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We extend Hill’s well-known estimator for the index of a distribution

- function with regularly varying tail to an estimate for the index of an

extreme-value distribution. Consistency and asymptotic normality are proved.
The estimator is used for high quantile and endpoint estimation.

1. Introduction. Suppose one is given a sequence X, X,,... of i.i.d. obser-
vations from some distribution function F. Suppose for some constants a, > 0
and b, (n = 1,2,...) and some y € R,

) max(X,, X,,..., X,) — b,
(1.1) lim P <x)=G/[(x),

n—oo

a

n

for all x where G.(x) is one of the extreme-value distributions

(1.2) G(x)= exp(—(l + yx)_l/y).

Here the index v, is a real parameter [interpret (1 + yx)~ /" as e™* for y = 0]
and x is such that 1 + yx > 0. The question is how to estimate y from a finite
sample X, X,,..., X,..

In case one knows that y > 0, one can use Hill’s estimate [Hill (1975)] defined
as

1 %k-1
@D =
(1.3) M p igo log X,

- IOg X(n—k,n) (k < n)r

n—i,n)
where X, ) < X5 )< -+ < X, ) are the order statistics of X, X,,..., X,,.

Mason (1982) proved weak consistency of M) for any sequence k = k(n) —
o0, k(n)/n - 0 (n - oo0) and Deheuvels, Haeusler and Mason (1988) proved
strong consistency for any sequence k(n) with k(n)/loglogn — oo, k(n)/n — 0
(n = o). It is well known that, under certain extra conditions,

(1.4) Ve (MP - v)

is asymptotically normal with mean 0 and variance y? [see Davis and Resnick
(1984), Csorg6é and Mason (1985), Haeusler and Teugels (1985) and Goldie and
Smith (1987)]. This leads to an asymptotic confidence interval for vy.

We now consider the estimation problem for general y € R.
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Suppose x* = x*(F) > 0, where x*(F):= sup{x|F(x) <1} (this can be
achieved by a simple shift), and define
1 k-1 2
(1.5) M;(zz) = % 'go (lOE X(n—i, ny — log X(n—k, n)) .

We shall prove (Section 2) that (1.1) implies that for & = k(n) = oo, k(n)/n -0
(n — o0),

(1.6) li_rp ¥, =y in probability,
where T

L[ (MP)|
o e 2 021

Moreover, we shall prove that when k(n)/(log n)® > o (n - ) for some
8 > 0, then
(1.8) lim 9,=v aus.
n-— oo

We shall also give (Section 3) quite natural and general conditions under which
the estimate is asymptotically normal so that an asymptotic confidence state-
ment can be made. It seems that even when specialized to the Hill estimator, the
result of Theorem 3.1 is the most general one obtained so far. In Sections 4 and 5
we use the moment estimator to obtain asymptotic confidence intervals for high
quantiles of F and (in the case y < 0) for x*(F). Section 6 contains some
comments—in particular, the intuitive background of (1.7).

Somewhat related papers are Joe (1987) and Smith (1987).

Throughout the paper (except for part of Section 4), we assume
(1.9) lim k(n) = o0, lim k(n)/n=0

n— oo n-— oo

and familiarity with the theory of regularly varying functions and the function
class II [see, e.g., Geluk and de Haan (1987)].

2. Weak and strong consistency.

THEOREM 2.1. If (1.1) holds, x*(F) > 0, k(n)/n - 0 and k(n) - o0 (n >
o), then

(2.1) lim ¥, =y in probability.

If (1.1) holds, x*(F)> 0, k(n)/n - 0 and k(n)/(logn)® > o (n - o) for
some 8 > 0, then

(2.2) lim 9,=v a.s.

n—oo

For the proof we need some lemmas.

LeEmMMA 2.2. Suppose U,,U,,... are i.i.d. random variables with a uniform
[0,1] distribution. Let T,(t) be the empirical distribution function based on
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U,...,U, (n=1,2,...). Then for 0 < k(n) < n, k(n)/(log n)® - oo for some
8> 0 and a < 8/(2(1 + 8)),

(2.3) lim (

n— oo

n A\ kmyn
t7e YT, (¢) - = 5.
k(n)) fo (T(t) -t} dt=0 a.s

PRrOOF. For a < 0 we use a version of Theorem 2(iii) in Einmahl and Mason
(1988), without monotonicity condition on k(n) and k(n)/n. [It is easily seen
that this weakening of the assumptions on k(n) only entails an increase of the
constant 2!/2 on the right.] We have

(k(nn) )1+|a|/0k(n)/nt_1+|a|{1-‘n(t) _ t} dt

o) I0) = 0 e
< sup - e
k(n) 0<t<k(n)/n " 0

o C | SR L
= {|a sup ' (8) — ¢t
k(n) k(n) loglog n 0<t<k(n)/n

Since the first factor tends to 0 and the second factor is a.s. bounded by the
quoted theorem, we have proved (2.3) for a < 0.

