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DISTRIBUTION FUNCTIONS OF MEANS
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By DoNATO MICHELE CIFARELLI AND EUGENIO REGAZZINI
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Let x be a random probability measure chosen by a Dirichlet process on
(R, #) with parameter « and such that [xx(dx) turns out to be a (finite)
random variable. The main concern of this paper is the statement of a
suitable expression for the distribution function of that random variable.
Such an expression is deduced through an extension of a procedure based on
the use of generalized Stieltjes transforms, originally proposed by the present
authors in 1978.

0. Introduction. The present paper deals with the probability distribution
function # of Y = [xdx, x being a random probability measure chosen by a
Dirichlet process with parameter «, on the o-field of Borel subsets of R, 4.
Section 1 includes a brief note about these concepts. The Dirichlet process was
introduced and studied by Ferguson (1973) in view of its applications to Bayesian
nonparametric statistics. In that framework, the assessment of .# represents a
very useful tool in order to produce any Bayesian inference concerning the mean
of a statistical population. Apropos of this use of .#, we recall that the posterior
distribution of x, given the sample X|,..., X, [cf. Definition 2 in Ferguson
(1973)], is also a Dirichlet process on (R, # ) w1th parameter a + X170y , where &,
denotes the measure g1v1ng mass 1 to the point x [Ferguson (197 3), Theorem 1]
Therefore, the expression of .# can be employed for both prior and posterior
Bayesian analysis.

The present authors (1978, 1979a, b) provided the distribution function of Y,
under the following rather restrictive hypotheses.

H1. The support of a, S(a), is included in [0, ).

H2. « is absolutely continuous with respect to Lebesgue measure A on
(R, #).

H3. [|x|da < oo.

Taking that result as a starting point, and under the same hypotheses,
Cifarelli and Merlini (1979) determined the probability distribution function
of {x((¢,%0))} ™ Y;,yx(dx), t> 0. More recently, Hannum, Hollander and
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Langberg (1981), in all probability being unacquainted with our previous works,
introduced a family of random variables {T*; x € R} in such a way that, for
each x € R, #(x) turns out to coincide with the probability of the event
{T* < 0}. Moreover, for every parameter « satisfying H3, the abovementioned
authors have written the characteristic function ¢,- of T,

op=(2) = exp{—/ In[1 — it{¢ - x}]a(d&)}.
Hence, one could try to deduce the probability distribution function in question
by means of Zolotarev’s inversion formula

Mx)=%1—7""! clin:o fOC[Im(qu,(t))/t] dt;

see Zolotarev (1957). In any case, those authors do not provide any explicit
expression for .#. Recently, Tamura (1988) used Zolotarev’s formula in order to
invert ¢~ numerically. Consequently, our main concern is the statement of that
expression by fitting the procedure conceived in our previous papers to the case
of an arbitrary parameter a. It is worth recalling that such a procedure is based
on a generalized Stieltjes transform. Unfortunately, our ignorance of general,
though classical, inversion formulas had prevented us from providing any satis-
factory result whenever « did not satisfy H1, H2 and H3. Recently learning of
some of these formulas has made it possible to develop our previous research,
and the resulting conclusions seem to represent a useful complement of the most
recent general results relative to the topic at issue.

The organization of the present paper is as follows. Section 1 includes a few
basic definitions and elementary results concerning Dirichlet processes and
establishes notation for the subsequent sections. Section 2 introduces a random
functional which turns out to be intimately connected to Y. A useful recurrence
relation for the moments of the new functional is deduced and, based on that, a
generalized Stieltjes transform of the probability distribution function of the
same functional is determined. Section 3 provides explicit expressions for .#, by
means of inversion formulas developed by Sumner (1949) and Hirschman and
Widder (1950, 1955). Finally, Section 4 includes a few applications of the main
result of the paper. Because of space limitations, some technical details are
omitted; in any case, they are extensively explained in Cifarelli and Regazzini
(1988).

