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DYNAMIC SAMPLING PROCEDURES FOR DETECTING A
CHANGE IN THE DRIFT OF BROWNIAN MOTION:
A NON-BAYESIAN MODEL!

By DaAvID AssaF AND YA’Acov RiTov
The Hebrew University of Jerusalem

We consider dynamic procedures for sampling from a process (a Brown-
ian motion) and stopping it after a change is detected. The basic idea is to
conduct a sequence of similar SPRT’s, each one of them done in negligible
time, while not sampling at all between them. The procedures detect the
change point much faster than the standard procedures with the same
sampling rate and time to false alarm, but hold the sampling rate constant.

1. Introduction. Consider a production process in which the quality of the
product changes at some unknown time », 0 < » < oo. Assume that the quality
of the output can be sampled on a continuous basis without any restriction on
the instantaneous rate. There are, however, economic considerations which
restrict the average sampling rate. To fix ideas, consider either a chemical reactor
or the quality control of a transistor production line. We seek a statistical
procedure which determines both a sampling procedure and a stopping rule to
“detect” the change point ». The performance of a procedure is evaluated on the
basis of the average time until the detection of the change point and the average
rate. of sampling. For application of this model the reader may consult Wilson,
Griffiths, Kemp, Nix and Rowlands (1979) and Pollak and Siegmund (1985).

The same model but with a constant sampling rate is well studied. Important
references include Page (1954), van Dobben de Bruyn (1968), Lorden (1971)
Roberts (1966), Shiryayev (1963) and Pollak and Siegmund (1985). The standard
procedures are the Page (or CUSUM) procedure and the Roberts—Shiryayev
procedure, which are to be described now.

Let L(¢, t) be the likelihood that » = ¢’ given the history of the process up to
time ¢. Then the CUSUM procedure stops at

inf{t: sup L(s,t) ZAC}

O<s<t

for some constant A.. The Roberts—Shiryayev stopping time stops at

inf{t: [L(s,t)ds > ARS}
0
for some constant Agg.
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Assaf (1988) and Assaf and Ritov (1988) study similar problems in a Bayesian
framework with “memoryless” priors. The optimality of the “dynamic” proce-
dure suggested in this paper stems from the fact that it is actually equivalent to
some Bayes procedure with appropriate generalized prior (see Appendix). The
procedure can be described as a limit of procedures in which the maximal
permissible sampling rate converges to infinity. In the limit we either sample as
fast as we can or we do not sample at all. As a result we conduct a sequence of
SPRT’s, each of them is done in “zero” time. The limiting procedure is deter-
mined when the time interval between these SPRT’s shrinks to zero (keeping the
average sampling rate constant). The procedures are described in Section 2 and
analyzed in Section 3.

Finally, our procedures are compared to the CUSUM procedure under con-
stant sampling rate. To make the comparison meaningful we compare procedures
with the same average sampling rate before the change point » and with the
same expected time until false alarm. The comparison shows that the dynamic
procedure stops the process after sampling the same amount on the average as
the procedure with constant sampling rate. The superiority of the dynamic
procedure is revealed when we compare the expected time from the change time
to its detection. Under typical conditions the sampling rate after » is much
faster than it was on [0, »). As a result the dynamic procedure detects the change
within a much shorter time. A numerical example for the case that Pollak and
Siegmund (1985) consider as typical shows that the time until detection under
the dynamic scheme is approximately 20% of its value under the corresponding
case with constant sampling rate.

2. Description of the procedure. We consider the limiting case when the
instantaneous sampling rate can be infinite. This represents the situation in
which we can sample and analyze the data as much as needed in a time which is
very short relative to the time constant of the production process.

The procedures we suggest can be parameterized by three positive parameters
A, C and 8. The (A, C, 8) procedure itself is a limit of procedures in which the
maximal instantaneous sampling rate converges to infinity and may be described
as follows. At the time instances 8,28, ... until the stopping time the process is
being sampled. (A slight modification will be introduced later.) This can be
thought of as if we temporarily stop the process and begin sampling the present
output until we reach one of two possible decisions: either continue with the
process until the next sampling instant or declare that the change point has been
detected. During each instant the process is assumed to be a Brownian motion
describing the value of the sufficient statistics after the amount = was sampled:

Xi(o) = O’
dB.(1), >0,i6 <v,
dX(7) = i(7) T .
pdr + dBy(7), >0, >,
where B,(+), i = 1,2,..., are independent copies of a standard Brownian motion.

