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By SaMUEL KARLIN?, AMIR DEMBO AND T'suToMU KAWABATA

Stanford University, Stanford University and University of
Electro-Communications

1. Introduction. Distinguishing features of sequences that are likely or
not likely to occur by chance can be important aids for identifying molecular
sequence features for experimental manipulation. Two methods for discerning
nonrandom aspects of sequences are commonly used: (1) comparisons of the
original sequences to corresponding random sequence models and (2) data
shuffling protocols [for recent reviews in these respects, see Doolittle (1981),
Altschul and Erickson (1985) and Karlin, Ost and Blaisdell (1989)].

We investigate a random model appropriate to the data that provides a
benchmark for discerning distributional properties of various data statistics.
In the independence random model successive letters of a sequence are
generated independently so that letter a; is selected with probability p;. In the
case of proteins (DNA), the p; are usually specified as the actual amino acid
(nucleotide) frequencies in the observed sequence. A random first order Markov
model is governed by p;, as the conditional probability of sampling letter a,
following letter a;. In this case the p; would correspond to the observed
diresidue (dinucleotide) frequencies in a protein (DNA) sequence. For these
models, theoretical results (limit distributional properties) have been obtained
previously for a variety of sequence statistics including the length of the
longest run of a given letter or pattern (allowing for a fixed number or a
prescribed fraction of errors), the length of the longest word in a sequence
satisfying a specific relationship (e.g., r-fold repeat, dyad symmetry, charge
complementarity) and counts and spacings of long repeats [Karlin, Ghandour,
Ost, Tavaré and Korn (1983), Karlin and Ost (1985), Arratia and Waterman
(1985, 1989), Gordon, Schilling and Waterman (1986), Arratia, Gordon and
Waterman (1986, 1990), Foulser and Karlin (1987), Karlin and Ost (1987,
1988), Deheuvals and Devroye (1987), Rootzén (1988) and Karlin, Ost and
Blaisdell (1989)]. Several of these analyses have been extended to deal with
comparisons within and between multiple sequences, including the ascertain-
ment and statistical characterization of long common words and multidimen-
sional count occurrence distributions for various word relationships [e.g.,
Karlin and Ghandour (1985), Karlin (1986)].
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In this paper we present new probabilistic formulas for characterizing
statistically significant sequence configurations with respect to a general scor-
ing scheme associated with letter attributes and for enabling varying degrees
in letter matches. We describe the asymptotic extremal distribution of high
aggregate segment scores and the letter composition of high-scoring segments.
A number of associated conditional Gaussian central limit laws are also
described. We establish strong laws for the longest segment showing a quality
q score, that is, an average score per letter of ¢ or more. Theorem 1 allows one
to calculate the asymptotic probability that some segment from a random
sequence has score greater than any given value. In particular, one can tell
when some segment score value occurs in the 1% tail from the distribution of
all segment scores. The results have applications in two important contexts:
(1) for the analysis of a single protein sequence with the objective of identify-
ing segments with statistically significant high scores of, for example,
hydrophobicity (nonaffinity to water), charge strength, glycosylation (sugar

attachment) affinity, secondary structure potential and sequence signal
motifs; (2) in multiple sequence comparisons for establishing evolutionary
histories or protein segments with common function and /or structure.

Scoring assignments for amino acids can reflect on biochemical categoriza-
tions such as electrical charge and physical properties (e.g., molecular weight,
shape). Other amino acid classifications can relate to evolutionary relation-
ships [Dayhoff, Schwartz and Orcutt (1978)]. We designate the alphabet in use
by A ={a;,a,...,a,} and the corresponding letter scores by S =
{s1,83,...,5,}. For DNA, r = 4; for codons, triplets of nucleotides that trans-
late to amino acids, r = 61; for the standard amino acids, » = 20; and for the
charge attributes of amino acids, » = 3 (see Karlin, Ost and Blaisdell (1989) on
other amino acid alphabets).

It is useful to highlight some natural scoring assignments.

1.1. Scores based on charge. For the positively charged amino acids lysine
and arginine, s = +2; for the negatively charged amino acids aspartate and
glutamate, s = —2; for histidines, s = 0.04 (at pH 7.2 in blood serum) or
s = 0.44 (at pH 6.1 in muscle cells); for other amino acids, s = —1.

1.2. Scores associated with a run of a particular letter type, a. Here we set
the score of letter a to +1 and the score of all other letters to — . Obviously,
only a run of the letter a can have positive score.