For 0 < a < 8/(2(1 + 8)) we use an appropriate version (similarly as before)
of Theorem 1(ii) in Einmahl and Mason (1988). For 0 < 5 < 8/21+8) —a

and withv=1—-a—1

‘(k(_nnf)l_afok(n)/nt_“_l{n(t) — t) dt

l1-a

n L(t)—t¢ ’

< (——k ) sup L) — 4 "(l/z_v | / W/ Mn—1 g
(n) o<t<k(n)y/mn ¢ 0

loglogn\"?[{ n \" n 172 IT,(¢) — ¢
5 Yol el )
k(n) k(n) | \loglogn o<t<k(nyn t

Since the first factor tends to 0 and the second factor is bounded a.s. by the
quoted theorem, we have proved (2.3) for 0 < a < 8/(2(1 + 8)). O

LEMMA 2.3. Let 0 < k(n) < n and k(n)/(logn)® - « (n - o) for some
8> 0.
(i) Suppose F(x) = x* (0 < x < 1) for some a > 0. Then

1 kK x. a
. @, n)
(2.4 lim ) = a.s.
) n-— oo k(n) i=1 X(k(n)+1, n) a+1
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(ii) Suppose F(x) =1 —x~* (x > 1) for some a > 2(1 + 8)/8. Then
1 k(n)—1 X

(n—i, n) a

(2.5) lim = a.s.

Proor. (i) Let F, be the empirical distribution function based on
X,,..., X, from F. Lemma 2.2 implies, with a = —1/a,

(26)  lim |[— o JEe " F(s) ds = as
) n— o0 k(n) 0 " a+1 o
Since [Wellner (1978)]
) n 1/a
in (7] Fewn =1 as.
(2.6) implies
1R X
lim sup L
now k(1) i=1 X(k(n)+1,n)
n 1/a 1 k(n)
=limsup(—) — Y X, .
nooo \k(n) | k(n) 27"
n 1/a n X
= limsu . *mMs dF (s
mow (o) gy 4R
n 1/a n 1+1/a /e
. 3 (k(r)(1~e)/n)
< msip [(koz)) Xano~ 5] Fils)ds
=1 — liminf o JEmaze "R (s) ds
n— o0 k(n) 0 "
(1 _ e)1+1/a
=1-———— as.
(a+1) a-s

This with a similar lower bound gives the stated result.
(ii) Let F, be the empirical distribution function based on Xj,..., X, from
F. Lemma 2.2 implies, with a = 1/a,

1
L= F(s)) ds = —

1-1/a
2.7 lim [ ——
@7) n— oo ( k(n) ) (n/k(n»‘/“{

Since [Wellner (1978)]

lim
n—oo

(k(n)

1/a
n ) "Xk, m =1 as.,
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(2.7) implies

li 1 k-1 X(n—i, n)
im sup -
k(n)

n— oo

i=0 X(n—k(n), )

‘ n ~a 1 k(n)-1
= fmsup (k(n)) wny L Ko-um
n \“V¢ pn 0
- tmsup s g S SL)

n -1/a
= limsup (W) X(n—k(n)+1,n)

n 1-1/a o
+|— 1—F,(s)}ds
(k(n)) '/;((n—k(n)ﬂ,n){ }
n 1-1/a 00
<1+ limsup( ) 1—-F,(s)}ds
nowo \ k(1) /<n<1~e)/k<n»‘/“{ )
(1 _ e)—1+1/a
=1+-—— as.
a-1D a.s

This with a similar lower bound gives the stated result. O

LEMMA 24. Let 0 < k(n) < nand k(n) - o (n > o).
(i) Suppose F(x) = x* (0 < x < 1) for some a > 0. Then
1 Rk X n) a

= 1 in probability.

lim
n-w k(n) i=1 X(k(n)+1,n) a

(ii) Suppose F(x)=1—x"*(x > 1) for some a > 1. Then

. 1 k) -1 X(n—i n) a . .qe
lim —— : = in probability.
neoo k(n) 20 Xgpoggy,m a1

Proor. (i) Note that
4
(X(ly n)/X(k(")Jrl, n)rcc X(k(n)y n)/X(k(n)+1, n)) - (Ya, k(n))2= > Y(k(")» k(n)))’
the order statistics from a sample (Y,,..., ¥, ,)) from F. Hence
k k
1 W X 4 1D

LYy,
k(n) i=1 X(k(n)+1,n) k(n) i=1

and the law of large numbers applies. The proof of part (ii) is similar. O
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LeEmMMA 2.5.  Suppose (1.1) holds and x*(F) > 0. Let U = 1/ - F))<, the
arrow denoting the inverse function. Then, for some positive function a,

log x, y=>0,
logU(tx) — log U(t) B xf_ 1

% a(t)/U() —,  v=<o,

for all x > 0. Moreover for each & > 0 there exists t, such that, for t > t, and
x 21, (i)
1—-x"¢ logU(tx) — logU(¢ x*—=1
U v
€ a(t)/U(t)

provided vy > 0, and (ii)

(2.8) (1 - ¢)

+ &,

logU(tx) — log U(t)
log U(0) — log U(¢t)

(29)  1-(1+ear*e< <1-(1-e)xr,

provided vy < 0.