The drift after the change point is denoted by p. The procedure will be
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constructed as if p = p, where p,, is a constant known to the statistician, but will
be analyzed under the general assumption that the drift is some p. For each
i > 1 the process X,(+) is observed until the stopping time,
The change time is declared at the stopping time,

T = inf{i8: X;(*) = A + Ipor*).

We will be mainly interested in the limiting case where 8 — 0 while A,C €
(0, ) remain fixed. With some abuse of notation we denote the limiting case by
(A,C,0).

When discussing the (A, C, §) family of procedures it will be convenient to
distinguish between the real time ¢ and the “samplihg time.” The latter repre-
sents the amount sampled in a given period. Note that with constant rate
sampling these notions differ only in scale.

We next compare the (A, C, §) family of procedures to the CUSUM proce-
dure. The CUSUM procedure is essentially a maximum likelihood test. It can be
described as follows. We observe a diffusion process with a constant variance 1
and a drift which changes from 0 to p at an unknown time ». We keep at time ¢
the minimum value of {X(s) — 3p,s,0 < s < t} and stop at the first time the
current value of X(¢) — po¢ exceeds the minimum record by at least A for
some constant A. In other words,

T, = inf{t: sup {X(t) — X(s) — tuo(t — 5)} = AC}.
O<s<t

Comparing this procedure to the (A, C, 8) procedure we can see that if we
consider only sampling time then the difference is only that in the (A, C,d)
procedure a new minimum is recorded only if it is lower by an amount §C from
the previous record. Of course, this difference is negligible as § — 0. Hence on the
sampling time scale the (A, C,0) procedures are equivalent to the CUSUM
procedures with constant rate sampling.

More formally consider an (A, C, §) procedure as above. Let

i(1) = sup{i: i T* < 7}

Jj=1

and define abprocws Y() by Y(0) = 0 and

i(r) i(r)
Y(7) = —-8Ci(r) + Xi(,)H(T -y ’Ti*) - %po('r -y fri*), T>0.

i=1 i=1
The total amount sampled by the (A, C, §) procedure until the declaration of a
change is given by '
(1) inf{r > 0: Y(7) + 8Ci(7) = A}.

Note that if » = oo, then dY(7) = — ipod7 + dB(7) and if » =0, then
dY(7) = (u — ip,) d7 + dB(7), where B(-) is a standard Brownian motion.
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Now, a CUSUM procedure with a constant sampling rate of 1 stops at a
stopping time which is distributed, both under » = 0 and » = ¢ as

(2) inf{'r >0: () — inf ¥(s) = Ac).
But
(3) ~8C(i(7) +1) < inf ¥(s) < —8Cil).

We obtain from (1)—(3) that the total amount sampled by an (A, C, 8) procedure
is stochastically smaller than the CUSUM stopping time with A, = A + 8C and
stochastically larger than the CUSUM stopping time with A, = A. Letting
8 — 0 we conclude:

ProrosITION 1. The total amount sampled by a CUSUM procedure is
distributed as the total amount sampled by an (A, C,0) procedure if v = 0 or co
and both procedures have the same expected time until false alarm.

The superiority of the dynamic scheme will be apparent when we compare the
procedures on the real time scale. The dynamic procedure detects the change
much faster on the real time scale; see the next section.

3. Analysis of (A,C,d) procedures. When analyzing the performance of a
procedure, the following quantities are of interest:

T, = E(Tlp = ),
T, =sup,E(T — »|T > »),
To = E(TI*IV = °°)/81

Ty = E( Y *T=> 1/).

v<id<T

The first quantity, T},, is the expected time until false alarm, i.e., the expected
time until a change is detected while no change in the drift has actually
occurred. The second, T}, is the delay time, the expected time between the
change point and its detection. The other two terms describe the expected
sample size. Thus 7, is the average amount sampled in a unit of a real time
before the change point, while 7; is the expected amount sampled between the
change point and its detection. Note that since » is unknown and typically is
much longer than T; we measure the average rate before the change point and
the total sample after it.

