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ON SMOOTHING AND THE BOOTSTRAP
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Recent attention has focussed on possible improvements in performance
of estimators which might flow from using the smoothed bootstrap. We point
out that in a great many problems, such as those involving functions of
vector means, any such improvements will be only second-order effects.
However, we argue that substantial and significant improvements can occur
in problems where local properties of underlying distributions play a decisive
role. This situation often occurs in estimating the variance of an estimator
defined in an L' setting; we illustrate in the special case of the variance of a
quantile estimator. There we show that smoothing appropriately can improve
estimator convergence rate from n~1/4 for the unsmoothed bootstrap to
n~ /D% for arbitrary ¢ > 0. We provide a concise description of the
smoothing parameter which optimizes the convergence rate.

1. Introduction. Several authors, for example, Efron (1982) and Silverman
and Young (1987), have pondered the question of using the smoothed bootstrap
to improve performance of estimators. Silverman and Young (1987) have shown
that in certain cases it is possible to improve performance in a mean-squared
error sense by smoothing. However, in a great many problems of the type treated
by Silverman and Young, smoothing can have only a secondary effect on
performance of estimators, in the sense that the variance of the optimally
smoothed estimator, divided by the variance of the unsmoothed estimator, must
converge to 1 as sample size increases. A simple proof of this result is based on
the fact that if smoothing is conducted at a level where the smoothed estimator
is vn -consistent, then asymptotic variance is the same as that of a linear
combination of smoothed means, and the latter variance cannot, asymptotically,
be less than its unsmoothed counterpart. This argument applies to all statistics
which are expressible as differentiable functions of vector means; examples
include means, ratios of means, variances, ratios of variances, correlation coeffi-
cients and so forth.

The question arises, then, as to when smoothing can really be beneficial and
by how much. In general it will only be beneficial when the quantities under
study depénd in some manner on local properties of the underlying distribution
F, such as densities evaluated at specific points. Indeed, if the primary functional
of interest can be viewed as a functional of a density, bootstrap methods can
even be inconsistent unless resampling is done from a sufficiently smooth esti-
mate of the distribution; see Romano (1988). An intermediate problem occurs
when the primary functional of interest is a smooth functional of the distribu-
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tion, F, but whose secondary properties are influenced by local properties of F.
Examples include estimators defined in an L' setting, such as L' regression,
where the variance of these estimators depends on the density of F. In the
present article we consider the special case of a sample quantile. This has the
advantage over other examples of being relatively simple theoretically, so that
issues are much clearer and the analysis more straightforward.

Our main conclusions are as follows. It is known [Hall and Martin (1988)] that
the unsmoothed bootstrap estimate of the variance of the sample quantile has a
relative error of precise order n~'/* as sample size, n, increases. On the other
hand, as we shall prove, if the bootstrap is smoothed using an rth-order kernel
estimator, for r > 2, then the precise order of relative error can be made equal to
n~/@r+D) by choosing the bandwidth appropriately. This order is a marked
improvement on the earlier n~1/4 rate, no matter what the value of r, and it can
be made better than n=1/?*¢ for any given & > 0, by choosing r sufficiently
large. We shall give a concise formula for the asymptotically optimal bandwidth
in this problem. While precise selection of the optimal bandwidth would be
difficult, any bandwidth of size n~'/@"*D will achieve the optimal rate of
n~/@r+1 The important special case of estimating the variance of the sample
median when the underlying distribution is symmetric is delightfully simple:
There the bandwidth which optimizes performance of the bootstrap variance
estimator is asymptotic to the bandwidth which minimizes the mean squared
error of the density estimate at the median.

