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THE ASYMPTOTICS OF S-ESTIMATORS IN THE LINEAR
REGRESSION MODEL

By LAURIE DAVIES

University of Essen

We consider the consistency and weak convergence of S-estimators in
the linear regression model. Sufficient conditions for consistency with
varying dimension are given which are sufficiently weak to cover, for
example, polynomial trends and i.i.d. carriers. A weak convergence theorem
for the Hampel-Rousseeuw least median of squares estimator is obtained,
and it is shown under rather general conditions that the correct norming
factor is n'/3. Finally, the asymptotic normality of S-estimators with a
smooth p-function is obtained again under weak conditions on the carriers.

1. Introduction. It is well known that the least squares estimator in the
linear regression model is not robust: one errant observation can give rise to
arbitrarily poor estimates of the coefficients.

Hampel (1975) proposed an estimator based on minimizing the median
absolute deviation of the residuals and gave its breakdown point as %, the
highest possible value for affine equivariant estimates. His idea was taken up
by Rousseeuw (1984) who developed it into a practical method for estimating
the parameters and identifying possible outliers in the linear regression model
[see Rousseeuw and Leroy (1987)]. Rousseeuw (1984) showed that the esti-
mate, now known as the least median of squares, was affine equivariant and
determined its finite sample breakdown point. He also considered the weak
convergence of the estimator. A generalization of least median of squares was
given by Rousseeuw and Yohai (1984) who introduced a new class of estima-
tors, the S-estimators. For a discussion of the problem of robust estimation in
the linear regression model we refer to Hampel, Ronchetti, Rousseeuw and
Stahel (1986), Huber (1981), Rousseeuw (1984), Rousseeuw and Yohai (1984)
and Rousseeuw and Leroy (1987).

Rousseeuw and Yohai (1984) proved consistency and asymptotic normality
(with a norming factor of nl/2) for a restricted class of S-estimators. They
assumed, however, that the carriers, the x-variables, were ii.d. and this
excludes many cases of practical interest such as polynomial trends. The
theory for the Hampel-Rousseeuw least median of squares is even less satis-
factory. Its behaviour is related to that of the shorth. There exist heuristic
arguments showing that the correct norming factor for the shorth and also for
middle of the shortest half is n'/? and these arguments also identify the
limiting distribution [see Andrews, Bickel, Hampel, Huber, Rogers and Tukey
(1972) and Shorack and Wellner (1986)]. Similar arguments were used by
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1652 L. DAVIES

Rousseeuw (1984) who considered the asymptotic behaviour of the least
median of squares for ii.d. carriers. He also obtained an n~'/3 rate of
convergence and identified the limiting distribution.

In this paper we show that the heuristic arguments give the correct answer
for middle of the shortest half and we also extend the result to least median of
squares. Kim and Pollard (1989) have independently given a correct proof of
the asymptotic behaviour of the least median of squares estimator. It is one
example of their general approach to n~1/3 rates of convergence. However,
they also consider i.i.d. carriers. The first version of the present paper was
written without the benefit of Kim and Pollard. Subsequent versions were
written with the benefit of Kim and Pollard and this has resulted in a
considerable improvement as anyone who was unfortunate enough to read the
first version, in particular the referees, can confirm. The improvements con-
cern mostly a shortening of the proofs but one substantial improvement in
Theorem 3 resulted.

In spite of its poor rate of convergence, least median of squares would seem
to be the most appropriate estimator of those currently available for obtaining
robust estimates in the sense of high finite sample breakdown point. The
reason for this is that S-estimators can only be calculated by brute force,
usually using some version of the random search method. In practice this is
most easily implemented for the least median of squares estimates.

This paper is organized as follows. In Section 2 we consider the question of
consistency for a sequence of regression models. Section 3 is devoted to the
asymptotic behaviour of least median of squares and Section 4 to the asymp-
totic behaviour of S-estimators with a smooth p-function (definition below).

In the following we shall not distinguish between sets and their indicator
functions. The expectation operator will be denoted by E and the variance
operator by V.

2. Consistency. We consider a sequence of regression models

yi(n) =xi(n)TB(n) +¢&;(n), l<i<n,

where y(n) € R*, x,(n) € R¥», 1 <i < n, B(n) € R*» and the ¢(n), 1 < i <
n, are independently and identically distributed random variables. We shall
assume that the random variables ¢,(n) are defined on a common complete
probability space (Q, &, P). Elements of ) will be denoted by w. We write

P(e,(n) <u) =F(u/0), u € R,

where ¢ € R*= (0, «) is a scale parameter and F: R — [0, 1] a nondegenerate
distribution function.

Throughout we consider fixed carriers x,(n), 1 < i < n. The case of random
carriers x,(n) which are independent of the errors ¢;(n) may be covered by
conditioning on the x;(n) and then checking whether the assumptions placed
on the carriers hold almost surely.
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To define S-estimators we introduce a function p: R — [0, 1] with the
following properties:

R1. (a) p(0) = 1.
(b) p(u) = p(—u), u € R
(e p: R,— [0,1] is nonincreasing, continuous at 0 and continuous on the

left.
(d) For some e > 0, p(u) > 0 if |u| < e and p(u) = 0 if |u| > e.

For any y € Rand s € R,, we define

(1) R(7,9) = [o(—=

s

Given ¢, 0 < ¢ < 1, we choose, as is always possible, a function p with the
above properties such that
(2) R(0,1) =1 —¢.

This ¢ has nothing to do with the errors ¢,(n). It is used as it is standard
notation for the breakdown point of an estimator. No confusion should arise.