Proor. The statements follow from well-known inequalities for regularly
varying functions (y < 0) and II-functions (y > 0). Cf. Geluk and de Haan
(1987), page 27. Note that we can take a(¢)/U(t) = y for y > 0 and a(t)/U(¢) =
—¥{log U(x0) — log U(t)} for y < 0.0

PROOF OF THEOREM 2.1. We only give the proof of the strong consistency
using Lemma 2.3. The proof of the weak consistency is similar, starting from
Lemma 2.4 instead. Let Y,,Y,,... be ii.d. with common distribution function
1—-1/x (x> 1). Then (X;, X,,...) < (U(Y,),U(Y,),...) and for all n also
(X, my s Ximymy) 2 (U, p)s -+, U(Yy ). We work with the latter.

(i) Let y>0. Given ¢ > 0 for r =1,2 by Lemma 2.5() we have a.s. for
sufficiently large n,

MO
{a( Y(n—k(n), n))/U(an—k(n), n))}

r

1 km-1 Yoim
= log U| ———=— - ¥, ~ log U(Y,,_
k(n) i§0 {OgU( Y(n—k(n),n) (= km.m) o8 ( o k(n)’n))

= {“(an—k(nxn))/U(Y(n—k(n),n))}

1 k(n)—1

)

i=0

Ye . . /Ye -17
e+ (1 +£) (n—1i,n)/ “(n—k(n), n) ] .
€

First suppose r = 1. Since Y. ny is the (n —j)th order statistic from the
distribution function 1 — 1/x'/¢ (x > 1), we can apply Lemma 2.4(ii) for ¢ <
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8/(2(1 + 8)) and find

g1
2
lim sup <e+(1+e)—— as.
n— oo a(y;n—k(n), n))/U(Y(n—k(n), n)) €
This, together with a similar lower inequality, gives
M®»
lim =1 a.s.

n=0 &Y ki), m)/ U(Yin—kny, my)

Next we note that the function a/U is slowly varying, hence
a Yoobmymy 1 U Yokmmy 1
. n/k(n)  k(n) n/k(n)  k(n)
lim =1
n— oo n U n
( k(n) )/ ( k(n) )
The case r = 2 is similar: One just works out the square and calculates the limits

of all terms. It follows that for r = 1,2,

M
(2.10) lim z =r!

" ) el )

(ii)) Let y <0. Given ¢ > 0 for r = 1,2, we find as in part (i), now using
Lemma 2.5(ii), that a.s. for sufficiently large n,

Mr(zr) 1 k(n)—1 Y—¢

3 ll —(1-¢)- RISTE

r < —&
{log U(c0) — 1og U(Ys_ pny, my) ) k(n) 2o Y "(n), )

r

First suppose r = 1. Since Y} % ,) is the (i + 1)st order statistic from the

(n—i,n
distribution function x'/¢-Y*9 (0 < x < 1), we can apply Lemma 2.4(i) and find
MY (e—v)
lim sup - <1-(1-¢———F— as.
n— oo IOg U(w) - log U(Yv(n—k(n), n)) ' (s - ‘Y) ! + 1
This, together with a similar lower inequality, gives
M —y

lim

= a.s.
n—oo 1ogU(0) = 1ogU(Y_pmy.my) 1—7

Next note that the function log U(c0) — log U is regularly varying, hence

lim log U( o) — lOgU({YEn—k(n),n)k(n)/n} : [n/k(n)]) -1
n— 00 logU(0) — log U(n/k(n))

The case r = 2 is similar: One just works out the square and calculates the limits
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of all terms. It follows that for r = 1,2 almost surely

MO
lim i -
211) n—o {logU(c0) — logU(n/k(n)))
={_Y/(1_Y)1 r=1,
2v?/{(1-v)1-2v)}, r=2
(ii)) Now (2.10) and (2.11) imply that for all real v almost surely,
: 2
(2.12) i ) _ (172, =90
' noo  MP (1-2v)/(2-2y), v<o0

and, since lim,, ,  a(n/k(n))/U(n/k(n)) = 0fory = 0 and lim, _, . log U(x) —
log U(n/k(n)) =0 for y < 0,

(2.13) lim M® = max(0,y) a.s.

n—oo

The result follows. O
3. Asymptotic normality.

THEOREM 3.1. Suppose (1.1) holds and moreover, with U = 1/Q - F)*:
(i) For y>0:
(3.1) + 77 U(¢t) € II(b,) for some positive function b,.
(if) For y = 0: There exist positive functions b, and b, such that
logU(tx) — logU(t) — by(¢)log x log x)*
(32) i 08U(tx) — log U(2) 2()g=i(g)
t— oo ba(t) 2
[rote that by(t) ~ a(t)/U(t), t - oo, with a as defined in Lemma 2.5].
(iii) For y < 0:
(83)  Ft{U(w) - U(t)} €TI(b,) for some positive function b,.
Suppose also lim,, _, , k(n) = « and:
(iv) For y> 0:
(34)  k(n)=o(n/g" (n)) whereg(t) = £-21{U(t) /by(t)}.
(v) For y=0:

(3.5) k(n) = o(n/g“ (n)) whereg(t) = tb3(t)/b3(t).