The reader familiar with nonparametric density estimation will appreciate
that if » > 2 then rth-order kernel density estimates can be negative in the tails,
and thus the “density” from which the smoothed bootstrap variance estimate is
constructed is not necessarily a proper probability density. Thus the usual
resampling methods do not apply, although this difficulty does not stand in the
way of defining the bootstrap estimate. In fact, “probability” statements about
“samples” drawn from “distributions” with nonpositive “densities” are generally
well-defined, as we shall show in Section 2. The only obstacles standing in the
way of using general smoothed bootstrap methods to solve a wide range of
statistical problems, such as finding confidence intervals for quantiles, are com-
putational ones arising from the lack of a suitable resampling algorithm. How-
ever, at least in the problem described here, the functional of interest, y(F'), can
be estimated by y(ﬁh) even if F"h is not a proper distribution because y(F') is a
simple integral depending on F. Thus, one can compute y(ﬁh) by numerical
integration.

An important advantage of using second-order, nonnegative kernels is that
resampling algorithms may be used to estimate functionals of F. In the case of
confidence intervals, an additional advantage of nonnegative kernels is that
estimated quantiles used to construct confidence limits are guaranteed to be
well-defined only in the case of nonnegative density estimators. In any case, the
use of a second-order, nonnegative kernel results in a marked improvement over
the usual unsmoothed resampling method. v

There are a great many different ways of estimating density functions.
Examples other than kernel estimators include histogram estimators, smoothed
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histogram estimators, penalized maximum likelihood estimators, general spline
estimators and orthogonal series estimators. Of these, only the first three
guarantee nonnegative estimators. The others can be modified by taking the
positive part and renormalizing. The aim in this article is to demonstrate the
virtues of smoothing in a general class of problems, by treating the particular
case of kernel-based bootstrap quantile variance estimators. Our results general-
ize in several ways, for example by changing the type of density estimator, or by
changing the functional of interest. The main feature of our results remains the
same: When the quantity of interest is genuinely nonparametric in character,
and cannot be estimated v -consistently, smoothing the bootstrap can substan-
tially improve convergence rates; and, there can be substantial computational
advantages in smoothing via a nonnegative density estimator.
Section 3 will describe our main results, and Section 4 will give proofs.

2. The smoothed bootstrap. Let 6(-) denote a functional of a distribution
function, and let F' be the true distribution function of a population. Suppose we
wish to conduct inference about the unknown “parameter” 6, = 0(F). The
so-called bootstrap estimate of 6, is 0 = 6(F), where F denotes the empirical
distribution function of a random sample {X,..., X,} drawn from F. A
smoothed bootstrap estimator ¢, may be defined as follows. Let f, be an
estimator of the density f = F’, governed by a smoothing parameter 4. In the
present article we shall concentrate on the univariate case and kernel estimators,

Fi(x) = (nh)" ¥ K{(x - X,) /),

Jj=1

where & denotes bandwidth and K is a kernel function. Many other estimator
types are possible. Let

ﬁh(x) = f_xwfh(y) dy, éh = 0(ﬁh)-

While straightforward to define, the estimator d, can have subtle features.
These arise because the density estimator f, need not be a proper probability
density. As a result, quantities such as variance estimates and probability
estimates, which are usually guaranteed to be nonnegative in their unsmoothed
form, can be negative after smoothing.

Quantile estimation supplies important and interesting examples. Let [x]
denote the largest integer not exceeding x, and let {x) be the largest integer
strictly less than x. Given 0 < p <1, put r=[np]+ 1 or {(np) + 1, and let
X,, , denote the rth largest of the sample values X, ..., X,.. The pth population
quantile is

0, =0(F)=¢,=F(p),

its unsmoothed bootstrap estimate is § = 0(F) = ép =FYp)= X, (npy+1> and
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the smoothed bootstrap estimate is
b,=0(F,) = &, » = F '(p).

The distinction between X, 7, (np)+1 and X, (,,7+1 is ignored by many authors;
since the first-order asymptotlc theory is 1dentlcal for both these definitions of
the sample quantile, we too shall not dwell on the differences.

Put

«(F)= [ xlnt/ (= 1)1(n - P FG) (1 - F(x))" " dR(z)
and
B(F) = f_ww{x — o(F) Y (n1/(r — 1) (n - r)!}

XF(x)""H1 - F(x)}""" dF(x).

