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PSEUDO-LIKELIHOOD THEORY FOR
EMPIRICAL LIKELIHOOD

By PETER HaLL!

Brown University

It is proved that, except for a location term, empirical likelihood does
draw contours which are second-order correct for those of a pseudo-likeli-
hood. However, except in the case of one dimension, this pseudo-likelihood is
not that which would commonly be employed when constructing a
likelihood-based confidence region. It is shown that empirical likelihood
regions may be adjusted for location so as to render them second-order
correct. Furthermore, it is proved that location-adjusted empirical likelihood
regions are Bartlett-correctable, in the sense that a simple empirical scale
correction applied to location-adjusted empirical likelihood reduces coverage
error by an order of magnitude. However, the location adjustment alters the
form of the Bartlett correction. It is also shown that empirical likelihood
regions and bootstrap likelihood regions differ to second order, although both
are based on statistics whose centred distributions agree to second order.

1. Introduction and summary. Let 6, be an unknown s-vector and § be
an estimator of #,. Owen (1988, 1990) has suggested the method of empirical
likelihood as a device for drawing “likelihood” contours and thereby construct-
ing “likelihood-based” confidence regions for 6,. We use quotation marks here
because there has not yet been any theory to show that empirical likelihood
does, in some sense, draw contours which approximate those of a likelihood
function. The purpose of the present paper is to fill that gap.

Empirical likelihood contours may be constructed as follows. Let Z'=
{X,,..., X,,} denote an r-variate random sample which depends in some way on
an unknown s-variate quantity § = §,. For example, 6, may be the r-variate
mean, E(X), in which case r =s. Write p = (pl,..., p”) for a multinomial
distribution on the points X,..., X,. (We denote vector elements by super-
scripts.) Let 6[ p] denote the value taken by 6, when the true distribution is the
multinomial. For example, when 6, = E(X) we have 6[ p] = * p'X;. Should a
second sample be drawn, this time from the multinomial distribution conditional
on &, then the chance that the second sample (called a resample) is identical to
Z equals [1p* multiplied by a combinatorial factor. For a wide range of choices of
p, the most likely resample is, in fact, . In particular, this is the case when
p=(n"%...,n""). The empirical likelihood of 6, is defined to be the “profile
likelihood”

L,(6,) = max TIIp’, 6, €R®.
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122 P. HALL

Empirical likelihood contours are level sets of the form
%¢,= {0, e R*: Ly(8,) =u}, u>0.

If s =1, then %, consists of two points, being the endpoints of a confidence
interval. If s > 2, then %, is a closed, connected (s — 1)-dimensional surface,
being the boundary of the confidence region

R, = {0, € R*: Ly(8,) > u}.

The coverage probability of this region equals P(6, € #,), which may be
adjusted by altering the value of u. It is of interest to note that the bootstrap
estimator of 6, given by 8 = 8[n"",..., n"1], is also the empirical maximum
likelihood estimator. This follows from the fact that [1p‘ is maximized over
multinomials p by taking p = (n7%,...,n71).

In many cases of practical importance, empirical likelihood satisfies a version
of Wilks’s theorem,

_2103{140(00)/110(9)} - X:

in distribution [Owen (1988, 1990)]. Therefore, a practical approach to construct-
ing a (1 — a)-level empirical likelihood confidence region is to find, from x?2
tables, a value x such that P(x2 < x)=1— a, and put u = n" " */2 In this
event,

(1.1) R, = {0, € R — 21og{Ly(8,)/Ly(6)} < x}.

More commonly, likelihood-based confidence regions are constructed as fol-
lows. Let @ be an estimate of the asymptotic variance matrix @ of n'/%f, and
put

o= 0120 - 8,).

If the density f of 7, were known, then we would take the confidence region to
be the pseudo-likelihood region

{6,: 1{Q2(6-6,)} = v},
where v is chosen so that
I f(n)dy=1-a
{y: f(¥)=0}

(The qualifier “pseudo” is used since f is the density of a particular function of
the data, and is not the likelihood of the entire data set.) However, the form of f
is usually unknown, and so the assumption is often made that f is approxi-
mately equal to the standard normal density ¢. In this case the confidence region
becomes

{(6,:1Q°*(6 - 6,)l < r},

where r is chosen so that

/{ $(y)dy=1-a.

yilivlisr}

Clearly, this approach fails to take any account of the skewness, kurtosis etc. of
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Q720 - 0,). It produces familiar elliptical (ellipsoidal for s > 3) confidence
regions. One would hope that the empirical likelihood technique somehow
captures skewness, at least.

In this paper we argue that empirical likelihood confidence regions are
approximately the same as pseudo-likelihood regions, but are not based on .
Instead they are based on

éo = (Q1/2Q—1Q1/2)1/2Q-1/2(9 _ 00)'

In a broad class of circumstances which will be made precise later in this section,
we shall show that empirical likelihood draws contours which are second-order
correct for pseudo-likelihood contours based on the distribution of éo +n7Y,
where ¢ is a certain fixed vector. (Here “second-order correct” means that
contours at the same probability level drawn by the two different methods are
distant n~3/2 apart—they agree in terms of order n~!.) Since y is usually
nonzero, then these contours are not second-order correct for the pseudo-likeli-
hood based on 50 Nevertheless, the contours are readlly location-adjusted,
which amounts to recentering by adding n~%, where i is an estimate of . This
makes the contours second-order correct. They are of the correct size, shape and
orientation.