1. Preliminaries. Let Z,,...,Z, be independent random variables (rv’s),
where Z; has a gamma probability distribution function (pdf) with scale parame-
ter 1 and shape parameter a; > 0, and with the proviso that, when a; = 0, then
the pdf of Z; is degenerate at zero. If a; > 0 for some j € {1,..., k}, then the
pdf of the random vector (Y,,...,¥,_,), where Y; = Z;/S%Z for j=1,...,k — 1
and k > 2, is said to be a Dirichlet pdf with parameter (ay, ..., a;); the value of
such a distribution at (x,,...,x,_;) will be denoted by 2(x,,...,x,_;;
ay,...,a), for each (x,,...,x,_,) € R*~L Let us now consider a finite, positive
measure a on (R, #) and, to each finite partition {B,,..., B,} of R in %, let us
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associate a Dirichlet pdf with parameter (a(B,),..., a(B,)). Given any finite
class {E, E,,..., E,} of Borel subsets of R and the family {B,,..., B,} of its
constituents, let us then write the pdf, calculated at (y,,..., 3,) € R?,

(1.1) L(y)d@(xl,...,xk_l; a(B,),...,a(B,)),

where E(y) = {(x}, -+ ,x,_y) € RE™: ZF 'l < 1,T, 0% < Y for j =
1,---,n, and x, =1 — X¥ ;) and C(]) designates the set of i’s for which
B, c E Ferguson (1973) showed that (1.1) determines a consistent family of
pdf’s and that, by virtue of Kolmogorov’s extension theorem, there exists a
unique probability measure £ on the o-algebra of cylinders, o([0,1]%), with
n-dimensional Borel bases, such that the pdf of the coordinate rv’s
(x(E,),..., x(E,)) is given by (1.1) for all n and E,,..., E,. Under these
conditions, the class of rv’s {x(E); E € #} is said to be a Dirichlet process on
(R, #) with parameter a. Denoting x((— o0, x]) and a((— o0, x]) by P(x) and
A(x), respectively, it is easy to show that for any n > 2 and —0 < ¢, < ¢, <

- <t, < o, the family of rv’'s {P(¢); t = ¢,..., t,} is a Markov process and
that, consequently:

If x is a Dirichlet process on (R, &), then

{P(t); t € R} is a Markov process;

{P(t); t <1} and {P(t); t > 7} are conditionally independent given P(t).
Doksum [(1974), Proposition 3.1] showed that there exists a separable version P
such that #(P: P is a probability distribution function) = 1. From now on, we
will confine ourselves to considering parameters a such that:

CONDITION (*). P(P: P is a pdf and f|x|dP < o) =1 is satisfied. By
virtue of this hypothesis, we can suppose that each of the P’s we will take into
consideration is a pdf with finite expectation.

According to our procedure, the starting point for the determination of ./ is
the assessment of the pdf of the random functional

U(T,T)==fT{1—P(x)}dx -0 <7<T< o,
which is linked to Y by the relation
(1.2) lim {r+ U(r,T)} =Y as-2.
=%

After denoting expectations assessed according to & by &, we will designate the
conditional moment of order n of U(r, T), given P(7), by

wo(r, P(7); T) = &(U(r, T)\P(r)), n=0,1,....

Finally, the pdf of U(7, T')|P(7) [resp. U(r, T')] will be denoted by M (7, P(7); - )
[resp. M, (7; - )]
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2. The generalized Stieltjes transform of order a(R) of My (r; +). This
section is, in practice, a more general and precise draft of the arguments
developed in Section 2 of Cifarelli and Regazzini (1979b).

