The Annals of Statistics
1989, Vol. 17, No. 2, 741-748

RATIONAL VARIANCE FUNCTIONS

BY SHAUL K. BAR-LEV AND DAoOUD BsHOUTY!

University of Haifa and Technion-Israel Institute of Technology

Exponential dispersion models play an important role in the context of
generalized linear models, where error distributions, other than the normal,
are considered. Any statistical model expressible in terms of a variance-mean
relation (V, Q) leads to an exponential dispersion model provided that (V, Q)
is a variance function of a natural exponential family: Here Q is the domain
of means and V is the variance function of the natural exponential family.
Therefore, it is of a particular interest to examine whether a pair (V, Q) can
serve as the variance function of a natural exponential family. In this study
we consider the case where @ is bounded and examine whether V can be the
restriction to Q of a rational function vanishing at the Boundary points of Q.
The class of such functions is large and contains the important subclass of
polynomials. It is shown that, apart from the binomial family (possessing a
quadratic variance function) and affine transformations thereof, there exists
no natural exponential family with variance function belonging to this class.
Such a result implies, in particular, that the only variance functions of
natural exponential families among polynomials of at least third degree are
those restricted to unbounded domains .

1. Introduction. Statistical models expressed in terms of variance-mean
relations have been extensively discussed in the past 15 years. Scatter diagrams
indicating an association between the mean and the variance for biological
survival data appeared in numerous papers [see Jorgensen (1987) for references].
Wedderburn (1974) used the variance-mean relation, or the variance function
(VF), to define quasilikelihoods. Quasilikelihoods have the advantage of imposing
only second moment assumptions, whereas distributional assumptions are re-
quired to define likelihoods.

For a natural exponential family (NEF), the VF characterizes the family
among the class of NEF’s of the same order [Morris (1982) and Jergensen (1987)].
Any NEF leads to an exponential dispersion model [Jorgensen (1987)], in which
case the quasilikelihood reduces to a log-likelihood. Exponential dispersion
models themselves have an important role in the context of generalized linear
models, where error distributions, other than the normal, are considered [cf.
McCullagh and Nelder (1983) and Jergensen (1987)]. Accordingly, it is of a
particular interest to delineate cases where a given variance-mean relation can
serve as the VF of a NEF, and consequently, leads to an appropriate exponential
dispersion model.

Before specifying the main problem of this study we recall the definitions of a
NEF and its VF. Let » be a positive, o-finite measure on R which is not
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concentrated on one point. The Laplace transform and effective domain of » are
given, respectively, by

T(6) = /';exp(Ox) drv(x)

and
{0 eR: T(0) < }.

Let © denote the interior of the eﬂ'ective domain of » and henceforth assume
that © is nonempty. For § € ©, define

dFy(x) = (T(6)) " exp(6x) dv(x).

Then the family of probability distributions #="(Fj: 6 € O} is called a NEF
generated by » [or a linear exponential family of order 1, in the terminology of
Barndorff-Nielsen (1978)]. The mean function of # is the mapping defined on ®
by

p(8) = fR xdFy(x).

Let Q stand for u(®). Q is called the mean domain of %#. It is known
[Barndorff-Nielsen (1978), page 121)] that Q is an open interval and that p is a
one-to-one, both ways continuously differentiable mapping between the two
open intervals ® and Q. Denote by 6 = 6(p) its inverse function and let the
function V on © be defined by

V(p) = [ (x = p)" dFyg().

The pair (V, Q) is called the VF of #. As noted above, (V, Q) characterizes %.
Moreover, V is a positive, real analytic function on £, i.e,, it is the restriction to
Q of an analytic function on some domain D of the complex plane containing €.
Thus, for examining the question whether a given analytic function f on some
domain D can be used to construct a VF (V, Q) of a NEF, one should consider, as
possible forms for 2, the largest open intervals of R N D on which f is positive
[in this connection see Letac and Mora (1986), Theorem 2.3].