Bootstrap likelihood is usually constructed so as to draw contours of pseudo-
likelihood based on the distribution of 7,. See Hall (1987). In the case of s = 1
dimension, £, and #, are identical. But for s > 2 dimensions, they differ in terms
of second order. This means that there are second order differences in shape
between contours of pseudo-likelihood based on $0 and 1, Interestingly, the
distributions of £, — E(£,) and o — E(%),) agree to second order, and so in a
certain sense the “average” contours of pseudo-likelihood regions based on
distributions of £, and #, are identical in size, shape and orientation, to second
order. However, the difference £, — o — E(&, — 9,) contains terms of second
order, and E(£, — 9,) is also of second order.

The context of our work is that where 6, is a vector-valued function of a
vector of means. That is to say, 6, = K (EX ), where K:R” — R*® is a smooth
function and EX denotes the r-variate population mean. Examples include
vectors , whose elements are means, variances, standard deviations, correlation
coefficients or functions (such as ratios) of any of these quantities. For the sake
of definiteness we take our estimate Q of var(n!/ 2@) to be the asymptotic
variance matrix with unknowns replaced by their sample estimates. This pre-
scription agrees to second order with both bootstrap and jackknife variance
estimates—the differences between these estimates are only of third order.
Therefore, all our results about second-order correctness continue to hold if @ is
taken to be the bootstrap variance estimate.

Sufficient regularity conditions for all of these results would be that the
underlying distributions have sufficiently many finite moments and satisfy
Cramér’s condition. That is to say, E(|X|°) < o for ¢ sufficiently large, and

lim sup | E exp(itTX )| < oo,

[1£l] = 0o
where i = V=1 and t = (¢},..., t?)T is a real vector. We do not go into details
here because they are not at all relevant to our conclusions.
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Section 2 will introduce notation connected with empirical likelihood, and
Section 3 will describe and prove our main results about contours of pseudo-like-
lihood regions. In Section 4 we shall show how to adjust empirical likelihood
regions for location and prove that location-adjusted regions may be Bartlett-
corrected. Bartlett correction amounts to an empirical O(n~!) adjustment to the
value x in (1.1) and has the effect of reducing coverage error from O(n') to
O(n?). Section 5 will show that the statistics £, — E(¢,) and 7, — E(4),) differ
to second order but have distributions which agree to second order.

Statisticians are usually particularly interested in shape and orientation of a
confidence region, and the slight error in location which empirical likelihood
commits might be overlooked for many purposes. However, we should stress that
empirical likelihood does not do a good job contouring likelihood when the latter
is defined strictly parametrically; see DiCiccio, Hall and Romano (1988a).

There is an element of arbitrariness in our definition of the statistic on which
pseudo-likelihood is based, and that we freely acknowledge. However, by describ-
ing pseudo-likelihood relative to £, we are able to establish a connection between
empirical likelihood and likelihood in a more classical meaning of the term.

In the remainder of this paper we shall usually omit the qualifier “pseudo”
affixed to “likelihood.” It is to be understood that in so doing we intend
“likelihood” to indicate the probability density of a function of the data, such as
the function £,, and not the density of the data themselves.

2. Definitions. In this section we define the empirical likelihood with which
we shall work and introduce other notation. Let X, ..., X, be independent and
identically distributed r-vectors with common mean p, = E(X) and nonsingular
variance matrix =, = var(X). Let p = (pl,..., p") denote a multinomial distri-
bution on the points X, ..., X,, and put

L(p)= max [Ip’,
p:Ip'X;=p
called the empirical likelihood of the r-vector u. The function L is maximized at
p = X = n" 'L, X,, where it attains the value n~". The empirical log-likelihood
ratio is L(p)/L(X). Twice its negative logarithm is the empirical log-likelihood,

¢(p) = —2log{L(p)/L(X)}.
A little calculus of variations shows that

(2.1) ¢(p) =2 log{1 + (X, — )},
13 :
where ¢ = #(p) is the solution of

(2.2) {1+ (X, - )} (X, —n) =0.

13
Let 6(p) denote an s-variate function of u, where s < r. Denote elements of
vectors by superscripts; thus, u’ is the jth element of u. The log-likelihood of 4
is

(23) G{0()} = min  O(n).
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We take the minimum here since £(p) was defined with a minus sign. Put
6=06(X) and 0, = 0(py). Define ® to be the s X r matrix whose (u, j)th
element is

80"/8uj|”=u0.
Put
jk - 80"/3;1.1 3"klu=no’ 01 = (0Jk)'
We assume that O is of full rank, s. Now,
b - b = 9()?_ Po) +0,(n7),
and so
nvar(f) = 20T + O(n").

Therefore the asymptotic variance matrix of n'/2 is

Q=0z0T.
As its estimate we take
307,

[H
(&

Q
where

0% = 30/opl,_x, S =n"tL(X/XE - XUX*).
i

Put I-j = (Q1/2Q_1Q1/2)1/2Q_1/2, A= )_(, B= @TQ—I@X

g, =H(0-06,), #=Q ' (0-6,) and &=&(n,)=H{-6(p,)}.

We shall usually take p, = 0 and 2, = I, both of which assumptions may be
made without loss of generality, since they amount to only a change of variable
in the function 8. Of course, the condition 2, = I does not mean that we may
drop the matrix £ from our definition of Q but it does permit a simpler
definition of Q:

Q =007,

Throughout this paper we use the terms “first-order,” “second-order” etc. in
the usual way for statistical theory: first-order properties are those connected
with simple normal approximation; second-order properties are those connected
with basic skewness and asymmetry corrections to the first-order approxima-
tions; third-order properties are those concerned with kurtosis and squared
skewness corrections, and so on. Therefore, in an Edgeworth expansion of the
density of n'/2£, or of n'/%§,, second-order terms are those of order n~'/2
third-order terms are those of order n™!, etc. In a confidence region, first-order
terms are of order n~ /2, second-order terms are of order n~!, third-order terms
are of order n~3/2, and so on.