The S-estimator (b(n), §(n)) of (B(n), o) is now defined to be a solution of
the following problem: Choose b € R*» and s € R, so as to minimize s
subject to

®) 5|
1

We denote this problem by .@n
Although we are not explicitly concerned with this, the breakdown point of
the S-estimator defined above is £* = min(e, 1 — ¢). Having chosen ¢ the
statistician may ensure the Fisher consistency of the estimates by choosing a
function p as above. This may, for example, be the function
9.2

p(u)=(1—%) {lul < e}

where the cutoff point e is adjusted to guarantee R(0,1) = 1 — &. We assume
that F is known, the standard choice being the standard normal distribution.

)dF(u) . {s>0).

yi(n) — xi(n)Tb)
p >1—-e¢.

TueoreM 1. If Rl holds, F is continuous and k, < [(1 — €)n], then with
probability one, ¥, has at least one solution (b(n),$§(n)) and $(n) > 0.
Furthermore, b(n) and 8(n) can be chosen to be random variables.

Proor. For a € R", b € R*» and s € R,, we write
a;, —x,(n)7b

S

1 n
g(a,b,3)=;ZP( ) {S>0}7
1

and s(a, b) = inf{s: g(a,b,s) > 1 — €}.
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As lim, _,, g(a,b,s) = 1 and lim, _,, g(a, b,s) = 0 because of R1, it fol-
lows that s(a, b) is well-defined and finite. Further, as g(a, b, s) is, for fixed «
and b, a right-continuous nondecreasing function of s, it follows that s(a, b) is
measurable with respect to the Borel o-algebra on R”**», In particular, the
class of functions

S={s(-,b): b € R*}
is permissible [see Appendix C of Pollard (1984)].
For fixed o we define s(a) = inf, s(a, b).
Let (s,,(a))Y be a decreasing sequence with lim,, _, ., s,(a) = s(a) and for

each m, let b,(a) be such that g(a,bd,,(a),s,(a)) > 1 — &. Consider now a
fixed m. There exist an n,, [n(l - s)] <ng<n and real numbers Vi,

1<j< no with ly;| <e, 1<j<ng, lo - x,(n)Th,(a)l > e for all i¢
{i,... 0, and
(4) a; =%, (n) bu(@) =y, 1<j<n,

We denote by b(a) that b which satisfies (4) and which minimizes ||5]|. It
is seen that s*(a) = s(a, b%(a)) < s,(a) and sup,, 16%(a)ll < ©. Thus there
exists a subsequence (m')] such that lim,, (b} (a), sk (a)) = (b'(a), s(a)).
As lim, , , sup p(u’) < p(u), it follows that g(a, b’(a), s(a)) >1—¢ and
hence (b'(a), s(a)) is a solution of #,,.

We now prove that measurable versions can be chosen. Let &(n,w)T =
(e4(n,w),...,e,(n,w)). Then on setting @ = ¢(n, w) and using the fact that
the class ./ above is permissible, it follows that §(n, w) = inf, s(e(n, w), b) is
measurable [Appendix C of Pollard (1984)]. Consider the set {(w, b):
s(e(n, w), b) = 8(n, w)}. The projection of this set onto Q is Q itself as we
have a solution of %, for each w. It now follows from the measurable
cross-section theorem in Appendix C of Pollard (1984) that there exists a
measurable function 8(n, ») such that s(e(n,w), b(n,w)) = §(n, w) for al-
most all . This proves the theorem. O

The S-estimator (6(n), §(n)) is affine equivariant and consequently, with-
out loss of generality, we may and shall assume that 8(n) = 0 and o = 1.

We now turn to the corresponding theoretical problem %, which is the
following: choose b(n) in R*» and s(n) in R, so as to minimize s(n) subject
to

(5) hd 2 R(x(n)"b(n),s(n)) =1 - «.
n

To obtain a unique solution we introduce the following conditions.

F1. (a) F has a bounded density f.
b) f(u)=f(-u), u eR.

(¢) f: R,— R, is nonincreasing.
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FR1. f:R,— R, and p: R,— R, have a common point of decrease.

LEmMA 1. Suppose F1 and Rl hold. Then
(i) R: R X R,_— [0,1] is continuous.
If in addition, FR1 holds, then

Gi) R(u,r) <RQ,r) foru R, reR,.
(iii) sup, >, R(x,1) <R(0,1) for all n > 0.
Giv) R(0,r) < R(0,1) <RO,rif 0<r' <1<r".

Proor. (i) may be proved, for example, by using dominated convergence
and the fact that p has at most countably many discontinuities.
To prove (ii)-(iv) we note that

[(o(55=) - o(3))rr =)~ F ay =0,

for all ¥ with strict inequality if s = 1 and u # 0. On multiplying out and
using the symmetry about zero, the claims of the lemma follow. O

TueorReM 2. If F1, R1 and FR1 hold, then %, has the unique solution
(b(n)’ S(n)) = (07 1)

ProoF. This follows from Lemma (ii) and (iii) on noting that each sum-
mand in (5) is individually maximized by setting b = 0. O

We now show that the S-estimator (b(n), §(n)) tends in probability to
0, D.

To do this and in the following, we make extensive use of results for
empirical processes as to be found, for example, in Pollard (1984). Most of
these results are formulated for i.i.d. random variables and as we consider
fixed but otherwise arbitrary carriers x,(n), they are not directly applicable to
the empirical processes occurring in this paper. Although the necessary adjust-
ments are straightforward, we give an explicit proof in one particular case,
Lemma 2 below, to demonstrate the nature of the adjustments.

In the following, we shall denote positive constants whose actual value is of
no importance by c,, ..., cg.