Such a question has been considered by several authors. Morris (1982) identi-
fied all VF’s corresponding to NEF’s among polynomials of at most second
degree. Mora (1986) identified all VF’s of NEF’s among third degree polynomials.
Tweedie (1984), Bar-Lev and Enis (1986) and Jergensen (1987) treated the case
where V is a power function of p. For the case @ C R*, Jorgensen (1984)
provided necessary and sufficient conditions for (V, Q) to be a VF of a NEF. As
noted in Bar-Lev (1987), however, Jorgensen’s conditions are extremely difficult
to check if © is bounded, even for a VF as simple as that of the binomial family.

In this study we consider the case where € is bounded and examine whether V
can be the restriction to Q of a rational function vanishing at the boundary
points of ©. The class .# of such functions is large and contains as a subclass all
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polynomials restricted to bounded intervals €. The importance of polynomials
VF’s, in general, is linked with the fact that an empirical variance-mean relation
of a data set in a form of a polynomial of some degree can always be established.

In Section 2 we show (Lemma 2.1) that the class of NEF’s with VF’s belonging
to A coincides with the class of NEF’s having bounded supports and rational
VF’s. We then establish in Theorem 2.1 a quite surprising result. It is shown
that, apart from the binomial family (possessing a quadratic VF) and affine
transformations thereof, there exist no NEF’s with VF’s belonging to .#. This
result, in addition to providing a characterization of the binomial family, is of
interest in its own right. It significantly reduces the work required to delineate
VF’s of NEF’s among polynomials of a certain degree, and particularly implies
that the only VF’s among polynomials of at least third degree are those
restricted to unbounded intervals.

Mora (1986), while making her classification of cublc VF’s of NEF’s, showed
that certain cubic functions restricted to bounded intervals & are not VF’s of
NEF’s [see also Letac and Mora (1987)]. Bar-Lev and Enis (1987), in their
investigation of dual-conjugate families, also showed that certain cubic functions
restricted to bounded intervals are not VF’s of NEF’s. The method used by the
latter authors motivated the present study.

2. The main results. Let % be a NEF on R. Without loss of generality, we
assume throughout the sequel that 0 € ® and T(0) = 1, so that » (= F,) is a
probability measure. Let ¢(8) = log T(8), 6§ € O, and define p, = y'(0). Let
(V, Q) be the VF of #. Then 6 and T(8) can be expressed by

1) 6= ["at/v(e), T(8) = exp{/“tdt/v(t)}.
Ko Ko

We exploit (1) as well as the relation

(@) () = V(n(6))

in the proofs of the following lemmas.

LEMMA 2.1. Let # be a NEF with rational VF (V,). Denote by H the
closed convex hull of the common support of %. Then, the following two
conditions are equivalent:

(i) F has a bounded support with int H = (c, d).
(i) € = (¢, d) and lim,, , ., V(m) = lim,,_, ;_V(m) =

PROOF. Assume that (i) holds. Then # is regular with 8(Q) = R and hence
Z 1is steep with Q@ = int H [see Barndorff-Nielsen (1978), Theorem 9.2, page 142].
Consequently,

. Mo (d
3 i dt/V(t) = i dt/V(t) = oo,
(3) Jim [Pdt/V(e) = lim [ di/V(2) = oo

and hence lim,_, .« V(¢) = lim, _, .- V(¢) =
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Assume next that (ii) holds. Since V is rational, 1/V(t) has poles (of at least
first order) at ¢ and d. Hence (3) holds and () = R. Therefore & is steep with
int H=Q.0

REMARK 2.1. Note that for the important case where V is a polynomial,
boundedness of © implies that V vanishes at the boundary points of .

REMARK 2.2. There are many examples of NEF’s with rational VF’s re-
stricted to bounded intervals © that violate condition (ii) of Lemma 2.1. Indeed,
a wider version of a result in Bar-Lev (1989), presented in Corollary 3.3 of Letac
and Mora (1989), enables us to easily construct such examples. For instance, the
latter corollary implies that for £ = (0,1),

o0
Vilp) =p(1—p¥) "= X p, k=12,
Jj=0
are VI’s of infinitely divisible NEF’s. Moreover, since infinitely divisible distri-
butions have unbounded supports, it follows that the NEF’s corresponding to V,
k =1,2,..., are nonsteep.