1.3. Scores derived from target frequencies. In a random sequence the
letters {ay, ..., a,} are sampled with probabilities {p,, ..., p,}, respectively. Let
{q1,g2: - - -5 q,} be a set of desirable “target frequencies” of the letter types. In
certain contexts that will be discussed in Section 3, the scores s; = log(q,/p,),
i=1,2,...,r (alog likelihood ratio) are appropriate. Theorem 6 states that in
a maximal or high-scoring segment of a random sequence, letter @, tends to
occur with the target frequency q; = p; exp(6*s;), where 6* is as described just
before Theorem 1, so that all s; can be expressed as a log likelihood ratio



SEGMENTS FROM MOLECULAR SEQUENCES 573

s; = log(q;/p;), with the log taken to some suitable base. Thus, since any set of
individual scores has an implicit set of target frequencies, the question of what
is an appropriate set of scores can be cast as the question of what is an
“optimal” set of target frequencies. In the context of molecular sequence
analysis, in order to construct the appropriate set of scores we need merely to
characterize the letter distributions for the type of region we seek to identify
[see Karlin and Altschul (1990) for elaborations on this theme].

1.4. Scores based on structure alphabets. Dickerson and Geis (1983) classi-
fied amino acids into internal (i), external (e) and ambivalent (a) types, based
on experimental and empirical compilations reflecting where certain amino
acids tend to be found in protein three-dimensional structures. Specifically,
using the one-letter code for amino acids, i = {F, I, L, M,V}, e =
{D,E,K,R,H,Q, N}, and a = {A,C,G, P,S,T,W,Y}. This is a good alpha-
bet for studying hydrophobicity. A scoring scheme more refined than the
three-letter alphabet and quite consistent with the Kyte-Doolittle scale of
hydropathy takes s =2 for I,L,V; s=1 for F,M,A,C; s=0 for
G,S,T,W,Y,P;s=—1for N,Q,H, D, E; s = —2 for K, R. One can use any
of more than 12 alternative scales that have been proposed for hydrophobicity
[see von Heijne (1987)].

In the simplest model, the random sequence consists of letters drawn
independently from the alphabet A with respective probabilities
{p1, Ps, ..., p,}. Associated with each letter a; is a score s;. We are interested
in the segment of the sequence with maximal additive score, the second
largest, or the several top-scoring segments. We impose two essential restric-
tions on the set of scores. Specifically, we require at least one score to be
positive and the expected score per letter u = L p;s; to be negative. If u > 0,
the maximal segment would tend to be the whole sequence, and this is not of
interest. The case of u = 0 is discussed below. In many situations the assump-
tion u < 0 is intrinsic. For example, in the simple case of runs of a letter type,
u = —o, In the model of scores calculated using a set of ‘target frequencies”
(see Section 1.3), whenever the frequencies {g;} are not identical to the {p,},
then necessarily £ p;s; = L p; log(q,/p;) < 0. Finally, for any set of scores {s;}
with w positive, the modified scores s!=s; — au, and a > 1, satisfies
Ls/p; <0. In this case the determination of a segment with a large score
using of the {s/} amounts to selecting, a segment with score in excess of its
statistical mean score (using the {s,}) by at least the factor a > 1.

2. The statistical model and the limit distribution for the maximal
segment score. Let X;, X,,..., X, ,... beiid. random variables based on
observations from a finite alphabet {a,}] such that

Pr{X =s;} =p;, i=1,2,...,r,p;>0,Lp; =1,

is interpreted in the manner that sampling the letter a; yields a score s;. Let
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{S,.}I, Sp = 0, be the partial sum process. The quantity
(1) M(n) = sup (S,-S,;)
O<k<l<n

corresponds to a segment of the sequence {S,,}; with maximal score. The only
assumptions on the process {S,,}7 used are

E[e’®] < forreal —0, < 6 < 8, (8,, 0, positive)
(2) lim E[e%X] = llm E[e"X] = +o,

0l -6,
uw=E[X] <0, sothat {Sm} entails a negative drift

and
Pr{X>0}>0

(see later for discussion of the case u = 0). To facilitate the analysis of (1), the
distributional properties of

(3) T(y) = inf{n: M(n) >y}

are germane and of independent interest.

A parameter fundamental to the limit distribution of M(n) and T'(y) is the
unique positive root 6* of the equation E[e®®] = 1, well defined by virtue of
the negative mean of X.

THEOREM 1 [Iglehart (1972) and Karlin, Dembo and Kawabata (1990)].
Under the conditions (2), when X is nonlattice

Inn
0*

(4) lim Pr{M(n) -

n—o

< x} = exp{ —K*e "%},
where
> 1
{ 2 %—(E[e"*sk; S, < 0] + Pr{S, = 0})}

0*E[ Xe® X

[the series of (5) converge geometrically fast]. For the case that X is a lattice
variable of span 8, (4) is replaced by

5) K-

. Inn
exp{—K_ e 7"} < liminf Pr{ o }
n—o
Inn
(6) < lim sup Pr{M(n o }
n—oow
< exp{—K_e "%},
where
0% . 0% .
K_= WK ) K+= 1_—e_0*6K .
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Iglehart (1972) obtained the result of this theorem in the nonlattice case.