LEmMmA 2. Let
Z,(b,s) = %i ({Iei(n) +x,(n)7bl < s} — R(xi(n)Tb, s))
1

Then there exists a constant ¢, such that

[FD( suplZ,(b,s)| = 87]) < e,n*n+2 exp( - 2nn?),
b,s

for all m > 0.
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Proor. We write Z,(b, s) in the form
1 7
Zn(b’s) = ; Z (Ei,n(b’s) - P(Ei,n(b’s)))’
1

where E; (b, s) denotes the indicator function of the set {|¢,(n) + x;(n)7b| <
s}. We have K(Z,(b, s)) = 0 and W(Z,(b, s)) < 1/(4n). From the symmetriza-
tion lemma of Pollard [(1984), page 14] we obtain

IP(supIZn(b,s)I > 817) < 2[F°(sup|Zn(b,s) —-Z)(b,s)l < 417),
b,s b,s

for all n >1/(8n?), where Z/(b,s) = (1/n)Z1(E{ (b, s) — P(E{ (b, s))),
E! (b,s) = {le{(n) + x,(n)7b| < s} and the &/(n), 1 <i < n, have the same
distribution as (but are independent of) the &; (n) l1<i<n.

Let §;,, 1 <i<n, be independent of the ei(n) and e/(n), 1<i
n, and satisfy P(5; = 1) = P(5; = —1) = 1 and define Z2(b, s)
(1/n)X} 8,E; (b, s). Then as in Pollard [(1984), page 15], we obtain

A

\

[P’(supIZn(b,s)I > 877) < 4[P’(sup|Z,‘,’(b,s)| > 27;),

for all n > 1/(87n?. For fixed (¢,(n),x,(n)), 1 <i <n, consider now
Z)b,s) = (1/n)L}5,E, (b,s).
From Hoeffding’s 1nequa.11ty [Pollard (1984), page 192] we obtain

P(Z2(b,s)l = 2nl(e;(n),x;(n)),1 <i <n) < 2exp(—2nn2).
This implies
P(supIZn(b,s)I > 817) < 8exp(—2n7?)EK(M,),

where M, denotes the number of different points (E, ,(b,s),..., E, (b, s))

as (b, s) ranges over R*» X R,. This is equal to the number of different
subsets of the n point set {(¢; (n) x;(n)): 1 <i < n} picked out by sets of the
form {(e, x): le — xTb| < s}. For fixed (b, 5) and « € R, we define g, , ,(¢,x) =
ag + be + s. This is a linear space of dimension &, + 2 and hence the sets
{(e, x): le — xTb| < s} have polynomial dlscrlmlnatlon of order at most %, + 2
[Pollard (1984), Lemma 18, page 20 and Lemma 15, page 18]. It follows that
M, < c,n*»*2 and this gives

[P’(suplZn(b,s)l > 877) < cgn*»*2 exp(—2nn?),
b,s

for all n > 1/(8%?). For n < 1/(8n?), we have exp(—2nn?) > exp(— 1) and
hence, by adjusting the constant ¢, if necessary, we obtain the claim of the
lemma. O

To obtain consistency we must, however, place a weak condition on the
carriers x,(n), 1 < i < n. We denote the number of elements of the set { - - - }
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by I{ - - - }|. With this notation we define A ,(a) for any @, 0 < @ < 1, by

. . T
A (@) = min n)( min (Ii!éa}Ixi(n) OI)).
|A1=[na] ‘lol=1
Let X(n) denote the n X k, design matrix with ith row x,(n)”. Then a
sufficient condition for the least squares estimate to be weakly consistent is
that X(n)"X(n) be nonsingular and lim ,, _, (X(n)"X(n))~! = 0. This condi-
tion is not sufficient for S-estimators as the following can occur.

ExampLe 1. We set 2,=1, x(n)=0, 1<i<n-—-3, x,_5n)=
x,_4(n) =n"2 x,(n) = n. The least squares estimate is consistent because of
x,(n) but an S-estimator may declare x,(n) to be an outlier and concentrate
on the x,(n), 1 <i < n — 1 and these carriers are badly conditioned.

The function A,(a) measures in some sense the worst possible conditioning
of any [n a] subset of the carriers.

THEOREM 3. Suppose

k_logn
Eo<[n(l-e), 1im%=o

and that F1, R1 and FR1 hold. Then
plim (A,,(a)lI5(n)Il, $(n)) = (0,1),

n—o

for each a,0 < a < 1.

Proor. First, we show that

1 ( (ei(n) —x,(n)"b
P

(6) plim sup = 0.

n—®© peRkn
0<s<2

Because of R1, p may be uniformly approximated by functions of the form
L a{lul < b}. It is therefore sufficient to consider the case p(u) = {lu| < 1}.
Let

_Z "

1

) —R(x,.(n)Tb,s))

ei(n) — x,(n)7b

S

1 r
Z(b7s) = ;Z (P(
1

as in Lemma 2.
From Lemma 2 and the assumption lim, (%, logn)/n = 0, we may
deduce

) - R(x,.(n)Tb,s)),

plim sup =0,

n—o® peRkn
0<s<2

_Z "

1

n e(n) —x(n T
1 (,,( i(n) = xi( )b)_R(xi(n)Tb,s))

for p(u) = {lu| < 1} and this implies (6).
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The law of large numbers shows that for any n > 0,

limP(iip(ei(n)) > 1—5) -1,

now \n 7 1+n9

where we have used Lemma 1(ii). This implies lim, . P(8(n) <1+ 9) =1,
for each n > 0. We may therefore conclude

1 e(n) —x, Th(n
plim |- % p( () s’z‘fl;’) ( ))—R(xi(n)%(n),s*(n))) -0,

and hence, as R(0, §(n)) > R(u, $(n)) for all u [Lemma 1G],
lim P(R(0,6(n)) = 1-¢—n)=1,

for all n > 0. This, together with Lemma 1(iii) and lim, ,,P(8(n)<1+n) =
1 for all > 0, implies plim , _,_ §(n) = 1.