We write ¢ for the s-variate standard normal density and use summation
notation in Sections 3, 4 and 5. That is to say, any index which is repeated
anywhere in a product, as either a subscript or a superscript, is intended to be
summed over.

M
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3. Relationship between empirical log-likelihood and true log-likeli-
hood of £,.

3.1. Introduction and summary. Let ¢ be a certain constant vector, to be
defined shortly. Our aim in this section is to prove that, neglecting a remainder
of third order, the log-likelihood of £ + n~% is identical to empirical log-likeli-
hood when the latter is expressed as a function of £. Therefore, except for the
location term n~%, empirical likelihood captures the contours of the true
likelihood of £, to second order.

Our proof of this result is comprised of five parts. First, in Section 3.2 we
develop an approximation to the probability density of £ - E(go) Then, in
Section 3.3 we approximate the density of §0 + n~ Y. Section 3.4 derives an
expansion of empirical log-likelihood, Section 3.5 employs that result to express
empirical log-likelihood as a function of £ and Section 3.6 draws these conclu-
sions together to obtain the result described in the previous paragraph.

The main contributions of this section may be quantified as follows. Define y
as at (3.15), put £=£,+ n"Y and let g denote the density of n'/2£. To first
order, n'/*¢ is asymptotically s-variate normal N(0,1). To second order, g is
well-approximated by an Edgeworth expansion,

g(y) =o(y){1+n%(y) + O(n")}

= (27) " exp{ - 3yTy + n V%(y) + O(n7Y)},

where ¢ is the s-variate standard normal density and g is a polynomial
containing only terms of precise degree 3. Therefore, twice the negative of the
logarithm of the density of £ equals

T(x) = —2log{n*%g(n'%)} = nx"™x — n2q(x) + slog(27/n) + O,(n7'),
where x is taken to be of order n~'/2. We shall prove that

(3.1) {0(m)} = T{&(p)} + slog(n/27) + O,(n7Y),

where &(p,) = H{0 — 0(p,)} is intended to be regarded as a function of p,. The
fact that T on the right-hand side is evaluated at £(p,) and not £( p) +n Y,
even though T is proportional to the log of the density of &( Bo) + 07N,
indicates the necessity of the location adjustment n~ .

3.2. Approximation to density of §0 - Eéo. Without any loss of generality
we fix location and scale at the values E(X) = 0 and var(X) = I. Should these
conditions not hold, they may be made to hold by introducing the obvious
change of variable to the function 6. Under the conditions, the standardlzed
third moment

o = E[(377(X - BX)) (377X - EX))H (272X - EX))]
simplifies to a/*! = E(X/X*X}).
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Recall from Section 2 that

£ = (Q%97'9*)*Q/2(0 - 8,).

Our principal aim in this subsection is to derive an Edgeworth approximation to
the likelihood, or probability density, of n!/ 2(50 E£0) We shall prove that if f
denotes that density then

(32)  f(y) = ¢(){1 + nV2H(Ny yy” — 3N“*y°) + O(n 1)},

where
(3'3) A“ow = _{2(Q—1/2@)uj(Q—1/2®)ok(Q_1/2®)wlajkl
+(Q770)"(Q"20)™(@"26;,) “[3])

and [3] indicates that the previous term should be included for each of the three
arrangements of its superscripts. We shall also derive an approximation to E(§,):

(34) E(£) =n"%, + 0(n?),
where
(35)  wi= {18, - 6:RM))" - 4(Q0) RN

and R = ©7Q'0. This result is required in Section 3.3.
Let 8/% denote the Kronecker delta. Observe that

(3.6) Q=Q+A+0,(n™")
where, with A = X and A% = n™'S(X/X* — §7*), we have
(3.7) = (940% + 050%/) A% + ©“IQ A,

In this notation,
Q '=Q7'-Q71AQTI + 0, (n7Y),
so that
(@QV%41Q?)*Q 12 = @712 - 1Q7V24Q ™" + O (n™Y).
Furthermore, .
(3.8) 0 -0, =OA + 10, AA* + O (n~¥?),
£y = Q *(0A + 16,A%A*) — 1Q"*AQ7'0A + O,(n"Y?)
(3.9) = Q7 /?0A + (1Q"%,, — Q /%9, RV ) A’A*
~1Q"V?@A*RA + 0,(n"¥?),
where R = ©7Q 10 and A* = (A/).
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Next we compute an Edgeworth expansion for a statistic admitting the Taylor
expansion (3.9). Put U = V + W where V= @ 1/?20A and

(3.10) W= (1Q %, — Q /%9, RY) A’A* — 1Q"?0A*RA.