The well-known relation

{fTT[1 ~ P(x)] dx}n= n!/;Td'rl fTTalT2 fT 1?[[1 ~ P()] d,

and Markov property of P yield, a.s.-%,

(2.1)
pa(7, P(7); T) = n[fdn /1(1 — 2)pp_i(m, 2 T)P (7, P(r); 7, dx),

where I = [ P(7),1], and #(7, P(7); 7, - ) denotes the conditional distribution of
P(r)) given P(7) with 7 < 7. Setting 7* = inf{x: x > 7, x € S(a)}, if 7* > T
one obtains

(2.2) po(r, P(7),T)={1—-P(r)}(T-1)" as-®;

in fact, from Proposition 1 in Ferguson (1973), a(A) = 0 = P(x(A) =0) =1,
a(A) > 0 = P(x(A) > 0) = 1. On the other hand, if 7* € [7,T), it is worth
noticing the following relations, which hold a.s.-#:

@(’r, P(7); 7, {P(T)}) =1 ifr € (r,1*);

{x — P(T)}A(Tl)_A(T)—l(l _ x)u‘—A('rl)—l

27, P(7); 1 dx) = e ST A e = A()

X {1 = P(1)} A0 py () diif 7> 1%
from now on, «* will designate a(R). These expressions together with (2.1) yield
(2.3) po(r, P(7); T) = {1 - P(T)}nu:('r, T) as.-2,
where p*(7,T) =1 and

TB(H* - A(’r), n)
24 ¥(r,T) =
@4 wn D) =nf F—a

It is easy to show that (2.3)-(2.4) yield (2.2) whenever 7* > T. We are now able
to prove ‘

pr_ (¢, T)dt, n=>1.

LEMMA 1. Foreachs >0 andx €[0,1], T >,

fm et Y)4 O d My (7, x5 )

=sA(’)_“’exp<—(1 __x)‘/;T o* _A(D) }.

s+ (1-x)(v—r1) ©
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Moreover, fors >0and T > T,
e . ra* — A(v)
‘/[-O’Oo)(s +y) “d,Mp(r;y)=s exp{—/T pUr—— dv}

and the left-hand side of this equality represents the generalized Stieltjes
transform, of order a*, of My(1; ).

ProoF. In order to prove the first part, it is sufficient to consider the case
when o* — A(71) > 0 and x € [0,1). For each z > 0, define

Gr(r;2) = [

[0, )

yz A(T)—a*
{1 + = x} d,Mp(7,x; y)

uy® ~AD-1g (1; uz) du,

1 ® —
- I'(a* —A('r))/(; ¢

where
i (_l)nznf":('r’T)
gr(m2) =X !
o !

- [o,w){eXp[_ T:%]} d,Mp(7, P(1); y) as-2.

In view of standard arguments explained in Cifarelli and Regazzini (1988),
jointly with (2.4),

(-1)"
!

GT(T;2)=1+§ n. z"n/TT{a*—A(t)+n—1}

. e—uua‘—A(t)+n—2
dt

Xﬂ:—l(t’T){/(; T(a* — A(t))

whenever 0 <z <1/(T—7)and 7 < T.
Term by term differentiation, with respect to r > a > — oo, is valid at each
continuity point of A; hence the relation
DTGT = Z{a* - A(T)}GT + Z2DZGT

holds for all pairs (7, z) such that 7 is a continuity point of A and a <7 < T,
0 < z < 1/(T — a). The general solution of this equation is

(2.5) Gr= Cexp{ - /;T‘Tzi%vi—(_% dv}.

We can use the definition of G, together with (2.5) and write

f[ (s + )"0 d Mp(7, x5 )

0, )

(2.6)

= CsAn-o exp{—(l - x)];Ts n :1* __;4)((1;)_ ) dv},
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for 7 < T and s > (1 — x)(T — a). The identity theorem for analytic functions
can be used to deduce that (2.6) holds for every s > 0, with C = 1. This proves
the first part of the lemma. As far as the second part is concerned, define

po(r,T)=&(U(7,T)"), n=1;
then

p(r,T)= /[0 I]Mn(f,x; T)d2(x; A(1), a* — A(1))

/ (1= 2)"ux(7.T) d9(x; A(r), a" = A(7))

F(a*)r(a —A(t) +n)
T T(a* + n)I(a* — A(r)) " pal(n T)
and, for z € (0,1/(T — 7)) and T > 7,
exp{ sz{a —Alv)) dv} = /[0 w)(l + zy)_“*dyMT('r; ¥).