For any n > 0, let N' be the number of x,(n) with lx,(n)T6(n)| > . From
Lemma 1(ii) we may conclude that for any a, 0 <a <1,

lim P(N > (1 - a)n)

IA

lim P(aR(0,4(n)) + (1 - a)(R(0,8(n)) — 5) > 1 - &)

IA

lim P(R(0,8(n)) > 1—¢ + 8(1 — a)),

for some 6 > 0. Thus lim,, |, P(N > (1 — a)n) = 0 for each @,0 <a <1, and
from the definition of A (a), we obtain plim, _, (A, (a)ll6(n)|) = 0, proving the
theorem. O

ExampLE 2. We suppose that £, = k£ > 1 and that the x(n),1<i<n,
are independently and identically distributed. If the x(n), 1 <i < n, satisfy

sup IP’(xi(n)TB = 0) <1,
0,ll6ll=1

then there exists an n > 0 such that

sup P(Ixi(n)TBI < 77) <1-n9.
0,ll6ll=1
The sets B(9) = {x: |x79| < 1} have polynomial discrimination [Pollard
(1984), page 17] and consequently [Pollard (1984), Theorem 14, page 18]

1 n

plim sup |—) ({Ixi(n)TOI < n} - P(Ixi(n)TBI < n)) =0.

n-w g ol=1|7 1

If @, 0 < a <1,is such that @ > 1 — =, it follows that for any 0, 6] = 1,
and any subset . of {1,...,n)} of size [na], there exists an i € . with
lx;(n)T8| > n. Thus for all sufficiently large n, we have A (a) > > 0. If the
¢,(n) have a common density function strictly decreasing on [0, »), for example
the normal distribution, then the conditions of Theorem 3 are satisfied and we
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have p lim , _, (6(n), §(n)) = (0, 1). This generalizes Theorem 2 of Rousseeuw
and Yohai (1984).

ExaMPLE 3. Consider k£, = 2 and a linear trend x,(n)T = (1,i), 1 < i < n.
We redefine the x;,(n) and set #,(n)” = (1,i/n), 1 <i < n. Then for any 6
with ||6]| = 1 and any subset . of {1,..., n} of size [na], we have

16
491+—2

a
> —
5°
This gives A,(a) > a/5. If now the density function f is strictly decreasing
on [0, ), we obtain from Theorem 3 p lim, b(n) = 0 or, in terms of the
original S-estimator &(n),
plim (61(’1), n52(n)) = 0.

n—w

This result may be extended to a polynomial trend of any fixed order.

maxlx A(n)Tol = max
es

3. Least median of squares. In this section we restrict ourselves to a
fixed dimension k. We assume as before that 8(rz) = 0 and o = 1.
We shall suppose

n

@) in(n)xi(n)T= nl,,

1
which implies

(8) f lx;(n)I? = nk.
1

This represents no loss of generality as it may be obtained by an appropriate
transformation of the x,(n), 1 <i < n, and B(n).

The Hampel-Rousseeuw least median of squares estimator may be defined
as that b which minimizes the median of the squared residuals (y;, — x,(n)7)2.
In our notation this is equivalent to minimizing s subject to

12 (y,—x(n)"b 1/rn
— = > —(|=|+1),
n 21 p( s n ([ 2 ] )
where p is the indicator function of some interval [—e, e].
We shall consider the slightly more general case of minimizing s subject to

12 —x,(n)7b
Z (yl x;() )

and, abusing the meaning of the word median, still refer to this as the least
median of squares estimator.

The conditions of Theorem 3 will be assumed to hold and, in addition,
liminf A,(a) > 0 for some a, 0 < @ < 1. It then follows that the least median
of squares estimators &(n) and §(n) are consistent.

>1-—e¢,



1660 L. DAVIES

We first show that liminf A (@) > 0 for some a, 0 < a < 1, is equivalent to
the following assumption:

D1. There exist positive numbers 7n,, 7, and n, such that

Y x(n)x:(n) "{lx(m)]l < my) — nmaly
1

is positive definite for all n > n,,.

LEmMA 3. Suppose (7) holds. Then liminf A (a) > 0 for some a,0 < a <
1, if and only if D1 holds.

ProoF. Suppose D1 holds and for any a, 0 < @ < 1. Let Z,(a) be a subset
of {1,...,n} of size [na] such that

A(a) = min( max Ixi(n)Tﬂl).

lloll=1\ieZ(a)
Then as
Y lx(n)Te0”% < na( max Ixi(n)T0|2),
ied(a) i€ (a
we have
nai (e)?>min| Y I|x;(n)76®
loll=11\ ;ez(@
[l (Il <my
= min Y lxk(n)TP- Y% lx,(n)7 6l
1811="1 1 1)l <y i€ a)
[l (Il <my
> nm, - (n - [nal)ni,

where we have used D1. If a is such that (1 — a)n? < 37,, then we obtain
liminf A, (a) > 0.

In the other direction let @, 0 < a < 1, be such that liminf A (a) = A > 0.
From (8) it follows that |{i: llx,(n)ll = n}| < nk?/n2 Thus there exist n; and
@y, 0 < a < a; < 1, such that |.Z| > na;, where Z, = {i: |lx,(n)ll < n}.

Let 6’ with [|6’|| = 1 be such that

1 1

-y |x,~(n)Tl9’|2 = min — ), Ixi(n)Tﬁlz,

2.c5 loll=1 2 ;< s

and let #,(a) consist of those i’s in .#, giving rise to the smallest [na] of the
lx;(n)Te'|2.
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The definition of A,(a) gives

A(a) < max )Ixi(n)Tﬂ’l

ied(a

and hence |x,(n)70'| > A, (a), for all i € 2, \ & (a). This implies

1
min — Y |x,(n)701% > (a; — @) (a)?
lel=17 ;c g

and hence the desired result. O

In order to obtain weak convergence results we require a maximal inequal-
ity as given, for example, in Kim and Pollard (1989) and taken from Pollard
(1989). We state it here using our notation.