LEMMA 2.2. Let (V, Q) be the VF of a NEF % with V being the restriction to
Q of a rational function f = p,./q, in C, where p,, and q,, are relatively prime
polynomials of degree m and n, respectively, and p. be the restriction to O of a
meromorphic function w in C. Then:

(1) w(z) is the solution of the differential equation
(4) r'(z) =f(r(z)), =ze€C.

(ii) f o w does not vanish in C.

(iii) f may vanish at most at two points.

(iv) If f(w,) = f(wy) = 0, then w does not attain the values w, and w, and
m-—n=2,

ProoF. (i) Since f is rational and w is meromorphic in C then fow is
meromorphic in C. The restriction of f o w to ® coincides with p’ which itself is
the restriction of w’ to ©. Hence, by (2) and the uniqueness of the analytic
continuation we have w’ = f ew in C.

(ii) Assume to the contrary that f(w(z,)) = 0 at some point 2z, € C. By (i),
f(w(zy)) = w'(2y) =0, so that z, is a regular point of w and f®)(w(z)),
k =1,2,...,are finite. Since w is a solution of (4), we obtain by differentiating
),

w"(zp) = f’(w(zo))w'(zo) =0.
By successive differentiation of (4), we obtain that w*)(z,) =0, £ =1,2,....
Hence w = ¢,, where ¢, is a constant, and € = p(®) = {¢,}, a contradiction.
© (iii) If f has at least three zeroes, then, by the little Picard theorem [see
Nevanlinna (1970), page 15], w would reach one of them, a contradiction
with (ii).
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(iv) Assume that f(w,) = f(w,) = 0 and that w attains one of these values,
say w;, at some point z,. Then f(w(z,)) =0 and this contradicts (ii). Thus, w
does not attain any of the values w, and w,. Since w # constant, it follows by
the little Picard theorem that w attains the value infinity at some point z,.
Thus, w has at z, a pole of some order j. Therefore, w’ and f o w have poles at
2, of orders j+ 1 and (m — n)j, respectively. By (4), (m—n)j=j+1, or
1+j '=m-—n,andthus j=land m—n=2.0

Before stating our main result we recall Rouché’s theorem in the following
setting. Let D be a sunply connected domain whose boundary y is a Jordan
curve. Let f be analytic in D. The winding number of f(y) around {, € C is
defined by

dt r 1'(2)
Ind($o, f(v)) = 5~ s — % 2m/f( dz'

Geometrically, the winding number is the number of times that f(y) encom-
passes {, in the positive direction. By the argument principle it is also the
number of times that f(z) attains in D the value {, including multiplicities. A
reformulation of Rouché’s theorem [see Rudin (1987), Theorems 10.10 and 10.43]
can be stated as follows.

LeEMMA 2.3 (Rouché’s theorem). Let D be a simply connected domain whose
boundary v is a Jordan curve. Let f and g be analytic in D and suppose that
1< lgl on v. Then

Ind(0, g(v)) = Ind(0, (f + &)(¥))-

THEOREM 2.1. Let & be a NEF with VF (V,Q), where @ = (c, d) is finite.
Let V be the restriction to @ of a rational function f = p,,/q,, where p,, and q,
are relatively prime polynomials of degree m and n, respectively, such that
f(¢) = f(d) = 0. Then there exists a positive integer j such that for p € (c, d),

(5) V(p) =i (n—c)(d - n).