1+2(v—1)

Hence, for s:=1/zand s > T —a > 0,

* Ta* - A(v) —a*
P exp{—f ——————dv} = ‘/[‘0 )(s +y) * d,Mp(7; y),

r Sto—r1

and the thesis can be obtained by arguments similar to those developed to prove
the first part. O

A few remarks, designated by R,, ..., R, will conclude the present section.

R,. Denoting the pdf of [TP(x) dx by M *(T; - ), one obtains for s > 0,
. . A(v
[ (s+y) "dMXT;5) =5 eXP{—fTL dv}.
[0, o0)

s+ T—-v

R,. Suppose that Condition (*) holds and designate the pdf’s of [T Pdx
and [*{1 — P}dx by M*(T; - ) and M(r; - ), respectively. Then
Mp(r;-) >, M(7;+) asT - oo
MX(T; ) =, M*(T;-) ast— —oo.

R;. If Condition (*) holds, then from R, and well-known characterization of
weak convergence of probability measures, for s > 0 we have

[ s+ ™ dMp(r;9) > [ (s+) d,M(r;y) asT - +oo,
[0, o) [0, o0)

[ s+ "d,MXT;9) > [ (s+) " d,M*(T;y) asr— —co.
[0, 00) [0, o)
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R,. Under Condition (*) and for s > 0,

wa* — A(v) 4 r A(v)
————————————— < ——————————
./; s+ovo—1 0=, -/_oos+T—u

o . o o —A(D)
f (s+y) “d,M(r;y)=s"" exp{—f ——dv},
[0, 0)

r Sto—r7

dv < o0,

. . r A(v)
-« * (. =g« - - A—
’/[O’w)(s +y) “dM*(T; y)=s exp{ f_ws T dv}.

R;. Under Condition (*) and for s > 0,

wat — A v
s exp{—f a—()dv} - s‘A(’)exp{—f

r S+tuv—rT (7, )

In(s + o — 'r)dA(v)},

T (0) A
—a* _ _Al) — JA(T)—a* _ _
s exp{ fmws - . du} s exp{ f(_w’T)ln(s +T-v) dA(v)}

R4 Under Condition (*) there exists a Borel set @ such that A\(Q) = 0 and

f|1n|x — s||dA(x) < o foreach s € Q° N[0, x).
R

3. The pdf of random means of a Dirichlet process. This section deals
with the inversion of generalized Stieltjes transform of order a* of M (7; - ) [see
Lemma 1]. In order to avail ourselves of a few well-known convenient inversion
formulas, we preliminarily state that M(r;-) and M*(T,-) are absolutely
continuous pdf’s.

LEMMA 2. My(7;-) and M*(T; - ) are absolutely continuous pdf ’s when-
ever —oo <1 <T < 00, A is not degenerate and o7, T]) > 0. Moreover, if
Condition (*) holds, A is not degenerate and a([t, 0)) > 0 [resp. a((— o0, T'])
> 0], then M(; - ) [resp. M*(T; - )] is an absolutely continuous pdf.

Proor. See Cifarelli and Regazzini (1988). O
From now on, the probability density function of M(r; - ) will be designated
by f(-; 7). Observe that, by virtue of the previous lemma, remark R, of Section 2

can be restated:

If Condition (*) holds, A is not degenerate and a([ 7, ©)) > 0, then

(3.1) f[o,w)(s +3) iy ) dy =5 exp{—fw——a* —4(o) du}

r stov—r1

for each s > 0.
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In other words, the generalized Stieltjes transform, of order a*, of f is given by
the right-hand side of (3.1). We will act according to the following procedure:
firstly, we determine f through inversion of the above-stated transform; then, we
evaluate ./ based on f, R, and (1.2).