MAXIMAL INEQUALITY. Let -# be a manageable class of functions with an
envelope H for which E(H?%) < «. Suppose 0 € #. Then there exists a
function J, not depending on n, such that

@) \/ZtE(sggw»,,h - [E(h)l)
< [E( P.(H?) J(sggumn(hz)/umn(m))) <J(1)VE(H?).
(ii) n[E( sup|P, h — [E(h)|2)
K

2
< [E(Pn(Hz)J(suan(h2)/Pn(H2)) ) < J(V)E(H?).
X
The function ¢ is continuous and increasing with J(0) = 0 and J(1) < .

The above inequalities are stated for i.i.d. random variables and are there-
fore not directly applicable to the present situation. Relevant inequalities may
be obtained as follows. The functions ~ are assumed to be defined on R*** and
P is taken to be the empirical measure obtained by placing a mass of 1/n at
each of the points (¢;(n), x,(n)), 1 < i < n. This gives

PAR) = 5 3 hle(n), ().
The expression E(2) must be replaced by
% Z':l E(h(fi(n), x;(n))).
The x,(n), 1 <i < n, may be interpreted as being fixed or, alternatively,
the (¢,(n), x,(n)), 1 < i < n, may be interpreted as being independent random

variables, the ¢;(n) having a common distribution and the x;(n) being degen-
erate random variables.
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In order to obtain the maximal inequalities given above, the process
1 1 n
Z,(h) = ;Z h(ei(n),x,(n)) - n )y E(h(fi(n)’xi(n)))
1 1

is replaced by the symmetrized process

n
Z3(h) = — % & h(en), 2 (m)),

1
Just as in the proof of Lemma 2. This step makes use only of the independence
of the random variables. It is not necessary for them to be identically dis-
tributed. The remainder of the proof is independent of any distributional
properties of the (¢,(n), x,(n)), 1 < i < n. It requires only that the class 2% of
functions k: R'** 5 R be manageable.

We shall have reason to apply the maximal inequality to subclasses J#’ of
some class 7. It will be then of importance that the same function ¢/ can still
be used independently of the subclass. In Kim and Pollard (1989) and Pollard
(1989) such classes of functions are called uniformly manageable. This will, in
particular, be the case if the graphs of the functions 4,

G,={(e,x,t):0<t < h(e,x)or h(e,x) <t < 0},

have polynomial discrimination. This will be the case in most of our applica-
tions, the others being covered by the fact that if &# is uniformly manageable,
as is

H#={hy—hyhy, hyc H)

[see Pollard (1989) and Kim and Pollard (1989)].
We now consider the class

H={h, ,beR0<s <2},
where
hy (g,%) = {le — x7b| < s}.

The family of graphs of these functions has polynomial discrimination and
the class # is therefore uniformly manageable.

THEOREM 4. Suppose F1, F2, FR1 and D1 hold and that f is continuous at
e. Then

Vr(8(n) - 1) = N(O, =1 -¢) )

4f(e)”
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Proor. We consider

S S

71 = €; —x,(n)7b €.
Zn(b,s)=ﬁzl(p( J(n) —x,(n) )_p( ,(n))

—(R(xi(n)Tb, s) — R(0, s)))
The maximal inequality as given above with H = 1 implies

[E( sup 1Z,(b, s)l)

llbll <8, sl<2

1 n
sup — 3
loli<s,lsl<2 T 1

< 2(E(J

ez s

e o

S S

As the

are indicator functions of sets with polynomial discrimination, it follows, as in
the proof of Lemma 2, that

. 12 e(n) _xi(n)Tb e(n)
pim sup =X |p —p( )
n—o |lpll<s,lsl<2| ™ 1 s §
_E(‘p(e,-(n) —xi(n)Tb) . p(ei(n) )m o
s s
This together with
1~ g(n) —x,(n)"b g, (n 1z
-y [E( p( ) - p( (n) ) < ey— X ()G < c;llBll
n 3 s s n g
yields
(9) lim lim sup[E( sup IZn(b,s)l) = 0.
810 poo llall<s,lsl<2
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It follows from D1, Lemma 3 and Theorem 3 that plim,, _,, b(n) = 0 and
hence

12 (g(n) = x(n)"b(n)
1-¢ex< o 21: p( 3(n) )
12 [(&(n) 1~
== - b
b ) o
— R(0,3(n)) + op(—‘/—}l_—)
12 (e(n) 1
<l | ol )
by Lemma 1.
We have
1 2 [(g(n) 1 2
(1) =T p( T2 ) - (-0 = T (olei(m) - RO.1) + 0,1,

for small |s — 1|. This follows directly from the weak convergence of the
empirical distribution function of the (¢,(n))} to a continuous Brownian
bridge. Alternatively, on writing

Zi(s) = — Z(( edn)

an argument similar to the one leading to (9) will yield (11). As plim ,, _,,, §(n) =
1, we may conclude after some manipulation

) — p(s,(n)) - R(0, s) + R(0, 1)),

1r 1
(12) 2A(E)E) =D 2 =7 L (oem) = (1= ) + o, 1 |

In the other direction we have for small s — 1,

—ip( ‘(")) —(1- &) +2f(e)(s - 1)(1 + o(1)

)

-

1r
22 oe(m) = (1= 0) + o,

by (11).
If we define s,(y) by

n

1
2f(e)(sn(7) - 1) = —;E (p(gt(n)) - (1 - 8)) + T’

1
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for v > 0, it follows that
m [&(n)
lim P >1—-¢]=1.
fim, ( Z”(s( )

The pair (0, s,(y)) satisfies (3) with high probability and hence it follows
from the minimality of §(») that lim P($, < s,(y)) = 1, for all y > 0. Thus

. 12 1
2f(e)(8(n) - 1) < —;ZI: (p(ei(n)) = (1 -¢)) + o, 7l
which together with (10) and
1 » )
=2 (p(ei(n)) = (1 —¢)) = N(0,&(1 - ¢))
yn G
prove the theorem. O
A weak convergence result for §(n) as a function of ¢ is given by Griibel
(1988) for the case k = 1 and x(n) = 1,1 <i < n.

