise forward addition method. This
procedure raises problems which are important not only to MARS, but to the
entire venture of fitting more general multivariate models.
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1. The set of candidate models in MARS may be too large.

A. The packing problem. The predecessor to MARS is TURBO. This is the
program for fitting additive models reported on in Friedman and Silverman
(1989). In the discussion of this paper, Trevor Hastie criticized TURBO for
having high variability. He generated 50 data sets of sample size 100 from the
model:

y = 0.667sin(1.8x,) — 0.465x2 + ¢,

where ¢, x,, x, are N(0,1) and x,, x, have correlation 0.4. He ran TURBO on
this data and plotted the resulting transformations. These graphs are given in
Figure 1. Later, as I began working with additive models using different
construction methods, I understood better what Hastie was driving at.

Consider the following simple method for constructing additive models—put
K knots down on each predictor variable and using the power basis for splines,
do stepwise backward spline deletion. Decide how many splines to leave in the
model by finding the minimum value of the cross-validation estimate of PSE.

Initially, I had thought that the value of K would not be critical as long as
it was large. For instance, I might typically begin with 15-20 knots per
variable and then do the deletion. The reasoning for taking K large was to
have plenty of knots around to fit the functions. I thought that having too
many would not be a problem since all but a few would be deleted.

Much experimentation later, I realized that I was wrong. If the process was
started with K too large, then the resulting models were noisy and could
contain odd artifacts due to local quirks in the data. One way to think of this is
that the deletion process forms a path through the space of all candidate
models. The larger the space of candidate models, the more tightly they are
packed together and the path will be forced to select between nearby models on
the basis of small local properties. The result was that not only were noisy
transformations produced, but also that prediction error increased as K got
too large.

The procedure finally selected was this: For each value of K from one on
up, set K initial knots on each variable, go through the deletion process and
let PE(K) be the minimum cross-validated PSE estimate encountered in the
deletion. Now select K to minimize PE(K). This process was carried out using
Hasties data and resulted in the graphs in Figure 2. For more details see
Breiman (1989a).

The lesson is that relative to some measure of the efficacy of the data the
class of candidate models should not be packed too tightly together. Otherwise
the results will be noisy, possibly containing local artifacts and with a loss in
prediction accuracy. My concern is that the candidate models in MARS are
tightly packed together. There are many more candidate models than in
TURBO. The examples do not seem to show any signs of the packing problem,
but we comment further on this later.

This is really not a criticism particular to MARS. It could apply also to
CART and to ACE. It appears to me as a fundamental issue in model fitting.
The larger the class one selects from, the more sensitive the procedure is to
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noise. This issue cries for some theoretical investigation and deserves at least
as much energy and attention as one-dimensional density estimation.

B. The Rashumon effect. Suppose that we assume that we actually know
or can compute the PSE for each model and can go along with the idea that
the best model is the one with minimum PSE. From a predictive point of view,
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Fic. 2.

this is a perfectly defensible procedure. However, very often predictive proce-
dures are carried out for the purposes of interpretation. Then the question
posed is “how well does the estimated function mimic the TRUE function?”’ or
implicitly, “how well can we recover the mechanism used for generating the
data?”’

Usually, this question is dealt with by setting up simulated data where the
true function is known and seeing how well the estimation reproduces the
known function. This is the strategy followed in Friedman’s examples of
Sections 4.2 and 4.3. That this works is almost always due to the simple
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structure of the simulated data. In most cases of complex real data, we are up
against the Rashumon effect.

For instance, consider the best subsets procedure in regression for choosing
the best regression equation depending, say, on five variables, out of 30. If one
prints out the residual sum-of-squares for the, say, 10 lowest RSS equations
depending on five variables, then most often the first few of these will have
RSS values within a smidgen of each other. Yet the variables used may be
quite different. The analogous effect would take place if we could compute the
10 lowest PSE equations.

The major cause of this lack of uniqueness lies in the sheer size of the class
of candidate models and in the dependence between the basis elements. Now, if
we assume that a model with low PSE gives a good picture of the data
generating mechanism, then what we are getting is a multiplicity of equally
good, but different, pictures of what goes on within the black box.

Thus, for complex data, there can be many different and equally valid (or
equally invalid) pictures of the mechanism generating the data. Unfortunately,
most procedures will produce only one picture: that is, running MARS on a
data set will give only one picture. Yet there may be other models based on
much different sets of basis elements that give either as low as or lower PSE.

Unfortunately, much of classical statistics is predicated on there being one
unique and best answer. The data emanates from a black box, so the idea is to
assume a stochastic model for the mechanism in the inside of the block box,
estimate a few parameters and, bingo, we know what truth is. But for creative
data analysis, the desideratum is to get as many different views as possible of
what may be going on. Given this, if I were running MARS, then my predilec-
tion would be to run it on a number of bootstrap or leave-some-out samples
and see what different results emerged.

2. RSS or GCV is not PSE. Another implicit assumption made in many
model fitting procedures is that all other things being equal (for instance, in
comparing two models both of which use the same number of parameters) that
the model with lower RSS will have lower PSE. This is assumed in MARS,
since for the same M, the lower RSS model will have lower GCV.

Unfortunately, this assumption is not valid. For the same dimensionality,
the minimum RSS model may be quite different than the minimum PSE
model and the PSE corresponding to the minimum RSS model may be
considerably higher than the PSE of the minimum PSE model. Is this an
inherent and unsurmountable difficulty, or is there some way around it?

MARS uses the GCV values to select dimensionality of the final model. No
matter what you call it, the GCV criterion is not cross-validation. The reason
for GCV is computational efficiency. Tenfold cross-validation would take about
ten times as long, and MARS is not all that fast to begin with. Friedman has a
number of examples showing that his version of GCV does a pretty good job.
But I still have some reservations.

