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A ROBUST BAYESIAN INTERPRETATION OF
LIKELIHOOD REGIONS!

BY LARRY ALAN WASSERMAN

Carnegie Mellon University

Likelihood regions are shown to be robust in the sense that their
posterior probability content is relatively insensitive to contaminations of the
prior. This provides a Bayesian interpretation of regions that are commonly
used by frequentists to construct confidence intervals and whose use are also
advocated by the pure likelihood approach.

1. Introduction. As inferential summaries, subsets of relatively high likeli-
hood, or likelihood regions, are pervasive in classical and likelihood based
inference. In Bayesian inference, highest posterior density credible regions are
usually preferred to likelihood regions. In this article, we show that there is a
robust Bayesian interpretation of likelihood regions.

We are concerned here with robustness with respect to the prior distribution.
To study this type of rubustness, the prior distribution is replaced with a class of
priors. This leads to a class of posterior distributions arrived at by applying

" Bayes’ theorem to each prior distribution. Bounds may then be placed on the
posterior probability content of a given set, over this class of distributions. An
analysis carried out in this way is useful since elicitation of a prior is a difficult
task. See Good (1950), Berger (1984, 1985) and references contained therein for
details on Bayesian robustness. Also, see Smith (1961), Williams (1976) and
Walley (1981, 1982) for a formal justification for using classes of probability
measures. One could also consider robustness with respect to the model—an
issue that is dealt with, for example, in Box and Tiao (1973) and Huber (1973).

The result proved in this article is that, of all sets with a given posterior
probability content for a specified prior P, the likelihood region is robust in the
sense that its probability content is least sensitive to changes in the prior with
respect to the class of e-contaminated priors. Likelihood regions were considered
from a Bayesian perspective by Box and Tiao (1965) who pointed out that they
may be regarded as an equivariant summary of a posterior distribution. They
were also studied by Piccinato (1984) who showed that a generalized version of
likelihood regions have the property of always having posterior probability
greater than or equal to their prior probability.

In Section 2 we review robust Bayesian inference, paying special attention to
the theory of e-contaminated priors as discussed by Huber (1973) and Berger and
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Berliner (1986). In Section 3 the robustness of likelihood regions is demonstrated.
Section 4 presents some numerical examples. Section 5 contains discussion and
conclusions.

2. Robust Bayesian inference. Consider a model M = {f(x|0); 6 € ),
where each f(x|0) is a probability density with respect to Lebesgue measure and
© is a subset of 2*. We shall assume that f(x|0) is a bounded function of 8 for
each x. Let %(0) be the Borel subsets of © and let P be a prior probability
measure on %(0) with density «(8). The posterior distribution @ on %(0),
given X = x, has density function ¢ defined by g(8) « f(x|6)7(8). To carry out
robust Bayesian inference, we replace the prior distribution, P, with a class
II(P) of probability measures containing P. Bayes’ theorem is applied to each
member of IT(P) which leads to a class 2( P) of posterior distributions.

The class of priors we are considering is defined by

IN(P)={ReP; R=(1-¢)P+eP, Pec ),

where ¢ € [0,1] and £ is the set of all probability measures on %(©). The
number ¢ may be regarded as a measure of our uncertainty about the prior P.
This is the class of e-contaminated priors discussed in Huber (1973) and Berger
and Berliner (1986). Berger and Berliner (1986) consider more restricted classes
of priors by letting P range over a set that is smaller than 2. We refer the
reader to their article for a detailed analysis of e-contaminated priors. There are
other sets of priors that may be used to carry out a robust analysis, but we shall
focus only on the class II (P).

We denote the set of posteriors resulting from the class II(P) by 2/(P).
Henceforth, we shall suppress the dependence on P. For any measurable set
A C O define

Q*(A) = sup Q(A) and Q.(A) = inf Q(A).
Qe3, Qe2,

The functions @* and @, are called the upper and lower posterior probabili-
ties, respectively. Let 6(A) = @*(A) — Q4(A). We regard 8(A) as a measure of
how robust our analysis is in the sense that it measures the stability of the
probability content of A over the class of distributions. If §( A) is small, then our
posterior probability statements are not greatly affected by the uncertainty
about the prior. Although we shall focus on this aspect of robustness, we point
out that one could define robustness in many other ways. The following theorem
is due to Huber (1973).