(vi) For y <0:
(3.6) k(n) = o(n/g - (n)),
where g(t) = £'~*'[{log U(w0) — log U(t)} /b,(£)]2.
Then

MO M®

3.7) Jk z - , = -
(8.7) (n) f(log Xen—rim, n)) pi(7) {f(log X rim, n))}z pa(7)

with f(t) == a(1/{1 — F(exp¢)})/UQ1 /{1 — F(exp t)}) has asymptotically a nor-
mal distribution (n — o) with means zero and covariance matrix (s;;) with,
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for y <0,
su=(01-v)7"1-2v)7",
sip=4(1-v) "1 -2y)7'0-3y)7},

Sp = 4(5 — 11y)(1 — v) (1 — 2y) H(1 - 3y)(1 — 4y),
and for y > 0,

sp =1, S12 =4, Sgp = 20.
The functions p, and py are defined by
1, vy =0,
pi(v) = {1/(1 -v), vy <0,

_ 2, y=>0,
pov) = {2/{(1 -v)1-2v)}, v<o

REMARK. For y > 0 the result specializes to Jk(n) (M — y) is asymptoti-
cally N(O, y?).

COROLLARY 3.2. If the conditions of Theorem 3.1 are satisfied and if,
moreover, in the case y = 0,

(3.8) k(n) = o(n/g;" (n)) whereg,(t) = t{U(t)/a(t)}?
then
(3.9) Vk(n) {1, — v}

has asymptotically a normal distribution with mean 0 and variance
1+ 72 Y20,

(l_y)2(1_2y){4_81—27 (5—117)(1—27)}, , <o,

(3.10) .
1-3y  (1-3y)(1-4y)

REMARK. Neither (3.5) nor (3.8) implies the other.

ExampLE. The standard normal distribution satisfies (1.1) with y = 0, a(¢) =
{(U(t)}"! [note a,=a(n)] and (3.2) with by(¢t) = 1/{U(t)}® — 1/{U(t)}},
by(t) = 2/{U(t)}* and a minus sign. Because U(t) ~ \/2log ¢ (¢ = ), one finds
that g(¢) ~ t(log t)? [cf. (3.5)] and g,(t) ~ 4t(log ¢)? [cf. (3.8)], t > , and
hence the conclusion of Corollary 3.2 is true provided k(n) = o((log n)?), n = .

Note that we found the same restriction on {k(n)} for the asymptotic
normality of Pickands’ estimator [Dekkers and de Haan (1989)].

Before proving the theorem and its corollary, we formulate the conditions on
U in terms of the distribution function F [for a proof see Dekkers and de Haan
(1989), Section 3, where also some simpler alternative conditions and examples
are given].
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THEOREM 3.3. The conditions (i), (ii) and (iii) of Theorem 3.1 imply (1.1) for
the same vy. The conditions (i), (ii) and (iii) of Theorem 3.1 are equivalent to
(respectively): (i) For y > 0:

(3.11) F /(1 -F(t)}) 1.

(i) For y = 0: There exists positive functions f and a with lim,, ,.a(t) =0

such that for x > 0

1 — F(exp(t + xf(¢)))

PR— e_
1 — F(exp(t x?
(3.12) lim (exp(t)) =+l
t1x* a(t) 2
(iii) For y < 0:
(3.13) 71 - F(x* — ¢t7Y)} e 11

REMARK. For y > 0 our second-order condition (3.11) is the same as the one
used in Smith (1982).

REMARK. The conditions of Theorem 3.1 correspond to the conditions of
Theorem 2.4 in Dekkers and de Haan (1989). A theorem similar to that of
Theorem 3.1 can be given under the conditions of Theorem 2.5 of Dekkers and
de Haan (1989).

For the proof of Theorem 3.1 we need the following lemmas.

LEMMA 34. Let Y, , < -+ <Y, , benthorder statistics from the distri-
bution function1 — x~! (x> 1). Let 0 < k(n) < nand k(n) > o« (n - ).
@)

1 Kkn)-1
\/k(n) W Eo lOgY(n—i,n)_logY(n—k(n),n)_1’

(3.14)
iy 1 k(n)—1 9
(20) { m Z (IOg YZn—i, n)y — 10g an—k(n), n)) - 2}

i=0

is asymptotically normal (n — oo) with .means 0, variances 1 and covariance
2v5.
(il)) For y <0

k(n)-1 . v
/k(n) (k(—lnj Z 1 _( an—z,n) ) " - b ,

i=0 Yin—kny, n) - ’

2
1 k(%_l 1-— Y;n—i, n) § _ 272
k(n) i=0 an—k(n), n) Q-v)a- 2y)

is asymptotically normal (n — o) with means 0, variances y% and y*, respec-

(3.15)
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tively, and covariance
2v% (5 — 30y + 40y2)"”
V5 (5 - 26y + 33y2)""

(3.16)