For mathematical simplicity we modify the sampling times slightly to be at
times U,U + 6,U + 26,..., where U is a uniform random variable on [0, §]
‘rather than U = § as before. This slight modification results in stationarity with
respect to » and is of course negligible as § — 0. In terms of the delay this would
result in a minimum average delay of ;8 rather than § as the worst case.

Our main result is the following.
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THEOREM 1. For the (A, C, 8) procedure and a drift p. on [», 0],

8(etod — g715C) 1 etod — 1
Ta=—F_,5#c ~ 3 ST as § - 0,
8(6(2"_"0)80 — e—(2u—no)A) 1 1 — e @r—r)A
Td = e(2#‘#o)50 -1 - 58 - (2[1: — [.I.O)C asd — O,
2 8C(et4 — 1) — A(L — e #%C)
To = m ehoA _ g—hetC
2C e“OA - 1 - ‘U:0A
- — v asd - 0,
Bo et —1
2 A(e(2u—no)80 - 1) - 30(1 _ e-(2M—Mo)A)
Ta = 21 — po e@r—r0)dC _ 1

2
- m{(2,ﬂ - ,U,O)A -1+ e'(2“"‘°)A} as 8§ — 0.
0 .

ProoF. The calculations of E(7*|v) and p(») = P(X (%) — 3pom* = Alv)
are done by standard techniques in diffusion processes [see Siegmund (1985),
Theorem 3.6]. We obtain

1— e #®
p(”) = ol A _ o—WCh

and

. 2 8C(e* — 1) — A(1 — e #¥)
E('Tl ‘V) = :u—, oW A _ o nC8 ’
where — Jp’ is the drift of the process X (t) — $p,t, i.e., p’ = p, when » = o0
and p’ = p — 2u, when v = 0.

Next note that both under » = 0 and » = o0, T/8 is a convolution of the
U(0,1) random variable with a geometric random variable with parameter p(»).
Hence T;, = 8 /p(o0) — 38 and T, = 8/p(0) — 8. The value of 7, follows imme-

diately. Finally, we obtain from Wald’s lemma that 7, = E(7*|» = 0)/p(0). O

4. Comparison with constant rate sampling. In this section we compare
the (A, C, §) procedure to the CUSUM rule with constant rate sampling. We
have already shown that on the sampling time scale there is no difference
between the two procedures. Of course, while the real time scale and the
sampling time scale differ only in their units when the sampling rate is constant,
this is not the case with the dynamic scheme. To make the comparison meaning-
ful we would like to compare procedures with the same T}, and 7, i.e., proce-
dures with the same performance under » = co. Let us consider the case § = 0.
Proposition 1 implies as a result that both procedures have the same value of 7,
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and hence they differ only in their T; value. The value of T(dynamic) is given in
the theorem. The value of T, (constant rate) can be found by multiplying
Ty(dynamic) by the scale factor between the real time and sampling time scales.
Hence,

,,.
T,(constant rate) 4

To

1 (e =1+ pyA)(et” — 1)

pC etod — 1 — poA ’
where 7; and 7, are as given in Theorem 1 and we suppose for simplicity that
b= .
We obtain

Ty(dynamic) (1 -— e tod)(erod — 1 — o A)
T)(constant rate) (e"‘OA -1+ HoA)(e""A -1)

e_"'OA(e"'OA -1 - MOA)
e hd — 14 p,A

In a typical application p,A > 1 and the ratio is of order (p,A — 1)~!; hence,
the change point is detected much faster. For example, Pollak and Siegmund
(1985) quote Ty, = 793, p, = 1 and 7, = 1 as “seems appropriate for a variety of
industrial inspection schemes.” Solving T}, = 793 we obtain A = 5.977, so that
T4(dynamic) = 1.96 compared to 10 for the constant rate sampling as given in
Pollak and Siegmund (1985).