THEOREM 2.1.

s(A A
Q*(4) - %()—) and Qu(4) = ITQ(ST:T)’
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where s(¢) = 0,

!
s(4) = (1:9)?;) forA + 2,
Iy = supsc 4 f(x]0) and m(x) = [ f(x|0)7(0) db.

Suppose that an analysis is carried out with prior P, leading to a posterior
measure Q. It is common practice to summarize @ by way of a credible
region—a subset A with a specified posterior probability content. See Box and
Tiao (1973) and Berger (1985). This is the Bayesian analog of the frequentist
confidence interval. Box and Tiao (1965, 1973) considered two methods for
constructing credible regions. The first is called the highest posterior density
region, or HPD region, denoted by H,. This is the region with minimal Lebesgue
measure of all regions with posterior probability content at least .

The second is the likelihood region E. defined in the following way. For each
c€[0,1], let

R,={6;r(6) >c} and c(y)=sup{c; Q(R,) =7},

where
‘ r(8) = f(xlﬂ)/(fugf(xlﬂ)

is the relative likelihood function. The y-level likelihood region E, is defined by
E, = R, Box and Tiao (1965, 1973) expressed doubts about using this region.
They referred to it as an “artificial construction” [Box and Tiao (1973), page
124]. The next section demonstrates that these regions are robust in the sense of
minimizing §( A) over all sets with a specified probability content for the prior P.
This gives a robust Bayesian interpretation of these regions. Also, note that E,
is equivariant under one-to-one, monotone transformations of the parameter
space. This may be a virtue in problems when there is no particular reason to
construct a credible region in one particular parametrization. The region H, is
not equivariant. Berger (1985), page 144, gives a demonstration of this lack of
equivariance.

The likelihood regions {R; ¢ € [0,1]} play an important role in frequentist
theory. By choosing the constant c¢ appropriately, R, can be used as an
approximate confidence interval. See Cox and Hinkley (1974). Also, the pure
likelihood approach to statistics advocates the use of R as a region of parameter
values highly supported by the data [Edwards (1972)].

3. Robust credible regions. Suppose that a robust Bayesian analysis has
been carried out with a class of priors II(P). The problem of choosing a robust
credible region A, of smallest Lebesgue measure subject to @ .(A) being greater
than a fixed number, is considered in Berger and Berliner (1983).

Here, we show that the likelihood region E, is maximally robust over the
class of e-contaminated priors, with respect to the robustness measure 8 intro-
duced in Section 2. Let @ be the posterior measure based on P. Formally. we call



1390 L. A. WASSERMAN

W, a maximally §-robust credible region if Q(W,) =y and if, for any other
measurable set A with Q@(A) = v, we have §(W,) < §(A). Thus, W, is maximally
robust if it minimizes the range of posterior probabilities over II (P). Note that
the class of sets being compared to W, all have posterior probability content y
under Q. Since P, and hence @, are not considered completely accurate, we must
be cautious in interpreting robustness in this way.

In what follows, we assume that y is some fixed, predetermined probability
level not equal to zero or one. We extend the function r to #(®) by defining
r(A) = supg . 4 r(0). We shall also assume the following three regularity condi-
tions:

(i) For each y € (0,1), Q(E,) = v,
(ii) for each ¢, @(r~'({c})) = 0 and
(iii) there exists § € ® such that r(§) = 1.

LEMMA 3.1.  For any measurable set A,

Q(A)k(r(A°) — r(A)) N kr(A)
(1 + kr(A)(1 + &r(A%) * 1+ kr(A)

3(A) =
where k is a positive constant.

Proor. Note that

N ( e ) lo lA=kr(A),

S(A)=(1ie)m(x) “\1-¢ m(x)—l;

where

€ l
k= ( )__2_.
1-—¢/m(x)
The result follows by applying Theorem 2.1 and calculating @*(A) — Q«(A). O

We can now state the main result.

THEOREM 3.1. If y > 0.5, then the maximally 8-robust region is the likeli-
hood region E..

ProoF. Define
R*= (R %#(0); Q(R) =yand § € R)
and
‘ R ={Re %(0); QR)=yand d ¢ R).