We now turn to the behaviour of 5(n)

LEMMA 4. Suppose that (7) holds. Then for each n > 0, there exist ran-
dom variables (M)} of order O,(1) such that

n €. — x. Tb £
sup 12(;,( {(n) = x(n) )_p( ,(sn>)

loll<1,0<s<2|? 1 s

—(R(xi(n)"b,s) - R(O,l)))’

< n(I6l* + Is — 1) + n=2/3M2,
for all (b, s) satisfying ||bl| < 1, |s — 1] < 1.

Proor. This is a modified version of Lemma 4.1 of Kim and Pollard (1989).
For ||b]| + |s — 1| < 8, we note that

g(n) _xi(n)Tb g,(n) e(n)
P ( ) 140

— te
s &)

<Y { < |Ix,~(n)||6},

where the sum extends over all choices of +. From F1 it follows that

B

1+6
and hence the condition on the envelope is fulfilled. O

- t+el| < lei(n)ll5}) ;6 Zn‘, (1 + llx;(r)I)S < 8
1
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THEOREM 5. Suppose that, in addition to the assumptions of Theorem 4, f
has a continuous first derivative at e.
Then

16(n)ll = O,(n=1%).

_ Proor. We first note that because of D1, plimn_,m(f)(n), §(n)) =1(0,1). As
b(n) maximizes

17 [e(n)— x,(n)Tb
Zzl"p( 8(n) )’

we have

12 gi(n) — x,(n)"b(n) g,(n)
OSZZI:(”( 3(n) )_”(g(n))

_(R(xi(n)TB(n),§(n)) - R(0,§(n))))

+

S| =

Y (R(x(1)75(n), 8(n)) - R0, 8(n)))
1

< n(I16(n)I% + 18(n) — 11?) + O, (n=%3)

1 n A
= L (R(x(m)7B(n), 8(n)) - R(0,4(n))),

[l (r)ll <my

where we have Psed Lemmas 1 and 4.
Asplim , ., 6(n) = 0 and, by Theorem 4, |§(n) — 1| = O,(n~'/?), it follows
that

0 < nllb(n)I? + 0,(n~%3) + 1 Y lx(n)Th(n)IPFD(e)(1 + 0,(1))

llac;(r Ol <My
< nllB(n)IF + 0,(n=2%) + nyllB(R)IPF P (e)(1 + 0,(1)),
by the assumptions of the theorem. As m may be taken to be small and
f®(e) < 0 we obtain the claim of the theorem. O

Under slightly more restrictive conditions we can prove the weak conver-
gence of n'/3b(n).
We introduce the following condition:

1 n
D2. lim — Y llx,()II*{llx,(n)ll > 673} = 0 forall & > 0.
1

n—o n
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THEOREM 6. Suppose that in addition to the conditions of Theorem 5, D2
holds and

1~

(13) lim — Y Ix;(n)"bl = L(b), beR:
n—o 1
Then
nY3b(n) = Tpa
where T, is the uniquely defined argmax of
2O (e)lbll* + 2(b)

and 2(b) is a zero-mean continuous Gaussian process with incremental
variance :

E((2(b) — 2(b))%) = L(b - ¥").

Proor. We first note that
0 < qllbll < L(b) < VEbl,

for all b # 0. The last inequality follows from (8) and the second is a
consequence of D1.
We define

2.(8,s) =n-3 Y (p(
1

ai(n)—xi(n)Tbn_1/3)_( e(n) )

1+ sn~1/2 1+ sn~1/2
—(R(xi(n)Tbn_l/g',l + sn'l/z) - R(0,1 + sn'l/z))).

Then, using D2 and the assumption (13) of the theorem, a Taylor expansion
gives

lim E((2,(6,5) = 2,(8',8))") = 2f(e)L(b = &).

The Lindeberg conditions for the central limit theorem hold and it follows
that the finite dimensional distributions of £,(b, s) converge to those of 2(b).

To show that 2, converges weakly to &, it remains to check the stochastic
equicontinuity condition [see Pollard (1984), pages 139-140]. This, however,
follows along the lines of Lemma 4.6 of Kim and Pollard (1989) using the
envelope of Lemma 2. We therefore have £, = £ and hence

Ei - .xl(rL)Tbrl_l/3

1+ sn~1/2

= 2fD(e)lbl* + 2(b),

1 n
(14) T3 L P
n 1

where we have used D2 and (7).

As fD(e) < 0, E(|2(b) - 9(6')|2) < VEIlb — &'l and E(|2(b) — 9(6’)|2) =
0, if and only if & = &', it follows from Lemma 2.6 of Kim and Pollard (1989)
that, with probability one, 2 f@(e)|Ib]|> + 2(b) takes its maximum at only
point 7.
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From the definition of (&(n), $(n)), it follows that b(n) maximizes the
left-hand side of (14) with sn~/2 = §(n) and as b(n) = O ,(n~1/3), by Theo-
rem 5 we may conclude that n'/34(n) = 7. O

For an explanation of the n =1/ rate of convergence for discontinuous p we
refer to Kim and Pollard (1989).