Then V and W are respectively linear and quadratic functions of sample means,
those means all having zero expected values. Let the means be components of the
vector Z = n~'Z,Z,, where each Z, is distributed as the generic Z and E(Z) = 0,

E(Z°Z%) = b, E(Z°Z°Z°) = {**. In this notation we may write V* = B4Z°
and W% = y%4Z°Z® for suitable constants B and vJ,. Write 8“° for the
Kronecker delta. Then

E(U*) = E(W") = n™ 'y,
E(V*V®) = n~1 8%,
E(U*V*) = E(V*V®) + O(n™?)
=n"18§*+ 0(n?),
(311)  E(V*V®V*) = nBBiR% ",
E(V“V°V¥) = BBy E(Z°Z°Z°Z°)
= BUBLY4{E(Z°Z°)E(Z°Z*)
+E(Z°Z°)E(Z%Z%)
+E(Z°Z*)E(Z°Z°)} + O(n™?).
Third-order cumulants of U have the form
k% = E(UUUY) — E(UU®)E(U%)[3] + 2E(U*)E(U")E(U")
= E(V*V*V¥) + {E(V*V*W¥) — E(V*V°)E(W*)}[3] + O(n"?),

where [3] indicates that the previous term should be included for each of the
three distinct arrangements of its superscripts «, v, w. Hence, using the moment
formulae derived just above,

KU = 2 BUBBUTOL 4 BUBLyY (£akte + Ladtte)[3]) + O(n~?)
= n?(BABEBES e + 2BByv s> [3]) + O(n™0).

At this stage we substitute explicit formulae for the constants 8, y and ¢,
using formulae for U and V given at the beginning of the previous paragraph. We
have 8% = (Q~2@)“* if Z® is of the form A% and B% = 0 otherwise;

v4 = 1(Q%6,,)" - (Q~%,,)"R"

if (Z%, Z®) is of the form (A%, A®), y% = — 1(Q™/?0)“R/® if (Z° Z°) is of the
form (A, A®) and v = 0 otherwise. See (3.10). Furthermore, {**° = a®° =
E(X°X®X°) if (Z° Z° Z°) = (A% A% A°); (b =89 if (Z° Z%) = (A%, A®);

(3.12)
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and {?° = o'/ if (Z2, Z®%) = (AY, A®). Substituting into (3.12) we deduce that
(U0 = =2 (Q—1/2(_))""(Q—1/2®)vb(Q—l/zg)'”C

+(@720)“(@20) " {(Q%,,)” — 2(Q~/0,,) "R} [3]
~(Q7%0)"(Q/20)"(Q"/0) " R*u=/[3]] + O(n"?)
— _n—2{2(Q—1/2@)"“(Q—1/2@)0b(Q 1/2@) adbe
+(@7%0)“(Q/*0) (@ /*8,,) “[3]) + O(n~?)

= n—2>\uow + O(n_3),

where A is given by (3.3).

First-order cumulants of Y = n'/%({U — EU) are identically zero; the second-
order cumulant of type (u,v) of Y equals §“° + O(n~!), using (3.11); the
third-order cumulant of type (u,v,w) of Y equals n®? multiplied by the
corresponding cumulant of U, and so is n~/2\** + O(n~%?), by (3.13); and
fourth- and higher-order cumulants are all O(n~') [James (1955, 1958)]. Hence,
the characteristic function of Y, expressed as a function of the s-vector ¢, equals

exp{ — $e“t* + n=V2INw(it) “(it)°(it)* + O(n™?)}
= exp(— $e4¢*) {1 + n='/2N(it)“(it) °(it)* + O(n™")}.
Since Y and n'/%(£, — E£,) differ only in terms of Op(n~ 1), as shown by (3.9),
then this is also the characteristic function of n'/ 2(§ — E&£,) or, equivalently,
the Fourier transform of the density of n'/ 2(§, — E£,). Inverting that Fourier

transform we conclude that n'/ 2(§, — E£,) has density given by (3.2).
To obtain (3.4) for E(go), observe that by (3.9) and (3.10),

E(£s) = E(W*) + O(n™2) = n"ly%¢% + O(n72).

Now use formulae given above for v% and {?°.

(3.13)

3.3. A statistic whose density admits a certain Edgeworth expansion. De-
fine q to be the cubic

(3.14) q(y) = Nyt y°y¥,

where A“** is given by (3.3). Let ¢ denote the s-vector whose uth element is
given by

Yu= —1(Q1/20) Y RMat + + 3{Q (8, R - 01'/')}“

_ (Q—l/ze)uf(GTQ—lajk)k’

where R = @ATQ‘IG). We shall prove in this subsection that the densify g of the
statistic n'/2¢, + n~ /%) admits the Edgeworth expansion

(3.16) g(y)=o(y){1+n%(y) + O(n1)}.

(3.15)
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We know from (3.2) that the density f of n'/%(£, — E£,) admits the expansion
[(3) =o()[1 +nq(y) = Iy°}) + O(n™1)].
Therefore the density g of n'/%€, + n~'/%} is given by
8(y) = f(y — n™V% — n'?EE,)
= o(N[1 +n77q(y) + (=3 +y* + nEE)y*} + O(n )]
This gives us (3.16) provided
' Yo = Luue — nEég + 0(n~1?).
If ¢ is given by (3.15) then the above relation follows from (3.3)—(3.5).

3.4. Approximation to empirical log-likelihood. We begin with notation.
Since we have stipulated that £ = var(X) = I, then the (, k)th element of 2 is
8/% the Kronecker delta. Define

Al =n VL (X/XE-8), 6= 3% ap ol

p=0>

A=X, B=07Q @A, A*=(A%*),
U“=10%A - B)’(A-B)* and Q% =guuk.

(We have redefined U.) Let 6, be the s-vector whose uth element is 8. In this
subsection we derive the following approximation to the empirical log-likelihood
ratio /,, defined at (2.3): For s-vectors p, of order n~1/2,

n () = (B = py) (B — ;) + 2/™(B — )’ (B — )" (B — p,)’
(3.17) —(B - p,)"A*(B — )
+2(B—p,)707Q "YU + Q(A — B)} + 0,(n72).