In Table 1 we compare the performance of six procedures all of which have
the same characteristics under » = . Note that for the CUSUM procedure with

TABLE 1
Comparison of Ty and 75 for different u and different sampling procedures (the entries for any p
and 8 are Ty over 7y).

Constant Dynamic Dynamic Dynamic Dynamic Dynamic

sampling sampling sampling sampling sampling sampling
M rate® §3=0 =1 d=5 =10 §=20
0.25 129.0 75.3 754 79.7 90.7 117.3
129.0 . 129.0 129.1 137.3 158.0 207.4
0.5 36.0 11.8 11.8 12.3 13.5 17.1
36.0 36.0 36.1 37.6 415 51.9
1.0 10.0 2.0 2.0 2.9 5.1 10.0
10.0 10.0 10.0 9.5 8.7 74
1.5 5.5 1.0 : 1.1 2.5 5.0 10.0
5.5 5.5 5.5 5.0 4.4 3.7
2.0 3.8 0.7 0.8 2.5 5.0 10.0
3.8 38 3.7 3.3 2.9 2.5

*Results are quoted from Pollak and Siegmund (1985).
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constant rate sampling T; = 7; and for the (A, C,0) procedure 7,4 is equal to the
74 of the CUSUM procedure. It can be seen that even with § = 20 (twice the
delay of the CUSUM procedure with constant rate sampling) the delay of
the dynamic procedure is equal to that of the procedure with constant rate
sampling, but the amount sampled under the (A4, C, §) regime is smaller (7.4
compared to 10). With 0 < § < 20 the dynamic procedures detect the change
faster and “cheaper” under the nominal conditions. Thus, with § = 10, the
(A, C, §) procedure is superior when p is 1 or 1.5. When p = 0.25 or 0.5, the
(A, C, 10) detects faster but samples somewhat more and vice versa when p = 2.

Suppose now that we want to compare the two extreme schemes on the basis
of the average sampling rates before the change point is detected when T;, and
T, are kept equal. Then we obtain for the same example (T}, = 793 and T = 10)
that 7(dynamic) = 0.186 compared to 1 with constant rate sampling.

It is interesting to note that as long as p > p,, 74 is less than
{(2p — po)roTo/2} ~! no matter what T, is. This is in contrast to constant rate
sampling where T; — oo as T}, — oo (with 7, constant).

A direct comparison of the dynamic procedure to the Roberts—Shiryayev one
is more difficult. It is however well known that quantitatively there is little
difference between the Roberts—Shiryayev and the CUSUM procedures [Pollak
and Siegmund (1985)]. The dynamic procedures suggested here are thus highly
superior to both the CUSUM and the Roberts—Shiryayev procedures with
constant rate sampling.

REMARK. A direct calculation yields
ST + 38)7 = C(T;, + 38) — C8 - A
or
A = (T, + 38)(C - 3uen) — C3.
Together with the equation for T;, we obtain
C=3pomo+ 10g{1 + (Tfa + %8)(91‘13(#060) - 1)/8}/(7'&; + %a)ﬁ’m-

This equation defines an iterative equation for C which converges extremely fast.

APPENDIX

Indication of optimality. Assaf (1988) investigated a similar problem ex-
cept that his model incorporated an exponential distribution with parameter ¢
as the prior distribution of the change point ». In his analysis p = p, and is
known. In this paper the optimal procedure is analyzed and described. The same
type of procedure would be found optimal if we consider only procedures which
satisfy that the expected time to false alarm and the average sampling rate
before v are equal to given constants, and the loss function is a linear combina-
tion of the delay time T,; and 7;. The optimal procedure in Assaf (1988) is
described as the limit of a sequence of procedures as two parameters, ¢ and M,
are converging to 0 and oo, respectively. Now, any (A, C, §) procedure is equal to
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the limit of these procedures as M — o for some ¢ and e. Considering now the
limiting case of § — 0 and ¢ — 0 we obtain that a (A, C,0) procedure is Bayes
with respect to particular prior, constraints on the set of possible procedures and
loss function. Since the performance of the (A, C,0) procedure is independent of
the value of », it follows that the dynamic procedure is admissible and is a
minimax procedure as well.
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