ExampLE 4. We consider Example 2 and suppose that
E(x(n)x(n)") =

where 3, is nonsingular. Then the conditions of Theorem 6 are seen to hold for
the transformed variables 3'/2b and 3,~Y%x,(n).
If

L(b) = E(lx,(n)"57/2p]),
then
b(n) = 37?1,
where 7., is defined as in Theorem 6.
ExaMpPLE 5. As in Example 3, we suppose that
xi(n)T = (pO(l’/n)r e 1pk—1(i/n))7
where p, is a polynomial of degree r, 0 < r < k — 1, and
1
(15) [P (m)pi(n) dn = (r = s}.

If we replace the carriers x;(n) by 3 1/2

2n = l i xi(n)xi(n)T7
noy

x,(n), where

then (7) holds. Furthermore, as lim, 3, = I,, by (15) we obtain

hm—ZIx (n)T3;1/2%| = hm—ZIx(n) bl = fl

n-—o

k-1
Y b;pj(u)|du
j=0

We may therefore deduce that n'/36(n) = 7., where 7 is as in the
theorem with

k—1
L(b) = [01 (u)|du

4. Smooth p. We now consider the case of smooth p. We shall continue
to assume that (7) and hence also (8) holds.
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We write
(16) A(p) = [p(u)*dF(u) - (1= ¢)*
and make the following further assumptions concerning p:
R2. p is absolutely continuous with a bounded Lebesgue density .
R(v,1+s) — R(0,1+ s)

R3. lim = —B < 0.
(v,8)-0 v? (p)

From R2, it follows that p satisfies a uniform Lipschitz condition of order 1.
Furthermore, if F1 holds then for small s we have

‘R(O,l +8) —R(0,1) + s [up(u) dF(u)

1
< bl (G gu 0 1) = () ) )

which is o(|s|) by Lebesgue’s theorem and dominated convergence. It therefore
follows from R2 and R(0, s) is differentiable at s = 1 with derivative

(17) C(p) = ~ [ud(w) f(u) du.

A similar argument shows

(18)  lim -l—[(p(u+v)—p(

(v,s)—>0 |v|2 1+s

1+ s) - v¢(u))2f(u)du = 0.

The assumption R3 will hold if either ¢ or f is absolutely continuous with a
bounded Lebesgue derivative.

THEOREM 7. Suppose that R1, R2, F1, FR1 and D1 hold. Then

A(p) )

ProoF. As p is an even function and nonincreasing on R, the graphs of
the functions

€ i - xlT b

hb,s(gi’xi) =p __8— )

have polynomial discrimination [see, for example, Pollard (1984), page 29]. The
class of functions &, , is therefore uniformly manageable and hence so is the
class of functions

(19) hb,s = hb,s - hO,s‘
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We may therefore apply the maximal inequality to the ﬁb’s taking as the
envelope
(20) FIR(Eir x;) = collx,lI R
for suitable c4. This follows from R2 because of the uniform Lipschitz condi-
tion. The proof of Theorem 4 may now be repeated with only minor changes
using the differentiability of R(0,s)at s = 1. O

We now turn to the behaviour of 5(n) and show first that 6(n) = 0,(n=1/2),

LEmMA 5. Suppose R1, R2, R3, F1, FR1 and D1 hold. Then
IS(n) = Op(n_l/z).

Proor. The proof is a modified version of Lemma 4.1 of Kim and Pollard
(1989). We note first that D1 implies plim , ., 5(n) = 0. Furthermore |3(n) —
1| = 0,(n~'/?) by Theorem 7.
We now consider the h,, , of (19) and their envelope Hj given by (20). It
follows that

1n -
~ % E(Hg(ei(n), 2(n))) = CR.
1

One can now repeat the reasoning of Lemma 4.1 of Kim and Pollard (1989)
using, in their notation, PG2 < CR? instead of PGZ < CR and replacing the
factor n~'/3, where appropriate, by n~'/2. This leads to the following: For all
n > 0, there exists a sequence (M,)7 of O,(1) random variables such that

1= . .
o (R s(ei(n), 2i(n)) = (ko (e(n), :(n))))

< n(lIBl* + s — 1/%) + n‘1M2

for all (b s) satisfying ||b]l < 1and |s — 1| < 3
As b(n) maximizes

$(n)

T .
SRl
< q(I6(n)I* + 18(n) — 1°) + n™'M?
+%z':; (R(x:(n)Tb(n),8(n)) - R(0,8(n)))
< n(16(n)I1? + 18(n) — 11?) + n~M2
f2 L (B(x(m)TB(n), 8(n)) - R(0,8(n))),

T xinli<my

izn: p(ei - xi(n)Tb),
no

we obtain
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by (ii) of Lemma 1. As plim, b(n)=0 and |8(n) - 1| = Op(n_l/z), it
follows from (R3) and D1 that

0 < nllb(n)I1? = collb(n)I? + O, (n7Y),

with ¢;, > 0. On taking n = jc,,, we obtain the claim of the lemma. O
Corresponding to D2, we now introduce the assumption D3:
1
D3. lim ;lexi(n)llz{llxi(n)ll > 8\/;} =0, forall 6> 0.
n—o

If D3 holds, then there exists a sequence (6(n))°° with lim ,, ., 8(n) = 0 and

(21) lim —— z s (n)E{lzi(n)ll = 8(n)Vir) =
» 8(n)’n
In particular, this implies
(22) lim Y 1=0.

22 ()l > 8(n)ym )

We can now prove

THEOREM 8. Suppose R1, R2, R3, F1, FR1, D1 and D3 hold. Then

¥*dF

\/_b(n)=>N(O Ik4B( 2

Proor. The conditions of Theorem 7 and Lemma 5 are satisfied so we have
16l + 18(n) — 1] = 0,(n~'/?). We consider the rescaled processes

Ei(n)_xi(n)Tb/\/; _ g;(n)
1+s/Vn P\T+s/vn

Z,(b,s) = ¥

1

(x(n) ‘/_ j_)+R(0 1+—‘/sn:))

and prove that they converge weakly to a continuous Gaussian process Z, to
be identified below.