Proor. We proceed as in the proof of Lemma 2.4.
(i) The random vector in (3.14) is equal in distribution to

k(n) P k(n)
Jk(n Z,—1,(20)7" { Z A }
(n) (k( y &AL gy L
where Z,,..., Z, are iid. from a standard exponential dlstribution. The state-

ment of the lemma follows by applying the Cramér-Wold device and Liapounov’s
theorem [Chung (1974), page 200].
(i) The random vector in (3.15) is equal in distribution to
k(n) Y k(n) 2.Y2 )

hn) (k( F L0 R Ty LA R -

where R, Rz,..., R, are iid. from the dlstnbution x VY (0 <x <1). The
statement of the lemma follows as before. O

LeEMMA 3.5. Suppose condition (i), (ii) or (iii) of Theorem 3.1 holds with the
upper sign (i.e., + for y >0 and — for y < 0). For any ¢ > 0 there exists t,
such that, fort > t, and x > 1:

(i) Inthe case y > 0:

a )1 —x"* logU(#x) — logU(¢t) — ylogx
— € —e< ”
<(1+ s)x _ + €.

(ii) In the case y = 0:
(1 - ¢?)(log x)*

2 — 2¢elogx — ¢
logU(tx) — logU(t) — by(t) 1
(3.18) _ logU(tx) — logU(#) — by(t) log x
by(¢)
1+ ¢)’x*(log x)®
<( s).;(og ) + 2¢log x + e.
(ili) In the case y < 0:
1—x"¢
(1 - ¢&)x —ex?
logU(tx) — logU(t) — (1 — x¥){log U —logU(¢
ag) < 1OBU(E) ~logU(0) — (1= x7){logU(e) - logU())
t7b,(t)/U(0)
<(1+¢&)x- e,
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Proor. (i)
logU(tx) — logU(¢t) — ylog x
t'b,(¢)/U(t)
Ue) || U(2)
N {log(xYU(t) )} t7b,(2)
U(tx) U(t) () 'U(t) — t7U(2)
- (va(t) N )t’bl(t) N b,(2)
—logx (t— ) forallx >0,
logU(t) — ylogte H(t’- ?}23 )

Application of the well-known inequalities for II-functions [Geluk and de Haan
(1987), page 27] gives (3.17). ]
(ii) In the limit relation (3.2) we may choose [Omey and Willekens (1987)]

by(t) == CU(t) + by(t) =1logU(t) — %fotlogU(s) ds + by(t)

and CU satisfies
CU(tx) — CU(t) _
Am =

for all x > 0, i.e., CU € II(b;). Moreover, logU(t) = CU(t) + [{CU(s)ds/s,
hence

(3.20)

og X,

logU(tx) — logU(t) — {CU(¢t) + by(¢)}log x
by(t)
CU(tx) — CU(t) = CU(st) — CU(t) ds
0 R ORI

The well-known inequalities for IT-functions [Geluk and de Haan (1987), page
27] applied to CU then give (3.18).

(it)) log U(o0) — log U(¢) = (U(e0) — U(2))/U(e0) + O((U(e0) — U(£))*)(t —
00), hence —t U(o0) — U(t)} € II(b,) implies — ¢ {log U(e0) — logU(?)} €
I1(b,/U(o0)). The inequalities for IT-functions yield for ¢ > ¢, and x > 1

(1-%¢) ! —Ex_” — €
- t~"{logU(o0) — logU(t)} — (#x) "{logU(o0) — log U(tx)}
by(t)/U()
<(1+s)x£_1 + e.

€
Rearranging gives (3.19). O
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ProOF OF THEOREM 3.1. We shall give the proof for y = 0 and a positive
limit in (3.2). For other values of y and the other choice of sign, the reasoning
is similar. Let Y,,Y,,... be ii.d. with common distribution function 1 — 1/x
(x > 1). Then (X, X,,...) 4 {U@), U(Y,),...) and for all n also,
(X, ny s X my) £ Uy ), -, Uy, y))- We work with the latter and
proceed by providing bounds for the quantities concerned.

Since for x > 1 and ¢ > ¢, by Lemma 3.5 and Lemma 2.5,

log U(tx) — logU(t) \*
{ by(t) }

~ (logx)? + {logU(tx) —logU(t) _ logx}

by(2)
log U(tx) — log U(¢) .
{ b,(¢) ng}

{(1 +e)%x* (log2x)

by(t)
by(¢)

X{(1+£)

we have, after replacing ¢ by Y,y », and xt by Y,,_; ., and summing over i,
eventually,

Jk(n) { M - 2}

{f(log Xin-k(m), n))}2

< (logx)* + +2slogx+£}

xt—-1

+¢e+ logx},

i=0 (n—k(n), n)

1 k(-1 an—i, n)
= Jk(n) m Y {logU Yomkny my Y .
2

—log U(Y(,,_k(n), n))}
(3.21)

- {b2(Y(n—k(n), n))}2 - 2:|

i=0 Y(n—k(n), n)

< Jk(n) [k;n) k(%_l{logﬂ} - 2]