Then o2 = B(F) denotes the exact asymptotic variance of 6= £ under F. Its
bootstrap estimate, 62 = = B(F), was first studied by Maritz and Jarrett (1978)
and Efron (1979).

In the present article we examine the smoothed bootstrap estimate

63)' h= ﬁ(ﬁh)‘

Quantities such as (F) and B(F') are well-defined whenever f is a bounded
function satisfying [x2|f(x)|dx < co and we put

(=)= [* {(5)dy.

We shall call such an f a pseudodensity and call F a pseudodistribution
function.

Pseudoprobabilities, not necessarily lying between 0 and 1, are usually well-
defined for “samples” drawn from pseudodistributions. For example, note that

G, (x) = P(f < x) = y(F),

(2.1)

where
WF) = [ (n/(r = Din = IHF) 1= F())" dF ().

The corresponding pseudoprobability for a “sample” drawn from FA'h, is y(IfA'h).
Thus, even though we may not be able to carry out the usual Monte Carlo
resampling in the case of smoothed bootstrap estimators, we can usually ascribe
“probabilities,” conditional on the “sample,” to events which would have oc-
curred had we been able to do the resampling. In general, y(Fh) may be
computed by numerical integration.
Of course, in the case r = 2, negat1v1ty is not a problem, and y( Fh) could be
obtained by resampling from Fh in the obvious way.
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3. Results. Let r > 2 be an integer. We assume the following conditions on
the kernel K: K is bounded, [|x"K(x)|dx < oo, and

- 1 Jj=0,

f x'K(x)dx =0 l<j<r-1,

e Ky j=r

which, if k, # 0, are the conditions for K to be an “rth-order kernel.” Further-
more, we assume K’ exists and is an absolutely integrable continuous function of
bounded variation. Only in the case r = 2 may K be chosen nonnegative and fh
be guaranteed to be a proper probability density.

We assume the following conditions on the distribution of X, having density f
and distribution function F: f( exists and is uniformly continuous, f¢’ is
bounded for 0 < j < r, f is bounded away from 0'in a neighborhood of ¢ » and
E(|X|*) < oo for some ¢ > 0.

The bandwidth A = h(n) will be assumed to satisfy A — 0 and

nh®/logn —» o as n > oo. Put
fulz) = (e0) 7 L K{(x - X)/m),  Fyx)= [ f(n) @,
j=1 ' ~oo

and let x = £ », » be the solution of the equation F'h(x) = p. With probability 1,
£ », n 18 well and uniquely defined for all sufficiently large n. Our main technical
result is the following theorem.

THEOREM 3.1. Under the above conditions,

(3.1) 62 =021 - p)fu(£,.4) " + O(n"%2)
almost surely, and
n(8%, 4= o%) =p( =) Fu(£,.4) " - 1(&,) 7} + O(n~V2)

r

= —2f(£p)“”[(nh)‘”z+ (-1
(32) r

x:cl{f(’)(ﬁp) _ f("—1)(£p)f/(§p)f(§p)_l}]

+op{(nh)—1/2 + h'}
almost surely, where Z = (nh)"/?[ fh(ﬁp) - E{ fh(i,,)}]o

The random variable Z is asymptotically normally distributed with zero mean
and variance c, = k, f(§,), where k, = [K 2, Therefore, the asymptotic mean
squared error of the term in square brackets on the right-hand side of (3.2) is
‘(nh)™ e, + h*c,, where

o= [Pt 19E) = 17 (e) 16, 1(6,) ™)

2
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If ¢, # 0, then this mean squared error is minimized by taking

(3.3) h= {cl/(2nrc2)}1/(2'+l),
in which case
(3.4) n(82, - 02) = n/E (N + ),

where N is asymptotically N(0,1) and cyc, # 0.
It follows from (3.4), with the asymptotically optimal choice (3.3) of &, that
the relative error of 672, , as an estimator of ¢2, is of precise order n~"/@"*D,

Indeed,
(82 w/on) = 1) = {1+ 0,()}{p(1L ~ )} '1(£,) (sl + co).