Our starting point is the empirical log-likelihood ratio I(u), defined at (2.1).
Let u be of order n~'/2 It is readily seen that the solution ¢ of (2.2) satisfies
t=A —p+ ¢, where g = Op(n‘l). Taylor-expanding the left-hand side of (2.2)
as a function of ¢, substituting ¢t = A — p + ¢, and solving for ¢, we conclude
that

ef = a(A — p)"(A - p)' = AM(A - p)" + O(n7%2).

Putting t = A — p + ¢, with this ¢, into (2.1), and Taylor-expanding once more,
we obtain

(318) n7M(p) = (A - p) (A — p) + Ja™(A - p)'(A - p)"(A - p)f
— AMA - p)(A - p)*+0,(n7?).

It is not difficult to see that if i, = #,(n,) is the value of p which minimizes
I(p) subject to 8(p) = O(n,), then i, = u, + A — B + ¢, where ¢ = O,(n™"). To
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find e, note that
(3.19) n7'(j,) = a(e) + (terms not depending on €) + O,(n~5%),
where
a(x) = a’x/ = 20/{(B - w)’ + (B = )" (B = p)" = A(B - p)"}.

The latter function is exactly the term in x which arises on replacing p by
p; + A — B + x on the right-hand side of (3.18), neglecting the term Op(n‘2).
Formula (3.19) is obtained on noting that the term of precise order n~2 in (3.18)
has a form similar to that of the order n~3? terms, and that it contains no

terms in x of precise order n~% when p is replaced by u; + A — B + x and x is

of order n~1.

Write 91 for 6(fi;) and 8, for O(p,). We may show after a little Taylor
expansion that for u, of order n~/2, and with fi, = p, + A — B + ¢, we have

(3.20)
0,—6,=(0+Q)(A-B+e) + 36,(A - B)(A-B)+0,(n¥?).

Therefore, up to terms of order n~32% ¢ may be found by minimizing a(e)
subject to

(0 +Q)(A-B+e)+16,(A—-B)(A-B)=o.
This may be done using Lagrange multipliers, and produces
(3.21)
e=(I-R)(B-p,+V)-07Q {U+Q(A-B)} + 0,(n37?),
where R = ©7Q'0, U* = ;0j4(A — B)/(A — B)* and
Vi=a™(B - p)*(B - p,) — A*(B - p,)".

At this point we note that the vector p; may be restricted, as follows. Suppose
we are given an s-vector u, of order n~ /% Put v, = p,,

_ ; ' k

v = 307Q 0 {nfut — (R’ (Rpw)")
and p; = Ru, + v,. It follows after a little algebra that 8(u,) = 6(p,) + O(n™%%).
Further refinement of p, by adding a term of order n~3/2 allows us to declare
that for a vector p, = Rv, + v,, where v, = O(n~'), we have precisely 0(p,) =
O(p,). In our work p,; serves only to index the value of 8(p,), and so we may

assume without loss of generality that y, = Rv, + v, where v, = O(n~'/?) and
v, = O(n1). For such a p,, noting that the matrix R is idempotent, we have

(I-R)(B—-p)=(I-R){R(A-v)—-v}=(R-I)y=0(n"),
whence

(B - l‘l)T(I - R)(B-p, +V)

{I-R)Y(B-p)} (I-R)(B~p +V)
=5 (R-I)(y, = V) = 0,(n7?).
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Therefore, taking p=f, = p, + A — B + ¢ in (3.18), noting (3.21) for ¢ and
remembering that ¢ = O(n™"), we deduce that I(fi;) = l,(u,) admits the for-
mula announced at (3.17).

3.5. Empirical log-likelihood as a function of £. Recall from Section 2 that

£=E(p) = (Q%Q79V2) *Q {6 - 6(1,)).

Let g be the cubic polynomial defined at (3.14). We show in this subsection that
the log-likelihood expansion at (3.17) is equivalent to

(3.22) ny(my) = £4% - 2¢(£) + 0,(n72).
Let © be as in Section 3.4, and note that, analogously to (3.8),
b-6,=0(X)-06(n)
= (0 +Q)(A = ) + 30(A — ) (4 = w)* + O(n72).

From this approximation and (3.6) and (3.7) we obtain

AmA

ETE=(6-06,)"9-(-9)
=(0-6)7(Q - Q2@ ") (8-6,) + 0,(n?)
(3:23) = (A~ p)"R(A —p,) + (A —p)"O7Q 1, (A — 1)) (A — p)*
+2(A - p,)"0TQ'Q(A — py)
—(A - 1,)"0"Q71AQ7IO(A — 1) + O,(n7?),

where R = ©7Q'0. Recalling from the last paragraph of Section 3.4 that
g1 = Rv, + v, where v; = O(n"'/2) and v, = O(n™?), we see after some algebra
that

(A - p)"R(A - p) = (B-p)" (B~ p) +vI(I- Ry,

=(B _JH)T(B - )+ Op(n_2)'

Since ©®(A — p,) = ©(B — ;) and Rp, = p, + O(n"1), then the sum of all
terms on the right-hand side of (3.23) which involve 6,,’s, equals