+ {W Z3(Y(n—k(n),n)) }An,

2( Y(n—k(n), n))
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where A, is a linear combination of terms of the form
k(n)—1
[l/k(n)] Z (an—i, n)/Y(n—k(n), n)) ’
i=0

where a, < 1 for every term. Hence lim,,_, , A, exists in probability by Lemma
2.4. Further, since by(t)/by(¢) is slowly varying and k(n)Y,_4c), »/n — 1 in
probability [Smirnov (1949)], we have by (3.5)

by(Y i
lim yk(n) - M =0 in probability.
n—oo b2(Y2n—k(n),n))

A similar lower inequality is readily obtained. Now A, is a linear combination of

terms of the form
k —
1 ('% l{log Yooin >

k(n) i=0 Yin—k(n), n)

with «, > 0 for every term. Combining the results for the two bounds we get

@

MO
{ f(log X(n—k(n), n)) }2

1 k(n)—1 Y i 2

lim Jk(n) {
n— oo
(3.22)
k(n) 2o Yin—(ny, n)

in probability. A similar statement for M and Lemma 3.4 completes the proof.
]

ProoF OF COROLLARY 3.2. Write (P, @) for the limiting normal vector in
(3.7). Then

——[(M®)* (o))’
ey (M,§2)) _ (el }

P2(Y)

(M)’
( f(lOg X(n—k(n), n)))

- (f(log Xin—km), n))) Pz(Y)W{

Pz( Y) . Mr(f)

5~ (pl(v))z}

2)
= (py(7))*Vk(n) { . - P2('Y)}

(F(108 Xen— sy, my))”

Pl(Y) p {Pl(Y)}2

S92 . p_ L7
P2(Y)

(o) ©
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(n — o0) in distribution. Hence

1 1
ol —2 V)2
" 1- (M)’ 1 )
M® pa(Y)

(0(1))" (M)
Jk(n) pa(Y) M?

2 (M®)? (py(7))?
Hl_ MP }{1_ pa(Y) }]

pl(v){ pl(;)Q - Pz(Y)P}

{pa(v) - {pl(v)}2)2

(n — o) in distribution. Note that
1

1 - ——2—— — min(0, ).

(pi(7))”
1= P2(Y)

It remains to determine the asymptotic distribution of Jk(n) {M" — max(0, v)}.
We claim that this expression tends to P - max(0, y) in distribution. For y > 0
this is correct. For y = 0 the extra condition of the corollary yields
Vk(n) by(n/k(n)) = 0 (n - ), hence yk(n) f(log X, _(n), »)) = 0 and finally
Jk(n) M) — 0 (n - o0) in probability.

In a similar way we get Jk(n) M’ - 0 (n — o0) in probability for y < 0.
The proof is complete. O

REMARK. It is clear from the proofs of Theorem 3.1 and Corollary 3.2 that if
(i), (ii) or (iii) of Theorem 3.1 holds and if £(n) ~ ¢ - n/g < (n) for some positive
constant ¢ (n — o0), then yk(n) {§, — v} has asymptotically a normal distribu-
tion with the same variance, but with mean + V¢, where the sign corresponds
with the sign in (3.1), (3.2) or (3.3) [i.e., in particular, + Vc corresponds with a +
sign in (3.3)].

4. Quantile and endpoint estimation: Finite case. In Dekkers and
de Haan (1989) we used differences of large order statistics as building blocks
both for an estimator of y (following J. Pickands III) and for estimating large
quantiles. We shall now construct a similar estimate for a large quantile using
sums of large order statistics.
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The basic situation in this and the next section is the following. We have
observed n independent drawings X, X,,..., X, from a distribution function F
satisfying (1.1). We want to find a level x, (where p is a given number much less
than 1) such that

(4.1) F(xp =1-p.
With the function U as defined in Section 1, this means

o -

We propose to estimate x, based on the observations X, ..., X, as follows [cf.
Dekkers and de Haan (1989)]:

¥ 1
a;yz" -1 X(n—k, n)Mr(l )

“2) BT T T ek

with §, any consistent estimate of y, MV and p, as defined before and
k

(4.4) a, = ;_p .

An asymptotic confidence interval for x, can be constructed using the following
result.

THEOREM 4.1. Suppose p = p, = 0, np, = c € (0,0), n = oo0. Let k [oc-
curring in X,_, , and for the definition of M, see (1.3)] be fixed, k > c.
Then, provided (1.1) holds,

20— X,

1
X(n—k, n)Mr(L )

R\ 1 v
-l -1 1-{--Q .
S e,

(4.5)

R\ 1y
(Z) -1 1- (; : Qk) {l kil exp(yxf-;ilzj/j) -1

+
YPI(Y) Y k i=0 Y

}, y<0
(n - ), with Q,, 2y, Z,,...,2Z,_, independent, Q, gamma with k degrees of
freedom, and Z,, i = 0,1,..., k — 1, i.i.d. exponential.

REMARK. Note that the number of order statistics 2 used in the definition
of M remains bounded whereas, if for §, one uses (1.7), in order to get
consistency for ¥, one needs to use an unbounded number &’ of order statistics in
its definitions.
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The proof of Theorem 4.1 is based on the following lemma.