The problem of inverting a generalized Stieltjes transform has been solved by
Widder (1938), Sumner (1949) and Hirschman and Widder (1950, 1955). To invert
the right-hand side of (3.1) we will avail ourselves of both Hirschman-Widder
and Sumner according to the value of A(7), where 7 := inf S(a). Then, the main
result of the present paper can be condensed into the following:

THEOREM 1. Let x be a random probability measure chosen by a Dirichlet
process on (R, #) with parameter a, and satisfying Condition (*). Write A/ for
the pdf of Y = [gxx(dx), S(«) for the support of a and A(-) for the correspond-
ing distribution function (df). Then, if a is degenerate at & A is also
degenerate at the same point. On the other hand, if a is not degenerate we
obtain

(i) for inf S(a) =7 > —o0 and A(1) > 1,

0 ifx <,
224 3(a* - 1)
; mu—r1)

H(x) = ) fjﬂ{cos(%)}auzcos{/wq(v; u, y)(u — 7)sin ydo — a*y}

. 2

du

Xexp{—qu(v; u, y)[(u—7)cosy + v — 7] dv} dy ifx>r,

where

a* — A(v) .
(u—7)+(v—1)"+20v—7)(u—r1)cosy’

q(v;u, y) =

(i) for inf S(a) =7 > —o0 and A(7) €[0,1),

ifx <,

M(x) = /x(x u)" 1

A sin{wA(u)}h(u; — ) du ifx >,

where (u — )4 = 1if A(t) = 0 and h is any function from R to [0, ] such
that ’

h(y; — o0) = exx){—f

(7,00

Injvo — y| dA(v)} a.e.-\.
)
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ProoF. From (3.1) and R, with s = e® one obtains

exp{—zA(T) - j( )ln(ez +o—1) dA(v)}

T, 00

- /Ow(y +e) f(y; ) dy

= foo exp{—a*( i z)}f(e‘; 'r)e‘[sech(z _ t)]"‘* it*,
. 2 2 2¢
where the latter equality follows from the change y = e’ hence,
/w exp{t(l - ﬁ*—)}f(e‘; 'r)[sech(z—_f)]u‘ dt
w0 2 2
*
=2 exp{z(% - A('r)) - /(

At this point one can determine f from the final part of Section 7 of Chapter 9 in
Hirschman and Widder [(1955), page 235], and obtain, for a* > 1,

f(u;7) = -

af — 1
(3.2) X lim jﬂ{cos(%)}«'—gexp{ ipy[a* — 2A(7)]

p—1" 2
-J

(7,00)

In(e? +v—1) dA(v)}.

T, 00)

20(' —3ua*—A(1)—1

In(ue® +v—r1) dA(v)} dy,

which holds for almost all u > 0 in view of condition 5 of Theorem 7.1b in
Hirschman and Widder (1955). Expression (3.2) can be simplified by evaluating
the limit involved as p — 17; in fact, repeated application of Lebesgue’s domi-
nated convergence theorem yields

flu;r) = —
(3.3) % f:{cos(%)}a*_zexp{ iy[a* _22A('r)]
oo

which holds for almost all u > 0. Therefore, if inf S(a) > — oo,

*
@ 120{‘—3ua"—A(‘r)—1

In(ue + v — 1) dA(v)} dy,

() =@(f7°°{1 _ P(u)} du+ Tgx) _ M(r;x— 1)

represents the pdf of Y. Hence, after elementary manipulations one deduces
Theorem 1(i). When o* > 1, 1 > — o0 and A(7) € [0, 1), one can obtain a more
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elegant expression for f, by virtue of Theorem 4a in Sumner (1949). In fact, (3.3)
states that f is continuous for almost all u > 0 and, therefore, Sumner’s
inversion formula yields

f(u;r) = hm —f (z+u) “'g'(2)dz ae-A,

-0+ 2im

where g(z) is the right-hand side of (3.1), with z in place of s, and C,, 1s the
contour which starts at the point —u — in, proceeds along the stralght line
Im(z) = —n to the point —in, then along the semicircle |z| = 5, Re(z) > 0, to
the point i7, and, finally, along the line Im(z) = 7 to the point —u + in. Hence,