If (8(n))7 is as in (21), then, because p is bounded, it is sufficient to consider
the process

Z(bS)—Z

1

ei(n) —x(m) bR | ([ edn)
P 1+s/Vn Pl 1+s/vn

(x(n) ‘/_ ‘/s_)+R(0 1+ ‘/‘;)),

where ©'7 denotes the sum over all i with [|lx,(n)|| < 8(n)Vn.
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The first step is to prove that the sequence (Z))7 is tight. To this end we
define for (b,b',s,s) in R%**Z and |s — 1| < 1, s’ — 1] < 3,

htb s, s’ _i;’bs_i;’b s"
where % is as glven by (19). As the class &, , is uniformly manageable so also
is the class hj 5., s,¢ 1N order to apply the maximal inequality we require an

envelope for this latter class. From R2 and the fact that ¢ has a compact
support, it follows that

sup  |hyp 6 o6 %)l < e R(llall + 1) = Hg (e, %),
b —bli+ls —s1<R

aslongas|s— 1/ <Zandl|s'— 1/ < 3
We therefore have

1 r
= L E(Hf (e(n), 1(n))) < R,
1
and the maximal inequality implies

1 n
=Y (R}, (2:(n), ()

E sup "
1

lb—b'll+|s—s'|<R
lls—1i<g,ls'=1<3

—E(R3,y,,,(2:(n), 5:())))

<c;3R.

If we now replace R by R/ Vn , we obtain

Vn [E( sup

16—=b'll+|s—s'|<R

L, o R
_( n(b’s) - n(b’s))‘) SCMW’

which, on letting R tend to zero, shows that the sequence (Z,)7 is tight.

To complete the proof of the weak convergence, it is necessary to show that
the finite dimensional distributions converge. For those i with [x;(n)| <
8(n)n , we have for fixed b and sufficiently large n,

|R(x,(n)"b/Vn 1+ s/Vn) = R(0,1 + s/Vn)| < eysllx,(n) 12161 /n,
by R3. This is seen to imply, using (8),

f'(R(xi(n)Tb/\/;, 1+ s/\/;) - R(0,1+s/vVn)
1

—R(x,-(n)Tb'/\/r?, 1+ s/yfrz) +R(0,1 + s'/\/;))2
= c168(n)IbIl%,
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and hence
E((Zi(b,5) - Z(b',5)))

_ Zn:’lE gi(n) —x;(n)"b/Vn ~ e;(n)
B 1 P 1+s/Vn P 1+s/Vn

(3i(n) - -’Ci(n)Tb'/\/’7 )
-p +p

Ei(n) :
W)) ) *o(1).

1+s'/Vn
Now
([ (2w =)o) ein)
b 1+s/Vn Pl1ss/vn
ei(n) — x(n)"b' /¥ e(n) |’
P 1+s'/1/r7 TP 1+s'/\/77)
_ lx,(n) (nb - b))l f‘/’2 dF + 0( ||x,-(:)|| (16112 + ||b'||2)),
where we have used (17). The
lx;(n)I? 2 g
o( - (I1B11% + 116l ))

holds uniformly in n for those i with [|lx,(n)ll < 8(n)Vn . We therefore obtain
lim E((Z;(b,s) — Z;(b’, s'))z) = Ib - b'I* [y 2 dF.

As o
si(n) _-’Ci(n)Tb/‘/’7 . Ei(n)
P 1+s/Vn Pl1+s/in
gi(n) — x,(n)"b'/Vn ei(n)
B 1+s/Vn PlT+s /v
< cn”xi(n)"(x" D sy (lbl+ 1),

the Lindeberg conditions are fulfilled and it follows that
(Zrlz(bl’ sl)r ceey Zr'z(bk7 sk)) = N(Or 2(11 BRI ] k))7

with '

3. (1,..., k) = b?bjjwdF.

tJ
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Putting all this together we see that the processes (Z/)7 and hence the
processes (Z,)T converge weakly to a Gaussian process Z, of the form
Z(b,s) =b%Z,

where Z is a Gaussian random variable with zero mean and covariance matrix

I, [¢2dF.
The limiting process Z_ is independent of s. This implies that for any K,

max Izn(b7 S) - Zn(b70)| = Op(1)7
Ibll<K,|s|<K

and hence, for any sequence of O, (1) random variable s,, the processes
(Z,(-,5,)7) converge weakly to the process Z(). As Vn(3(n) — 1) = 0,(1)
this implies .

(23) Z, (-, Vn(8(n) - 1)) = Z(").

Now R3 implies
i,[E g,(n) _xi(n)Tb/‘/’7 g,(n)
1 P 1+s/Vn P\1+s/vn
oy lx:(n) "BI°B(p)(1 + 0(1))
1 n ’

which together with D3 yields

lim Zn: [E(p(gi(n) —x,(n) b) —p( g;(n) ))

= —B(p)ldl*.

nvo o 1+s/Vn 1+s/Vn
This combined with (23) gives

n [ (e(n) —x(n)"b/Vn &,(n)

z ("( 5(n) ) ) ”( 5(n)

The left-hand side is maximized by b = Vn 6(n), which is 0,(1) and the

right-hand side by b = Z /(2B(p)). Using Theorem 2.7 of Kim and Pollard
(1989) on the weak convergence of the arg max we obtain

Z (W2 dF

)) = b"Z — B(p)lbIl".

I

proving the theorem. O

Theorems 7 and 8 give the asymptotic normality of &(n) and $(n) under
less stringent conditions than those of Theorem 3 of Rousseeuw and Yohai

(1984).
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