LEMMA 4.2 [cf. Beirlant and Teugels (1986)]. Under the conditions and with
the conventions of Theorem 4.1,

1 k-1
MO LR, E Zi v=0,
(46) —— 3
a(n)/U(n) 1’“ Lexp{yXt2!Z./j} —
%L L L = -1 v <o.
i=0

REMARK. Note that for y > 0 the limit law is of gamma type.

PRrRoOOF.
M®
a(n)/U(n)
1 kil log X ;i ny — 108 X(_p )
k= a(n)/U(n)

1 k-1 IOg( UexP(E(n—i, n) E(n—k, n) + E(n—k,n))) - lOg(UexP E(n—k,n))

Z a(exp E(n—k, n))/U(eXp E(n—k, n))

X a(expE(n—k,n)) ' U(n)
a(n) - U(expE(n—k,n))
with E;, , < Ey , < -+ <E

(n, ny Standard exponential order statistics. Now

E(n—i, n)y (n k, n) Z

for all n with Z,, Z,, ..., Z, i.i.d. standard exponentlal by Rényi’s representation
for exponential order statistics and
(4.7) E, —logn 5 —logQ,

[Smirnov (1949)]. Using

‘ log x, >0,
logU(tx) — logU(¢t) . x%_ ) v
a(6)/U(?) —. y=<0
and
U(tx) a(t) x7, Yy <0,

t — oo for all x > 0, locally uniformly, we then get the result of the lemma.
]
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PROOF oF THEOREM 4.1.

£, .= %, ain—1 {X(n_k’n) - U(n) U(na,/k) - U(n) }

X i MO~ 30:(30) a(n) a(n)
a(n)/U(n)  U(n)
Mr(ll) X(n—k,n) .

Note that (U(tx) — U(t))/a(t) = (x¥ — 1)/y (t = o) locally uniformly. An
application of (4.7) and Lemma 4.2 above is now sufficient to complete the proof.
O

In the case y <0, one can adapt the above reasoning for the boundary
situation p = 0 to get a confidence interval for the upper endpoint x*(F) =
U(o0) of the distribution.

THEOREM 4.3. Suppose (1.1) holds with y < 0. Then x* = x*(F) =
sup{x|F(x) < 1} is finite (and positive as assumed in Section 1). Set
Yr

1
(4'8) 'f: = X(n—k,n)Mr(zl)(l - T) + X(n—k,n)'

Under the conditions of Theorem 4.1

-1

XX —x* d 1 1 k-1 k—le
—_— 1——|+ (- —3 -1
X(n~k,n)Mr(zl)\_) ( Y) {k igo exp{y Jgi J

Proor.
£r — x* _1__1_+ Xin-im —Uln) x* = U(n)
( ) X(n~k n)Mrgl) ?n a(n) a(n)
4.9
U(r)  a(n)/U(n)
X(n—k,n) Mr(zl)

The rest of the proof is as before; note that {x* — U(n)}/a(n) » —y7!
(n — 00).0 .

5. Endpoint and quantile estimation: Infinite case. We now consider
estimating x, again for the limiting situation n — oo but allow the number of
order statistics & involved in the definition of X,,_, ,, and M to grow without
bound. The following theorem enables one to construct a confidence interval for
a quantile x, when p, = 0, np, > o (n > o0).

THEOREM 5.1. Suppose that F has a positive density F' so that U’ exists.
If U€RV,_, [ie, FFERV_,, , for y>0, 1/F"€T for y=0 and
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F'(x* —1/x) € RV, ,,,, for y < 0], then

1
Xn—k(my,my = U(p_)
(5.1) Vk(n) 3 =

1
(n—k(n),n) " M,(,)

is asymptotically normal with mean 0 and variance {1 — min(0, v)}?, provided
Pn = 0, np, = o0 (n = o) and k(n) = [np,].

PRroOOF. Since (k(n) {X,_i(n),n — Un/k(n))}/(n/k(n)) - U'(n/k(n)) is
asymptotically standard normal [Dekkers and de Haan (1989), Lemma 3.1], also
X n—k(ny,ny ~ U(n/k(n)) (n > o) in probability.

Next note that, from the proof of Theorem 3.1 and U’ € RV, ,,_,,

M,Sl) M'(ll)
n U n ) U( n ) Y;n—k(n), n) " U,(Y(n—k(n), n))/U(Y(n—k(n), n))
k(n) = \k(n) k(n)
1

. min(0,y)’

with X,_; . 4 UY,-in) i=0,1,...,n — 1, as before.
Finally, one checks that
1 U n
o)

|5
nlgx:o\/k(_n) ,’;" ,(n)=o. O

k(n) v k(n)

Next we consider the estimation of the endpoint of the distribution.