For instance, in the example modeling pure noise, about half of the time
MARS produces a model that has a better GCV score than estimating the noise
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by its average. Would using cross-validation improve on this? Again, the
problem is interpretation. Fitting noise with some structure can lead to
embarrassing conclusions.

Near the end of Section 3.8, Friedman puts up a fight for GCV based on
simulation results and claims that “the resulting model and its accuracy are
seen to be fairly independent of the value chosen for the parameter d.” He
concludes that the best value for d is between 2 and 4, that 3 is fairly effective
and that the accuracy of the result is not sensitive to the value of d in the 2-4
range. This is contrary to my experience in other contexts.

Selecting the dimensionality of the model used is critical. Selecting too large
a model leads to inflated variance and too small to lack-of-fit bias. But
simulations have shown that GCV in linear regression usually selects too large
a model, whereas cross-validation or bootstrap do a good job in selecting the
right-sized model [Breiman and Spector (1989)]. Therefore, even at increased
computational cost, I would suggest that the author include a CV or bootstrap
facility in the MARS program.

3. Data is not always high signal to noise. With the exception of the
pure noise example, all of the examples given by Friedman had high signal-to-
noise (s/n) ratios. For instance, the example of (56) had s/n = 3.28 (91% of
variance explained). The example of (61) had s/n = 4.8 (96% of variance
explained). The circuit examples of Section 4.4 had s/n = 3 (90% of variance
explained). The olive oil example of Section 4.5 had a 3-5% misclassification
rate. Finally, the example of equation (66) has s/n = 3.15 with 91% of the
variance explained. For the other simulated example (67), the signal-to-noise
ratio was not specified.

Any propensity of MARS to produce artifacts due to the noisy behavior
referred to earlier will be most apparent in moderate-to-low signal-to-noise
ratios. To the extent that Friedman has stayed away from such data, the
impression given by the examples in the paper may be misleading.

Even so, there are some disturbing results in the examples. For instance, for
the additive data of Section 4.2, the number of times that a nonadditive model
is preferred by GCV increases as the sample size increases. For the data of
Section (4.3) with one bivariate interaction, allowing an unlimited number of
interactions is about as good as allowing only bivariate interactions. Can the
author give explanations for these results?

4. Is stepwise forward the only way to go? Stepwise forward proce-
dures make me a bit apprehensive. There is always the risk that with a poor
step in the initial phases, it will produce a decidedly suboptimal fit. There is a
similar problem in CART. While with tree-structured procedures we have been
unable to come up with computationally effective alternatives to stepwise
forward splitting, in fitting continuous functions to multivariate data there are
other methods that have appeared in the literature.

For fitting additive equations, there is the backfitting method used in ACE,
with continued research in the Buja, Hastie and Tibshirani (1989) article.
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Another interesting method using backfitting was proposed by Hastie in his
discussion of the Friedman and Silverman (1989) paper. There is also the work
mentioned earlier doing backward knot deletion [Breiman (1989a)].

There has been less work on fitting interaction surfaces. This is where
MARS breaks new ground in being the first published method that has an
effective approach to the problem. However, as Friedman points out, the group
at Wisconsin is making progress in the computation of interaction splines.
There is also another method which depends on the decomposition of the
function to be estimated into a sum of products of univariate functions
[Breiman (1989b)].

This II-method has given promising results. To illustrate this, we ran it on
the example given in Section 4.6, equation (66), which originally appeared in
the Chong, Bates, Chen and Wahba (1988) paper. Figure 3 shows the original
function, the interaction spline fit, the MARS fit and the fit of the II-method.

None of the alternative methods are as fully developed as MARS. The
MARS algorithm, with the setting of a few parameters, produces a fit up to



90 DISCUSSION

ALY
AN A
.~

Friedman's "MARS" Fit

T - Method Fit

F1c. 3. (Continued)

whatever degree of interaction is wanted. Whether other methods can provide
improved accuracy and comparable automation remains to be seen.

5. Quo vadis? The development and use of effective multivariate meth-
ods for fitting complex data is an endeavor largely carried on outside of
statistics of diverse and active groups interested in results, rather than theo-
rems. For instance, most of the CART applications that we know about have
been done by nonstatisticians. The rapidly growing field of neural networks is
built around a new class of algorithms for multivariate regression and classifi-
cation with the principle protagonists being engineers and computer scientists.
It was gratifying to find that at a recent neural network conference there was
widespread knowledge of CART. I think that MARS will similarly become
widely known and used in application areas.
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J. H. Friedman presents the new recursive method of regression estimation
for high dimensional data. This method is very interesting and has very good
perspective. The main idea is an adaptive and recursive construction of the
system of basis functions. The proposed estimation method has good flexibility
and it is convenient for computer realization. We think that this approach is
applicable for other nonparametrical estimation problems, for instance in the
spectral density estimation for stationary Gaussian data.

The interesting problem connected with the proposed method is the theoret-
ical study of quality of this method for different classes of smooth regression
functions. (The reasons for consideration of the classes of smooth functions lie
not only in practical importance of such constraints. From our point of view
the most important theoretical results are established for these functional
classes.) Let us recall some known results in this direction.

1. The best in minimax sense order of the rate of convergence of the L,
1 < p < «, risks to zero for the regression function of the smoothness of g
in R* is equal to n~#/@f*+" [Ibragimov and Hasminskii (1980) and Stone
(1982)].

2. Speckman (1985) and Nussbaum (1985) found regression estimators which
cannot be improved, not only in the sense of order of the rate of conver-
gence but also in the sense of constant. Impossibility of improvement (in
minimax sense) of this constant for special case ellipsoids in the Sobolev
spaces and integrated mean-squared error was proved by Nussbaum (1985),
who used the results of Pinsker (1980).