/C (z+u)"'g(2) dz

= (a* - 1)/0"{(u — ¢+ in)" 2g(=£ + in)
—(u—&—in)* Pg(—¢—in)}dt
—(a* — l)lnf “)(me + u) ¥ 2gi0 gg

+8(-u+ in)(in)'x - g(—u—in)(—in)*
where

g(s) =5 exp{ - /wLA(U) dv}

r Sto—r1T

= g~4M exp{ —f

(7,00)

In(s +v—17) dA(v)}

for s € D, D being the complex plane cut from the origin along the negative real
axis. In view of R; and R, one can determine @, with A(Q) = 0, such that the
last three addenda converge to 0 as n — 0" on [0, )\ . As far as the first
addendum is concerned, by virtue of R4 and Lebesgue’s dominated convergence
theorem, one can show that it converges to

a*—2
2i(a* 1)f (—ugA—(z)—{exp —f(f’w)lnh) —-T- §|dA(v))}
x [ —sin(7A(7) + 7{A(7 + £) — A(r)}] d¢
for every u € (0, 0) \ Q. At this point it is immediate to deduce
d#(x) =1 pw-r(x—7—¢)" 2
& = A0

0

X [exp{— /(‘T’w)lnh) B dA(v)}]sin{vrA(fr +£)) dt,
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and, consequently, one can determine .# according to expression (ii) of Theorem
1. When 7 = — o0 and a* > 1, there is 7* > — o0 such that A(7*) < 1. Conse-
quently, one can determine .# arguing as in the previous case with 7* in place of
7 and then passing to the limit as 7* —» — o0. In order to deal with the case when
a* € (0,1), one may start by stating the equality

0 —a* =1y . _ 1 ot ooa*—A(D)
(3.4) fO(S+y) f(y,’f)dy—;s exp{—fT ;_T_—Tdv},

where
P*(y;7) = fyf(x; r)dx fory> 0.
0

Consequently, f* may be obtained from the inversion of the right-hand side of
(3.4), by arguments similar to those expounded in connection with the previous
case when A(7) € [0,1).

Finally, when a* = 1, one can use the classical inversion formula of Stieltjes
[cf. Widder (1946), Theorem 7b(3), page 340], which yields a result agreeing with
Theorem 1(ii). O

The previous theorem can be applied in order to determine the pdf of

Y, = [(x)x(dr),

where ¢ is a measurable function, x is a random probability measure chosen by
the Dirichlet process on (R, #) with parameter a and satisfying

CONDITION (*),. 2({x: /|\[/| dx < w})=1.

Indeed, under these conditions, x4y~ !(+) = x(¢ '(+)) turns out to be a ran-
dom probability measure from the Dirichlet process on (R, #) with parameter
a, = a(y~ (). Hence, the previous theorem yields

COROLLARY 1. Let x be a random probability measure chosen by a Dirichlet
process on (R, #) with parameter a; let y: R - R be a measurable function
satisfying Condition (), and write #, for the pdf of Y,. Under these condi-
tions, M, coincides with # in Theorem 1 upon replacement of A by the df
corresponding to a,.