(B~ 1) 07Q 0, {(A — 1)’ (A —p,)*
+2(A — p) k- 249B - py)*} + 0,(n7?)
= (B - 1,)"07Q 79, ( A/A* — 2A4/B* + 247k — ufuk) + O (n-2)
= 2(B - 1,)"0"Q U + Q(A - B)}
—(B = 1,)"0"Q7',(B — u,)’(B - u))* + 0,(n"?),

where U is as in (3.17). The only other contribution of order n 32 on the
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right-hand side of (3.23) is
—(A - p,)"07Q'0A*0"Q 'O(A — 1)
= ~(B = m)"A%(B = m) + O,(n7%).
Adding, we find that
QEE = (B — ) (B—p) +2(B-p)"0Q {U+92(A - B)]
(324) (B p)"0"Q (B~ w) (B - )"
—(B = ) A*(B — py) + Oy(n77).
Since
£=Q (8- 6) + 0)(n7") = Q7V20(A — ) + Op(n7")
= Q 20(B — ) + 0,(n7),
then
0TQ % =R(B — 1) + O(n™ ") =B —p, + Oy(n7).
We may now deduce from (3.24) that the right-hand side of (3.17) equals
878 + (e + (07Q16;) ) (B — 1) (B = ) (B = m)" + O,(n"%)
= 80+ (3(97120) (@7 70) " (@71%0) "aM
+1(Q-720)"(Q170)™(Q"126,,) “[3]) 8% + 0,(n "),
which is identical to the right-hand side of (3.22).

3.6. Completion. Here we show that if ¢ is the vector defined at (3.15), then
twice the negative of the logarithm of the density of §, + n~ %, expressed as a
function of &( ©,), equals

(3.25) l(p,) + slog(2m/n) + Op(n’l)

for vectors p, of order n~'/2 This verifies (3.1). A
Recall from Section 3.3 that the density g of n'/%, + n~/%) admits the
Edgeworth expansion

g(y) =o(y){1+n(y) + O(n1)}.
Therefore the density of £, + n™ is
ns/zg(nl/zy) — ns/2(27r)_s/2¢.(n1/2y){1 + n71/2q(n1/2y) + O(n—l)}

= (n/27)*? exp{ —iny"y + ng(y) + O(n"1)}.

Here we have taken y to be of order n~'/2 and used the fact that g(cy) = c¢’q(y)
for all scalars c. Hence, twice the negative of the logarithm of the density of
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£, +n s
ny"y — 2nq(y) + slog(27/n) + O(n~1).
Taking y = £(p,) and noting (3.22) for lo(p,), we obtain (3.1) [and (3.25)].

4. Location adjustment.

4.1. Introduction and summary. We showed in Section 3 that the empirical
likelihood region is close to the true likelihood region based on the statistic

b= Q0@ ) "Q (0 - ),

except that the empirical likelihood region is centered incorrectly. In the present
section we shall prove that it is efficacious to empirically recenter the empirical
likelihood region. Section 4.2 will demonstrate that an appropriately adjusted
region is second-order correct for the “true” likelihood region based on the
distribution of §0 Section 4.3 will show that Bartlett correction applies to the
adjusted region in much the same manner that it is used for the nonadjusted
region. This enables coverage error to be reduced by an order of magnitude, by
applying a scale correction.
We now describe the location adjustment. Let

R(x) = {6(p): Lo(py) < x}

be the nonadjusted empirical likelihood region. Recall from Section 3 that, to
second order, empirical likelihood draws contours of the likelihood of §0 +n" Y,
where  is given by (3.15). If we replace unknowns by sample estimates in the
formula for y, we obtain an estimate J satisfying Y = ¢ + O ) (n~1/%). Hence,
6 = n~'Q'/%) has the property

(4.1) = n"QV% + 0,(n"Y2).

Throughout this section we take © to be a general s-vector satisfying (4.1). The
location-adjusted empirical likelihood region is

Ra(x) = R(x) + 0 = (6(ws) + 6 Lo(m) < x).
Define H = (Q1/2Q_1Q1/2)1/2Q_1/2.

4.2. Second-order correctness of #,. Let h denote the density of n'/2f, =
n'/2H(6 — ;). The “true” likelihood- based confidence region for 6,, founded on
the distribution of £, is

(4.2) Rr(x) = {6, - 210g[(27)**h{n'?A(0 - 6,)}] < x}.

In the present subsection we show that the boundary of this region is O,(n~%?)
away from that of the adjusted empirical likelihood region % ,(x).
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Let g(y) = h(y — n~ /%)) denote the density of n'/%, + n~/%). We showed
in Section 3 that

R(x) = {0(p): lp(py) < x}

= {01: - 2log[(27r)s/2g{n1/2ﬁ(9 - 01)}] +0,(n7") < x}

= {01: - 210g[(2w)s/2h{n1/2ﬁ(9 -0,) - n‘1/2¢}] +0,(n7") < x}

= {01 —n T H Y - 2log[(2qr)s/2h{n1/2ﬁ(9 - 01)}] +0,(n7") < x}.
Therefore, since

6 =n"'Q% + 0,(n%?) = n"H Y + 0,(n"%?),
the boundary of #,(x) = #(x) + 6 is O,(n~3/%) away from that of the region
{01: - 2log[(2w)s/2h{n1/2ﬁ(9 - 01)}] +0,(n7") < x}

The boundary of this region is O,(n~?/?) from that of %,(x), the latter defined

at (4.2).