Some molecular sequence examples illustrating the use of (4)-(6) are given
in Section 4.

The calculation of K* is much simplified for the score values {—-m,...,
—1,0, 1} occurring with respective probabilities {p_,,,..., p_1, Do, P1)}- In this
case

K = (e % — e 2")E[ Xe%X].

For the score assignments {—1,0,1,...,m} occurring with probabilities
{P_p Po, pl’ cre pm}’ we have

(e7® — e 2")(E[X])*
K= E[ Xe%X]

By virtue of equality for the events {T'(y) < n} = {M(n) > y}, we deduce
Theorem 2 on the basis of Theorem 1.

THEOREM 2. For u <0, then
(7 lim Pr{T(y)exp{—0*y} <t} =1 — exp{ —K*¢}, t>0,
yo®
and this limit law holds regardless of whether X is lattice or nonlattice.

The results of Theorems 1 and 2 combined with the inherent monotonicity
of M(n) and T(y) imply the strong laws of Corollary 1.

COROLLARY 1.

0*M(n)

—— > 1 a.s.asn o> x
Inn

and

InT(y) )

_— .S. .
oy a.s.asy > x

The sample paths of {S,,} divide the time frame (0,n) into successive
excursions of the nonnegative axis:

(8)
K,=0, K,=min{k: k>K, ; +1,8, - Sg _ <0}, v=1,2,....

A concomitant of Theorem 1 is that the asymptotic (n — «) distribution of
the number of separate excursions attaining a score in excess of In n/6* + x is
Poisson with parameter K *e %",

The analysis of M(n) and T(y) for E[X]=pu =0 with o2 = E[X?] >0
leads to different limit laws. In this case the growth rate of M(n) is of order Vn
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rather than of order log n, while that of T'(y) is y2 instead of exp(8*y). More
precisely, we have the following.

THEOREM 1'. For u = 0, then

k(o"/g)k 1
0(_1) x* T(1+k/2)°

The right side is a Mittag-Leffler function of order ;.

lim Pr{M(n) < Vnx} =

T

3. The length and composition of high-scoring segments. For each
y>0and K,,v=0,1,2,... delineated in (8), we define

T,(y) = min{m: m > K, and either S,, — S < Oor S,, — Sg >y},
v=20,1,2,....

(9)

Let
(10) L(y)=TJ(y) -K,.

THEOREM 3 [Dembo and Karlin (1990)]. For u < 0 let the integer-valued
random variable v* correspond to the start of the first excursion, where the
event T, is realized by the condition S; — Sy > y. Then,

L, .
w”‘M -1 a.s.asy > », w* = E[ Xe?X],

(11)

and the following central limit theorem holds:
y = w*L,.(y)
V LV*(y)

and v* = E[ X2%%X] — (E[ Xe?X])2.

(12) — N(0,v*) in distribution asy — «

The limit law (12) can be expressed as a conditional central limit law.
Indeed, let £(y) be the event that the first exit from the interval [0, y] of the
partial sum process {S,,} upcrosses the barrier y. Let L(y) be the time
duration of this event. Then (12) is synonymous with [cf. Siegmund (1975)]

iz[y — w*L(y)] }
VL(y)

In the mean zero case u = 0, we have the Laplace transform limit,

o? L Vs
exp{—%%‘)“}‘éo(y)} = ﬁ,

E(y) |~ exp(—22*/2) asy - .

(13) E[exp{

lim E

y—o®

where o2 = E[ X?].
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The following generalization of Theorem 3 contains information on the
composition of high-scoring segments. Let U,, be i.i.d. d-vector random vari-
ables; U,, can depend on X, but is independent of X,, 2 + m. We form

T,«(y)

(14) W.)= ¥ U
k=K, +1

[see (8)-(10) concerning notation], so W,.(y) cumulates suitable functionals of

the X samples in a high-scoring (reaching a level more than y) excursion.

THEOREM 4 [Dembo and Karlin (1990)]. For p < 0, {U,, X,} i.i.d. (d + 1)-
tuples, W,.(y) defined in (14) and v* the index of the first excursion where a
level exceeding y is attained before crossing to the negative real line, then

W..(y) R
L,.(y)

and the following conditional central limit theorem holds:

u* a.s.asy > o, u*=E[Ue?¥],

(15)

T,«(y)

¥
V L,.(y) E=K,.+1

where 2* = ||o%||, /% = E[(U; — u} XU, - u}‘)e"*x].

(16) (U, — u*) = N(0,3*) in distribution,

By specializing to the indicator function

U - {1 if X, € A (A aBorel set in the range of X),
* 0 otherwise,

then W,.(y)/L,.(y) = u(A;y) is the fraction of samples in A for a high
excursion reaching higher than level y. For this special case Theorem 4
translates to the following.