ProoF. Since f(c) = f(d) =0, we have lim,_, . V() = lim,_, ,- V(¢) =
Hence, by Lemma 2.1, # is steep with ® = R and the members of F possess
entire characteristic functions. Consequently, the Laplace transform T(8) of F;
admits an analytic continuation to the whole complex plane denoted by L(z),
z=0+in, 6,7 € R. Since L(z) is entire,

(6) w(z) = L'(z)/L(z)

is meromorphic in C. Also, since

: p(6) =T(60)/T(8), 06€R,

it follows that p is the restriction of w to ®. By Lemma 2.2, we have

(7) w'(z) = f(w(2)),
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with w(0) = p,. Hence, by the uniqueness of the solution of a first order
differential equation, w satisfies
w ds
(8) z=|
|7
and this relation must define w as a one-valued meromorphic function in C

independently of the path of integration. Similarly, by using (6), we obtain that
L(z2) satisfies

ool 78]

and this relation must define L(z) uniquely as an entire function in C. By our
assumption on f it follows from Lemma 2.2 that 7n = n + 2 and f has exactly
two distinct zeroes w;, = ¢ and w, = d. Accordingly, by partial fractions tech-
niques, we have

2

2 )
(10) 1/f(s) = Z E a(s —w) 7 =t(s) + ¥ ay(s —w)7,

i=1j=1 i=1
where n;, i = 1,2, denotes the multiplicity of w; as a root of p,(w) =0 and
a;; € C with a;,, # 0 for i = 1,2. Therefore, we have from (8) and (10),

(11) z=c,+ jt(w) dw + z a; log(w — w;) 7,

i=1
where c, is a constant. It was already noted that w attains the value infinity at
some point 2,. Since [t(w) dw is finite at z,, we conclude that the last term on
the right-hand side of (11) must be also finite at 2, and this implies that
Q. = T Q.
We now show that [#(w)dw is identically constant. For this consider the
Mébius transform

I=(w—w)(w-w)™

By Lemma 2.2, w does not attain the values w, and w,, and therefore /- w is a
nonvanishing entire function. Inserting the relations

(w - wl)_l =(l- 1)[(“’2 - wl)l]_l and (w - wz)_l = (- 1)(w, - wl)_l
in (11) yields

12 b (1) - 3 bR
( ) 2= nz—l( ) it (j—].) (w2—w1)l oy, 1og L,
where h,, _ (1) is a polynomial in [ of degree n, — 1. [The middle summation on
the right-hand side of (12) is void if n, = 1.] Since / o w is a nonvanishing entire
function, log l e w may be defined as an entire function. The positively oriented
circle |/| = L, denoted by v, corresponds to a closed curve 8, in the z-plane.
Now, ! is a Mobius transform of w, hence the preimage A, of y, is, for
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sufficiently large L, a small circle in the w-plane encountering w, only once. Note
that the positively oriented curve §, corresponds to the negatively oriented curve
A,- On y;, for sufficiently large L, the middle and last terms of the right-hand
side of (12) are smaller in absolute value than |k, _,(7)|. Therefore, by Lemma
2.3, we have

Ind(0,8,) = Ind(0, &, _,(v.)) = n, — 1.

Hence, 8, encompasses the origin exactly n, — 1 times if n, > 1. Assume that
n, > 1. Then for j=1,...,n, — 1, we obtain by using (7) and the residue
theorem that

0= J (e e

1 w—wy)’ 1 =
-k ) Ty e et )

w

This is a contradiction and therefore n, = 1. By interchanging the roles of w,
and w,, we obtain that n, = 1. Therefore [#(w) dw is identically constant and
we conclude that

(18) flw)=a(w—-c)(w—-d), acR.
By using (13) and (9), we get
L(z) =b(w—-c)"(w—-d)*™ ", a beR.

Let 2, be a zero of L(z) of some order j. Then z, is a first order pole of w.
Therefore, near z,,,

(2) = 0{(2 - 20) (2~ 20) ) = 0{(2 7)),
and this implies that a = —j~ . This concludes the proof of the theorem. O

Note that the regular binomial family constitutes a NEF with VF of the form
(p(Jj— )% =0, ), for some j € {1,2,...}. By transforming p — p* =
(d — e)uj~! + ¢, we obtain (5), i.e., (5) is the VF of a NEF obtained from the
regular binomial family by a suitable affine transformation.

As was outlined in detail by one of the referees, Theorem 2.1 can be extended
to the case where V is the restriction to Q of the quotient of two entire functions
(rather than the quotient of two polynomials as in Theorem 2.1) vanishing at the
boundary points of Q. Interested readers can obtain an outline of this extension
from the authors.
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