Furthermore, the rate n="7?"*D is achieved whenever A ~ constant - n=1/@7+D,
no matter what the constant. Since we have assumed r > 2, then n="7@"+D <
n~2/5 and even the convergence rate n~%/5 is better than the rate n='/* offered
by the unsmoothed variance estimator [Hall and Martin (1988)]. By selecting r
sufficiently large we may make the size of relative error smaller than n~(/2+¢
for any given ¢ > 0. :

The order of magnitude n~1/?"*D, although not the constant multiple of the
“optimal” A at (3.3), is the same as that of the bandwidth which minimizes the
mean integrated squared error of F. The latter bandwidth is well-approximated
by that obtained by squared-error cross validation. Therefore, as a practical
guide, A could be selected by cross validation. While this approach will not
usually minimize mean squared error, it will give an error of the same size as the
optimum in terms of squared error, that is, n=27/@7+D_

In the important case where p = } and the density f is symmetric about the
median, f’(§,) = 0. Then it may be seen from our proof of Theorem 3.1 that

n(62. ,—o2) = —2)’(5,,)—3{ Fu(€,) — f(£p)} + op{(nh)"l/2 +h}

One consequence of this result is that, in asymptotic terms, the optimal band-
width is now equal to that one which minimizes the mean squared error of
f h(gp)'

Let 7,(x) = P(X,, — §, < x) denote the distribution function of § — 6,. This
equals a functional {,(:, x) of the population distribution function F, and its

smoothed bootstrap estimator 4,, ,(x) = ¢ (F, x) is well-defined. We prove
below that

(35) 7rAnr,h(x) - ﬂ'nr(‘x) = <I)(x/&nr,h) - (I)(x/ﬂnr) + O(n"l/z)‘

almost surely, uniformly in x, where ® denotes the standard normal distribution
function. Therefore, up to terms of order n~'/%, the accuracy of 4, , as an
approximation to =, is determined entirely by the accuracy of d,, , as an
approximation to a,,,.

We further claim that 4,, , and 7, are distant n~"/®*V apart, if A ~

constant - n~ /@D a5 discussed above. To appreciate why, write x = n=/2y
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and note from (3.5) that
For, (%) = (%) = ®((n62. 1) 5} — @{(na2) 7%y} + O(n~12)
= —n(62, 1~ o2)3{p(0)}) **1(£,)°

xy6[(p(1 = p)} V*1(£,)5],

where ¢ = @’. Therefore by Theorem 3.1, #,, , — m,, is of size n~"/?"*1, which
is greater than order n~'/2 A similar argument shows that if we employ the
unsmoothed bootstrap to construct an estimate #,, of =,,, then #,, and ,, are
distant n~1/* apart. This agrees with the results obtained by Falk and Reiss
(1986) who specifically study this problem. The results here elaborate on their
results by showing that the benefit of smoothing is due entirely to the increased
precision in estimating the variance of the sample quantile. Moreover, our results
yield that the effect of smoothing improves the rate of convergence from n~'/*
to n=1/2*¢ for any ¢ > 0, while their best rate from smoothing is 7~ '/3. These
results contrast markedly with the case in more classical problems, where a
distribution function and its bootstrap estimate are no further apart than n~1/2,

To check (3.5), let M denote the number of sample values not exceeding x.
Then M is Binomial{n, F(x)}, and it is readily proved via the Barry—Esseen
theorem that

T, (x) = ®(x/3,,) + O(n™"?),

uniformly in x. An argument not unlike that used to prove Theorem 2.1 shows
that the result may be extended to

ﬁnr, h(x) = q)(x/énr,h) + O(n_l/z)

almost surely, uniformly in x. Formula (3.5) follows from these two expansions.