4.3. Effect of location adjustment on Bartlett correction. We begin by de-
scribing Bartlett correction for the nonadjusted region, %(x). Let b be the
constant defined by

E{ly(py)} =s(1 +n7') + O(n"2?),

and let b be a Vn -consistent estimator of b obtained (for example) by replacing
unknowns by sample estimates in the formula for d. The Bartlett-corrected
confidence region Zg(x) is

(%) = {8(m): () < x(1 +n7'B)).

Thus, Bartlett correction amounts to a scale correction applied to empirical
likelihood. Now, the uncorrected region %(x) has nominal coverage P(x2 < x)
and coverage error O(n '), in the sense that

P{6,€ #(x)} = P(x2<x) + O(n1).
Bartlett correction reduces coverage error to O(n™2):
P{6, € Ry(x)} = P(x2 < x) + O(n"2).

See DiCiccio, Hall and Romano (1988b).

Our purpose in the present subsection is to show that Bartlett correction
works just as well for location-adjusted regions %,(x), albeit with a different
constant b. The proof of this result is most easily obtained by working with the
signed root log-likelihood ratio, which is an s-vector sy(p,) having the property

so(l"l)Tso(l‘q) = ly(py)-
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We may deduce from (3.14) and (3.22) that

n—l/ZSg(Ml) _ éu + %}\uvwévéw + Op(n_3/2),
where A“°% is defined at (3.22). Longer expansions are given by DiCiccio, Hall
and Romano (1988b).

Let p, denote the true value of p. Define vsy(p,) to be the s X r matrix
whose (u, j)th element is

dsg/du’|
Let b, be the constant defined by

T “1a
E{sy(ro) — n'/2sy(1o) O7Q'8} {s5(no) — n'/2 Vsy(po) ©7Q '8}
=s(1+n7',) + 0(n2).
Write b, for a Vn -consistent estimate of b,, and let

Rap(x) = {0(H1) + 0: lp(py) < x(l + n_léA)}
denote the location-adjusted, Bartlett-corrected confidence region. We shall
prove that %,5(x) has nominal coverage P(x% < x) with error O(n~%%). A
longer argument, using oddness and evenness properties of polynomials in
Edgeworth expansions, will show that the error is actually O(n~2). See
Barndorff-Nielsen and Hall (1988).

Let iy = po — ©7Q "' + O,(n"?) be a vector such that 6(p,) = 0(ji,) + o.

Then the coverage probability of %, 5(x) equals

P{p, € Rp(x)} = P{ly(fio) < x(1 + n78,)}.

Now, ly(fiy) = se(fio)"se(fi), and since & = O, (n™h),
so(ﬁo) = sp(po) + Vso(ﬂo) (ﬁo — po) + Op(n73/2)
= sp( o) — V5p(po) OTQ'0 + Op(n_3/2)'

In consequence, defining

S= so(ﬂo) - Vso(ﬂ'o) ®TQ716,

p=po"

we have
P{py € Rup(x)} = P{S™S < x(1 + n"%,)} + 0(n=%2)
= P{STS < x(l + n’le)} + 0(n=3/?)
= P(S"S < xE(S"S)/s} + O(n™%2).
To prove that
P{S7S < xE(S7S)/s} = P(x? < x) + O(n~3/2),

it suffices to show that all fourth-order cumulants of the s-vector S equal
O(n~%?). [To appreciate why the latter result is sufficient, see Section 2 of
Barndorff-Nielsen and Cox (1984).] DiCiccio, Hall and Romano (1988b) demon-
strate that all fourth-order cumulants of s,(p,) are of order n~ 2 To extend this
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result to S, note that in summation notation,
S = sy(po) + n~ V2% + n"VB,Z7 + O, (n"%?),

where a, B; are fixed s-vectors and Z is a mean (of length depending on the
number of unknowns estimated in ©) having zero expectation. Since fourth-order

cumulants are location-invariant then fourth-order cumulants of S are the same
as their counterparts for

T =s,(p,) + n*1/2,BjZf,

up to terms of order n~3/2 (actually, order n~?).
The fourth-order cumulant of T of type (u,, 4y, U, uy) is

kitatsts(T) = E(THT%T%T %) — E(T%T%)E(T*T")[3]
_ E(T%)E(T%T%T“)[4] + 2E(T“)E(T*)E(T*T")[6]
- 6E(T“I)E(T"2)E(T"3)E(T"4),

where a digit in square brackets indicates the number of times the previous term
should be included for distinct rearrangements of its superscripts. Write T =
U + V where

U=sy(po), V=n1?8Z
Since V= 0,(n™"), E(V)=0and E(U) = O(n~'?), then
s kiatatst(T) = gtatata(U) + E(U U %U V4)[4]
_ B(U“U)E(U“V*%)[12] + O(n~¥2).

Let v, be s-vectors such that U = n'/?y; Z7 + 0,(n~'/?); if necessary, lengthen
the vector Z to ensure this representatlon Then

E(U“U%U%V*“)[4] — E(U“U*%)E(U“V“)[12]
= ny;"v?v, 3.3"‘[4]{E(Z]Zkzlzm)
(44) E(Z’Z*)E(Z'Z™)}[3] + O(n~37?)
= 0(n"%?),
E(Z'Z*Z'Z™) = n¥(n — 1)E(Z’Z*)E(Z'Z2™)[3] + n~°E(2’Z*Z'Z™)

and E(Z’Z*) = n"'E(Z’Z*). Combining results (4.3) and (4.4), and remembering
that

() = O(n?),
we deduce that

Kulu2u3u4(T) _ O(n’3/2),
as had to be proved.
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5. Relations between £, and #,.
5.1. Introduction and summary. Recall from Section 2 that

£, = (QV97'92) "’ Q" 2(8 - 6,) and i, = § (0 - 4,).