THEOREM 5. For a high-scoring segment the empirical distribution of
samples u(A;y) satisfies

A7) u(A;y) - p*(A) = E[I(X)e"™], a.s.asy -,
where I(X)=1 for Xe A, 0 for X ¢ A and

VL(y) [1(A;y) — u*(A)] = N(0,(0%)?),
where (o%)? = E[(I1,(X))%%X] — (E[I,(X)e®X])2.

In the case where X assumes only discrete scores {s;}] with corresponding
probabilities {p,}], then for high-scoring segments (y — ») the relative fre-
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quency of score s; is approximated with probability p,e®:. We state this
formally as follows.

THEOREM 6. Let Pr{X =s;} = p;,, Lp, = 1. The frequency of letter a; in
any sufficiently high-scoring segment approaches p; exp(6*s;) with probability
1. In particular, this is true for the segment of maximal excursion.

A special case of Theorem 6 was considered in Arratia, Morris and
Waterman (1988).

We describe in conclusion a strong law for long quality q segments. A
quality ¢ segment for the index range {, to [} of the partial sum process based
on {X,} satisfies the condition

1L
— L X;=q,
L=k 5

so that the average score from % + 1 to [ is at least g. We consider only
feasible g levels satisfying E[X] < ¢ < maxX. In particular, a quality ¢
segment yields a larger average score per letter.

For a sequence of length n, let R{? be the longest quality g segment. The
stipulations (2) on {X;} apply. The following theorem holds.

THEOREM 7. Let R be the length of the longest quality q segment. Let
u(6) = log E[eoxl— 0q and determine 0 as the unique minimum of u(6)
(necessarily 0 < 6). Then

. [—u(é)R;‘”]
Iim|—| =1 a.s.
n—w Inn

All the results described above extend to the situation where X, is gener-
ated as a Markov chain subject to mild positivity conditions [see Karlin, Dembo
and Kawabata (1990) and Dembo and Karlin (1990) for details]. The methods
of proof rely heavily on martingale theory particularly exploiting the Wald
martingale family in its Markov chain setting, fluctuation theory for partial
sums of iid. random variables and their extensions to Markov chains (ap-
propriate Wiener—Hopf factorizations) and semi-Markov renewal limit laws for
the excess random variable in exceeding a high level.

4. Examples. Theorem 1 allows one to calculate the asymptotic probabil-
ity that some segment from a random letter sequence has score exceptionally
high. In particular, one can tell when the M(n) value occurs in the 1% or 5%
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tail of its distribution. This at least provides a benchmark for assessing the
statistical significance of high-scoring segments. A wide-ranging empirical
study applying the statistical theory described in this paper will be published
elsewhere [see also Karlin and Altschul (1990)]. We illustrate here the ideas
and results with two examples from protein sequences, one displaying high-
scoring concentrated charge segments and the other containing a high-scoring
hydrophobic interval.

4.1. We wish to identify a high-scoring mixed charge region prominent
with basic and acidic amino acids. To this end, we stipulate a scoring assign-
ment such that s = 2 for the acidic amino acids aspartate, glutamate, and for
the basic amino acids lysine, arginine and histidine, but the score —1 for all
other amino acids. Consider the human keratin (found in fingernails and hair)
67K cytoskeletal type II protein (length 643 amino acids) with its frequency of
charged amino acids of 20.1%. The maximal scoring segment is located at
positions 238-291 of aggregate score 21, probability P* of achieving this level
or higher by formula (4) is less than 0.008, the second-highest distinct scoring
segment is located at positions 427-463, score 14; P* = 0.15. These segments
of charge concentrations are postulated to be functionally important for the
keratin protein [cf. Brendel and Karlin (1989), Karlin, Blaisdell, Mocarski and
Brendel (1989)].

4.2. Score assignments for hydrophobic attributes (we use the one-letter
code for amino acids): s = +1for I, L, V,F,M,C,A; s = —1for G, S, T, W, Y,
P and s = —2 otherwise.

The recently characterized cystic fibrosis (CF) protein [Riordan et al. (1989)]
is composed of 1480 amino acids, and in this case the frequency s = +1 is
41.6% and frequency of s = —1 is 26.8%. The maximal segment occurs at
positions 986-1029, score 21, P* < 0.001, and the second maximal segment is
found at 859-884, score 17, P* < 0.012. The latter region is preceded by an
acidic charge cluster at positions 819-838. Sequence comparisons in Riordan
et al. (1989) project CF as structurally similar to a membrane associated
transport protein; the existence of these pronounced hydrophobic segments is
consistent with characteristics of an integral membrane protein.
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