4. Technical details. We begin with a lemma, applicable to pseudodensities
f and their respective distribution functions F(x) = [,_,f(y)dy describing
error in asymptotic approximation to quantile variance.

LEMMA 4.1. Assume that the solution &, of F(£,) = p is well and uniquely
defined, and that for a constant C > 0 the pair ( f, F') satisfies:
min{|F(x)|, |1 — F(x)|} < CA + |x[)"*/€ for all x; sup,|f(x)| < C;
f(x) = C™* for |x—§,| <C™Y |f(x) — f(»)| < Clx —y for
lx — &,l, ly — §,| < C™%; and for given constants n = n(p,C) >0
and D, = D(p,C) >0, —n < F(x) <1 + n whenever |x| < D,.

Putr =[np] + 1 or (np) + 1, and define o2. = B(F'), where B is given by (2.1).
vFor a given constant D, = Dy(p,C) > 0, and for n > nyp,C),

|02 — n7'p(1 - p)(£,) *| < Dyn~2,
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ProoF. The constants Cy, C,,..., that follow all depend on p and C. Put
G = F~', which is well-defined in a neighborhood of p. Our assumption that
f(x) > C™! for |x —£,| <C™' implies that |G(u) — G(v)| < CyJu — v| for
|u — p|, [o — p| <& for some & = &(C, p) > 0. If ¢ is chosen sufficiently small,
depending only on p and C, and if |u| <, then for ,(u), O,(u) satisfying
0<86,0,<1,

G(p +u) - G(p) =uG'(p + 6u) = w/f{G(p + b,u))
= u/f{G(p) + 6,Ciu} = uf(£,)”" + uwR(u),
where |R(u)| < C,. Therefore,

I= lu—p|55{G(u) - G(p)Y{n!/(r-1)!(n- P - 1) d
= {nl/(r-1)(n - r)!}f(gp)'z‘(u_plse(u —p) w1 - u)" " du+ R,
where
|B)| < Cofnl/(r = 1)}(n - r)!}[u-b|se|u -plPu" (1 - u)*" du.

It follows after a little algebra that
{(n!/(r - D!(n - r)z}f (u-p) w1 -u)"""du

le—p|<e
= {n!/(r - 1)!(n - r)z}jol(u - p)’ w1 - u)" " du+R,
=n"'p(1 -p) + R,
where |R,| + |R;| < C,n"2, and
{n!/(r-=1)!(n- r)!}‘[)1|u -plPum (1 - u)" du=0(n"%?).
Combining these estimates, we conclude that
(4.1) |1-n7'(1 - p)f(£,)"| < Cn=2.

Since |f(x)| < C, min{|F(x)|,|1 — F(x)|} < C(1 + |x|)~'/, and, by Stirling’s
formula,

(42) nl/(r=1)(n = r)t< G pP(1 - p)'*)
it follows that for C; sufficiently large,

[ CEE ATV CREICET

XF(x)" {1~ F(x)}"""f(x)|dx < C;n2.

(4.3)
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Also, for any 0 < u <1 and u # p, uP(1 — u)'"? < pP(1 — p)' ~P. Hence, given
¢ > 0 there exist ¢, €5, Cg > O such that if —¢;, <u <1+ ¢ and [u — p| > ¢,

Iu"l(l - u)n_r| < Cs{p”(l —p)l—”e“2}n.

Using the bound (4.2) again and taking n = ¢ and D, = C; in the conditions of
the lemma, we conclude that

|(x - &) (n!/(r = D)N(n - r)1}F(x)"

'/I‘xISCs, |F(x)—p|>e
X {1 - F(x)}"""f(x)|dx < Cyn~2.
From this estimate and (4.3) we derive
|E{(X,,, -5,)) - I) < Cyn?,
and so by (4.1),
’E{(an - fp)z} -n" p(l —p)f(gp)—2’ = Cun‘3/2.