First we show that E. is maximally é-robust in R™.
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For any A € R*, r(A) = 1 since § € A, hence
yk(r(A°) — 1) N k
L+ E)1+kr(A%))  1+Fk°

8(A) =

Since
dé(A) vk
dr(A9) ~ (1 + kr(Ac))

’

8(A) is an increasing function of r( A¢) and hence is minimized by making r( A°)
as small as possible. Set A = {0; r(6) > r(A°)} and A = {6, r(8) = r(A°)).
Now, A c A so that Q(A) <y. By (i), Q(A) = Q(A) <y and then by (i),
Ac E, so that r(A°) > r(E;). But r(A°) < r(A°) which implies that r(A°) >
r(E)). Thus 8 is minimized in R* by E..

Next we claim that Ef_,is maximally d-robust in R~. To see this, note that
8(Ef_,) =08(E,_,) <8(A°)=08(A)foreach A € R".

Since R* and R~ form a partition of the set of all y-level credible regions, we
need only compare the maximally robust regions from each class. In other words,
we need only compare E, and Ef_,. By hypothesis, y > 0.5. It follows easily
that 6(E,_,) > 8(E,) which completes the proof since §(Ef_,) = 8(E,_,). O

4. Examples. To demonstrate the 8-robustness of the likelihood regions, we
examine two examples presented in Berger and Berliner (1986). For the sake of
comparison, we will also compute HPD regions. The difference in performance of
the regions should not be regarded as a criticism of HPD regions since these
regions were designed to minimize Lebesgue measure, a goal that is clearly
incompatible with §-robustness. For further comparison, we shall also find the
HPD region of length equal to that of E..

Suppose X is normally distributed with unknown mean 6 and known variance
o2. Suppose our prior for @ is also normal, with mean p and variance 72. It
follows that the posterior for 8, given X = x, is normal with mean d and
variance V2, where

w/t% + x/02 o%r?

= and V?= .
1/1'2+ 1/62 a2 4+ 2

Note that in the normal case, the HPD regions are identical to the equal tailed
credible regions.

ExamMPLE 1. Suppose 62=1, 12=2, p=0, ¢ = 0.2 and x = 0.5. The 95%
HPD region H, turns out to be the interval (—1.27,1.93) and the likelihood
region E, is (—1.13,2.13). The HPD region A with length equal to the length of
E,is (- 1 .30, 1.96). For this region Q(A) = 0.954. The upper and lower posterior
probablhtles the value of 8§ and the length of each interval are displayed in the
first part of Table 1. E_ is slightly more robust than the other regions. We
remark that @*(H,) = @*(E,) since @* is a function of the probability content
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TABLE 1
Comparison of credible regions

x=05 x =4.0
Q. Q* 8 Length Q. Q* [} Length
Hy 0.817 0.965 0.148 3.20 0.136 0.993 0.857 3.20
E’y 0.848 0.965 0.117 3.26 0.811 0.993 0.182 5.36
A 0.826 0.968 0.142 3.26 . 0.283 1.000 0.717 5.36

under @ and the maximum of the likelihood obtained over the set, both of which
are identical in this example.

EXAMPLE 2. Assume the same situation as in Example 1 except now take
x = 4. Then H, = (1.07,4.27), E, = (1.32,6.68) and the region A, as defined in
Example 1, is equal to (—0.02,5.34). We find that @(A) = 0.999. The results are
summarized in the second part of Table 1. Here, the robustness of E, is
substantial. Clearly, having a more extreme observation makes the analysis more
sensitive to the prior.

5. Discussion. Theorem 3.1 provides a robust Bayesian interpretation of
likelihood regions. Nonetheless, many questions still need to be addressed.
Following are some remarks and open questions.

1. Our definition of robustness is rather specific and suffers certain limitations.
As pointed out in Section 3, the prior P plays a significant role in the
definition of the robust region. In particular, E, is maximally robust only
among those regions whose posterior probability content is y, where the
posterior probability is calculated using the prior P. This is reasonable only if
P is felt to be a good initial choice as a prior. If one feels that P should not
hold such a special role, then our definition of a robust region is less
convincing. This strong dependence on P is troubling and deserves further
investigation.

2. We have restricted ourselves to e-contaminated priors and we have allowed all
distributions as possible contaminations. It would be interesting to extend the
results to a more restrictive set of contaminations as in Berger and Berliner
(1986).

3. One might feel that attention should be focused on maximizing @ ,(A) rather
than minimizing 8( A). But an argument like that in Theorem 3.1 shows that
the region that maximizes @ ,(A) over all subsets with @(A) = vy is again the
likelihood region E,. However, the same problems discussed in the first
comment apply here as well.
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