THEOREM 5.2. Let k= k(n) —» o and k(n)/n — 0 (n - ). Suppose the
conditions of Theorem 3.1 hold with vy < 0. Suppose moreover that U has a
regularly varying derivative U’'. Then, with £* as defined in (4.8),

(5.2) Vk(n) - X

(n—k(n), n)Mr(tl)(l - ‘?n) .
is asymptotically normal (n — oo) with mean 0 and variance

1{ 1 1—27{4_ 1-2y (5—11y)(1—2y)} 4 ]

3) — + + -
63 Flicy vy 1-3y (1-38y)(1-4v) | 1-3y

Sk *
Xk —x

For the proof we need the following lemma.
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LEMMA 5.3. Suppose the conditions of Theorem 5.2 hold. Recall the function
U from Lemma 2.5. The random vector

n
X —_ —
Xn—r, n)Mr(tl) -1 4 (n=k,m) U(k)
ar —(1-Y) s 7
oo o) o 1)
k k
is asymptotically normal with means 0 and covariance matrix (s;;) with
1+ y%(1 - 2y) 2(1 - 2v) Y
s = , S;p = — _— 8,3 = —,
T -y)"-2y) " (1-3y) ®o-y)
8(1 - 2v) N (5 — 11y)(1 — 2y)
(1-3y) (@-3)1Q-4v) ]

(5.4) Vk

(5:5) sp=(01- 7)2(1 - 27)[4 -

Proor. Note that (3.7) holds with
f(log Xin_p.m) = —v{U(OO) - U(1/{1 - F(X(,,_k,,,))})}
+ U(1/{1 = F(X(_p, ) })-
We write the first component of (5.4) as
Xn—p, myM"

‘/I; n - (1 - Y)_l
~r{ue) - v
k
U(oo) — U(eE(n-k,n)) { MO a )_1}
- -
(5.6) U(oo) — U(%) f(log Xn—s, ny)
VE | U(0) — U(eErn-rm)
1-v n — 1
() - U(3)

with E, ,, < -+ < E, ,, standard exponential order statistics as before. Note
that

(i) U(eFen-wm) = Xin—k, ny
(i) E,_; , — log(n/k) — 0 in probability.

It is thus sufficient to consider the limit distribution of the random vector

R P S U(f)
() - U( 3

f(log X(n—k, n))
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The joint limit distribution of the first two components follows easily from the
results of Section 3. It remains to prove that the third component is asymptoti-
cally standard normal and independent of the first two components. The asymp-
totic normality of the third component follows, e.g., from Lemma 3.1 of Dekkers
and de Haan (1989).

If we rewrite all order statistics in terms of exponential order statis-
tics E; ,) < -+ < E, , [as we did in Dekkers and de Haan (1989)], we see
that by (3.22) the asymptotlc distribution of (MM, M?) is totally deter-
mined by the asymptotic distribution of two functlonals of (E,_k(ny+1,n) —

E o knyny s En,ny = E(n—k(n), ny) Whereas the asymptotic distribution of the
third component of (5.7) is totally determined by that of E,_,,, , [cf. Dekkers
and de Haan (1989), Lemma 3.1]. The asymptotic independence follows. O

PROOF OoF THEOREM 5.2.

Xk — x*
1 A
X(n—k, n)Mrg )(1 - Yn)

_ \/E _l " X(n—k,n)_ U(OO)
.?n X(n—k, n)Mr(zl)(l - ?n)

VE

E Foownm-U5) (n{uee) -u(3))
=”q‘%+$%w:o’;wlUéy'X@kM4u—$
—v{U(e0) — z 1
(v - v3)) MO .
_% Xn-r, n)Mrgl)k * _7{);((00) —)NIIJ(%)} Y

~{a--a-n"

Application of Lemma 5.3 now gives the stated result. O
A somewhat related paper is Hall (1982).

6. Concluding remarks. We now provide an intuitive background for (1.7).
It is well known that the convergence of the Hill estimator (1.3) for y > 0 is the
sample analogue of the following relation, which is necessary and sufficient for
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(1.1) in the case y > 0:

Ly, 4 L1— F(tu) du  [(1—F(u))(du/u) .
Y=f1" i 1-F(t) u 1 - F(¢)

(6.1) w
/; (logx — log t) dF(x)

= = E(log X — 1 X>t

(t > o0), where X is a r.v. with d.f. F. So the reason for using the log of the
order statistics instead of the order statistics themselves is that otherwise the
first integral may diverge. This forces us to use logarithms of order statistics
instead of the order statistics themselves in the definition of M(V. That is not
possible when the random variables are negative. In order to avoid this problem
(which comes up only for y < 0) we have to impose the extra condition x*(F) > 0.
This does not cause any difficulty in applications. An analogue of (6.1) is known
in the case y = 0 [Balkema and de Haan (1974)]: (1.1) holds with y = 0 if and
only if

(6.2) lim E({(X-0)1X>¢t)  [ex?d(1—e7®)

i (E(X - )X > 8))*  {Jexd(l — e *))? -z

These two considerations led us to consider the quotient M?/{ M V)2 However,
it is clear that this quotient does not discriminate sufficiently, since taking
logarithms transforms r.v.’s in the domain of G, with y > 0 into r.v.’s in the
domain of G, [cf. (2.10)]. But by good luck M itself also converges for any y
[see (2.11)] and discriminates the range of values of y not covered by
M2/ {MDP.

In Dekkers and de Haan (1989) we discussed several other methods to
estimate y. A comparison of the different estimators both from a theoretical and
from a practical point of view is the subject of further research.
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