Since 1 X 1 matrices commute, then £, and 7, are identical in the case of s = 1
dimension. However, in s > 2 dimensions the question of relationship between £0
and 7, is more delicate. Our purpose in the present section is to describe this
relationship. . .

First, we point out similarities between §, and 7,. Observe that £, and 110
both equal @ '20(X — p,) + O,(n™"), and that n1/2Q 120(X — p,) is
asymptotically s-variate normal N(O I). Therefore £0 and 7, always agree to
first order. The distributions of £0 E(go) and %, — E(7,) agree to second
order. Indeed, we shall prove in Section 5.2 that Edgeworth expansions of the
densities of n'/%(£, — E£,) and n'/%(§, — E#,) are identical up to and including
terms of order n~1/2 In consequence, the expansion displayed at (3.2) applies
equally to both densities.

Next, we indicate the differences between £, and #,. Here it is convenient to
focus on a special case, and we choose that where r = s = 2 and 6(p) = p. For
this circumstance we shall derive in Section 5.3 an approximation to Q 12,
Section 5.4 will apply that result to prove that the differences E(£O = o) and
£O — Mo — E(£0 fio) are both genuinely of order n~'. That is to say, both
quantities differ in terms of second order, despite the fact that distributions of
fo — E(fo) and %, — E(%,) agree to second order.

Bootstrap likelihood confidence regions are usually based on 4),, and we know
from Sections 3 and 4 that empirical likelihood regions are in effect based on £0
In view of the second-order differences between £, and ), there will often be, in
s > 2 dimensions and for a given sample, second-order differences between
bootstrap likelihood and empirical likelihood confidence regions, even when the
latter are adjusted for location.

5.2. Second-order agreement between distributions of éo - E(éo) and 1, —
E(#,). In this subsection we show that distributions of £, — E(£,) and #, —
E(7,) agree in terms of second order. Now, both these centered vectors have zero
first-order cumulants, and both have variance matrices expressible as n~ I +
O(n~?). Therefore, our claim will be verified if we show that third-order
cumulants of éo and 7, are identical up to and including terms of order n~2

Recall from (3.6) and (3.7) that

Q=Q+A+0,(nY),

where A is an s X s matrix satisfying A = 0,(n~'/?). Therefore

(Q1/2Q‘71Q1/2)1/2Q71/2 —Q V2 %Qfl/Z AQ' + Op(nfl)
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and
Q2=Q 2+e+0 (n‘l)
where we may take ¢ to be the unique s X s symmetric matrix satisfying
Q2% + eQV2 = —Q~/2AQ V2,
Put
W= 1(e — Q%Q '/?)0A.

It may be shown that third-order cumulants of %, and £, are related by the
formula

E{(fip — Efg)"“(fio — Efo) (1o — Efg)“}
= E{(4, - E,)"(§ - E&) (4, - E£,)")
+ E{(Q?0A)"(Q"/?0A)" (W — EW)"}[3] + O(n™?).
Hence, our claim follows from
E{(Q?04)"(Q ?04)" (W — EW)“}[3] = O(n"?),

which may be demonstrated by routine algebra.

5.3. Approximation to @ /2. In this subsection and the next we take
r=s=2. Given a, b, ¢, a, 8, v, put

= (b*+ ¢t + b%? + ab®)a + c*(a? + b2 — c? + 3ab)B
— 2{b%(2a + b) + ac®}y,
v=c?(a?+ b%>— c®+ 3ab)a + (a* + c* + a’® + a’b)B
— 2{a%(a + 2b) + bc’ly,
w= —c(ac® + 2ab® + b®)a — c(bc? + 2a®b + a®)B
+ 2{a?? + c*(a® + b + ab) }v,

p-[e i} o[ 3
= —i(ab-)(a+ )[4 Y],

@ = P2 If A is a 2 X 2 matrix of order n™'/? such that Q=Q+A+0 ,(n71),
then it may be shown after tedious algebra that @ /2= Q2+ ¢+ O (n‘l)

(5.1)

5.4. Second-order dz/ferences between £, and 7, In this subsection we
derive a formula for £, — %, and use it to show that E(£, — 4,) and £, — #, —
E(é0 7o) contain terms of order n~ .

Assume for the sake of definiteness that r = s = 2, §(p) = p, the true mean of
X is p, = 0 and the variance of X is = = @ = P?, where P is as in Section 5.3
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with a =2, b=c=1.Then Q = Q + A + O0,(n™"), where A is given at (5.1)

with
=n! Z(XiIXil - 2)’ B=n' Z(Xiin2 - 1)

i

and

Y=n! Z( X2 -1).

We may deduce from Section 5.3 that, in the notation of (5.1),
u=5a+ 108 — 14y, v=10a + 298 — 34y and w= —Ta — 178 + 22y.
From this we may deduce that

o —0={(@°97Q?) '@ 12 - g /X

N —a+B+7vy 2a—88+4y|]x _3/9
6[—a+ﬂ+y a+118 -7y || X2 +0"(n )-

Since each of X!, X2, a, 8 and X is of precise order n~'/2 with zero mean, and
since nE(aXl) = am nE(BX?) = o®, nE(BX") = nE(y)?z) = o' and
nE(yX') = nE(aX?) = o''?, then in general E({, — #,) is asymptotic to a
nonzero vector multiplied by n~!, and £0 — 1o — E( £0 — 7o) 1s of precise order
n~L
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