4. Applications of the previous result. This section is devoted to a few
applications of Theorem 1.

The first application relates to the case when the parameter a is proportional
to a Cauchy pdf. Apropos of this kind of parameter, it is well known that:
If A(x) = a*[* AN + (t — p)?) "' dt/n for all x in R, then

M(x)=A(x)/a* forallx €R,

whatever a* > 0 may be.
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This statement, which could be deduced from our Theorem 1(ii), is due to
Yamato (1984). Here the inverse statement is proved, that is:
Let Q be an assigned nondegenerate pdf on R and let # be the pdf of the mean
of a Dirichlet process with parameter o) = a*Q(-). Then

(4.1) M (x) = Q(x)

holds for all x in R and a* > 0, if and only if Q is Cauchy.
In fact, in view of Lemma 2 of Section 3, if (4.1) holds, then Q is absolutely
continuous and A(7) = 0. Hence, from our Theorem 1(ii),

[ exo] -2 [ Loglo — wl@/(0) dolsin(27()) da

by taking a* = 2

Q'(x)

(4.2)

~exp( = [ [toglo — x(1@(0) dsin (+Q())

by taking o* =1,
which holds a.e.-A. Moreover, (4.2) entails

1 (x w? 2 . .
Q(x) = ;j; mQ(u) sin{27Q(u)} du;

hence,

Q"(x) = 27(Q(x))" cot{7Q(x)} ae-\,

whose solution is given by Q(x) = ; + {arctan(ax + b)} /=, with a > 0.

We now mention an application to the limit distribution of {¥7_,X,/n}*_,, as
n — oo, when {X }%_, is a sequence of exchangeable random variables which,
conditionally on ¥, are iid, x being a Dirichlet process on (R, #) with parameter
a. In fact, under Condition (*), it is easy to show that

n Xk
PlY —<x|->, #(x), n- oo,
k=1 1

A being the pdf determined in Section 3. Compare in connection with this,
Klass and Teicher (1987).

The last application we give deals with the posterior distribution of x, given a
random sample [see Ferguson (1973), page 216] of size n > 1 with realizations
§, < -+ <¢,. It is well known that the influence of the mean A(-)/a* of the
prior distribution of P, on any inference based on posterior Dirichlet process,
“vanishes” as a* — 0. On the other hand, the influence of the empirical distribu-
tion ¥;_,8; /n reaches its “upper bound” as a* — 0. We are analyzing the
behavior of the pdf of Y|¢,,..., £, as a* — 0. It will be shown that a limit pdf
exists. Hence such a limit, in view of the previous remarks, can be considered to
be a posterior pdf of the random mean Y when the prior knowledge is vague. If
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M .. denotes the density of Y|,,..., £, then (3.3) yields

a*+n-1 7 a*+n—2

/ - — 9a*+n-3 _ a*+n—-A (1)—1 4
ML e(x) - 2 (x— 1) f_w{cosz}
{iy[a* +n—2A,(7)]
X exp
2
—f log{(x —7)e” + v -1} dAn(v)} dy ae.-A,
(7,00)

where

A, (v) = A(v) + n(v), n(v) = #{k: & < v},

which, as a* — 0, converges to

I(x)

n—1

2n—3(x _ T)n—n(f)—l

X fjﬂ(cos%)n_zexp{iy[g - n(T)] - Y log[(x — 1)e" + ¢, — T]} dy

§>7
n-1 (z+x—1)""7?
2m [z|=x—7(2+§1—7)---(z+§n—7)

The latter integral can be evaluated by means of Cauchy’s residue theorem. For

dz forx € (&,¢,).

the sake of simplicity, we will consider the case in which 7 < ¢, < ¢, < -+ <§,.
Then
E (x _g )n—2
[(x)=(n-1) Y ——=—(-1)""
po1 i pléi = &,
forx e[¢,,&,..), k=1,...,n—1and
0 ifx <¢,
k _ n—1 .
lim (Y < x|¢,,...,&,) = Z (x_ﬁl__( 1)P7! if x €[4, €411)
at—=0 p= Hﬁplg_gl k=1,...,n—1
1 ifx>§,.
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