Similarly, it may be shown that |E(X,, — §,)| < C;yn™". The lemma follows
from these results and the identity

or?r= E{(an_ £p)2} - {E(an_ gp)}2' o
Our next lemma bounds the tails of the empirical distribution function F.

LEMMA 4.2. If E|X|*" < o, then, with probability 1,
sup sup (1+ |x])"min{F(x),1 - F(x)} < 0.

n>1 —oo<x<oo

Proor. It suffices to show that

sup  |x|"| F(x) — F(x)]
—o00<x<o00
is almost surely bounded. In fact, this quantity converges to 0 with probability 1
as n > 0. To see why, note that 1 — F(x) < C,x~*" for all x > 0, which implies
1—u<CF Yu)™ for u close to 1, whence F~'(u)" < Cy(1 — u)~"* The
case of u close to 0 is similar. Thus,

(4.4) IF‘l(u)l" < C3max{u—1/4 < (1 _ u)—-1/4}.

Now,

) sup |x|"|F(x) — F(x)| = sup |F~(u)[|A(x) - ul,
— 0 <x<o0 Dcuel

where A is the empirical distribution function of the uniform sample
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{F(X)),..., F(X,)}. It is well-known that for any ¢ > 0,
(4.6) sup max{u‘(l/z)“,(l - u)_(1/2)+s}|ff(u) —u|-0

O<u<l

almost surely; see, for example, Shorack and Wellner (1986), page 462. It follows
from (4.4) and (4.6) that the quantity in (4.5) converges almost surely to 0, as
required. O
Next we show that the lemma continues to hold if F is replaced by F‘h. If
€= [IK(x)ldr < oo and C= [(1+ [x])|K(x)]dx < o0,
then forx >0and 0 <h <1,

=A@ (e sn £ [7 KG)la

x—X;)/h
i )

<Cn Y I(X;>3x) + [ |K(y)|dy
j=1 : x/(2h)

<C{1-F(ix)} + A +x)7"
Therefore

sup (1 + x)"[1 — Fy(x)| < 27Cysup (1 + x)"{1 - F(x)} + G,
x>0 x>0

and similarly

sup (1 + x)"|B(—x)| < 2°Cysup (1 + ) "F(-x) + C,.

x>0 x>0

Hence, by Lemma 4.2, .
(4.7) sup sup (1+ |x])"min{|ﬁh(x)|,|1 - F‘h(x)l} < o0

n>1 —o0o<x<oo
with probability 1.
Assuming that K’ exists and is an absolutely integrable continuous function
of bounded variation, that (/) exists and is bounded, absolutely integrable, and
uniformly continuous, and that A — 0 and nh®logn — o, we have

(48) s [}0() - fOx)| >0, j=0.1,
—o00 <x< 00

almost surely. A proof of (4.8) can be obtained as in the proofs of Proposition 5.1
and Corollary 5.1 of Romano (1988). If, in addition, f is bounded away from 0 in
a neighborhood of £,, then results (4.7) and (4.8) ensure that the following
assertion is true. Given & > 0, there exists an event &= &(¢), having P(&) >
1 — ¢, and a constant C = C(¢) > 0, such that for each w € & the assumptions in
Lemma 4.1 are satisfied for the pair ( fh, F,), realized at w, with this C and for
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all sufficiently large n. In consequence,

(4.9) 62 n=n"pA =), 5) " + O(n"2)

almost surely.
This proves (3.1). To establish (3.2), observe that a much simpler argument
gives 0. = n”'p(1 — p)f(£,) "2 + O(n~3/?), so that

(@10) 62 ok = np(1 = P Ia(Ep.0) "~ 1(8,) ) + ()

almost surely. It is easy to see that £ ,» — &, almost surely, and so by (4.8),
f,,(gp #) = f(€,) almost surely. Temporarlly wntmg f,, for f,,(!,fp ») and f for
f(§p), we have

(411) f;? = (I (F+7)F-1)=2f 3(f P)+o(f =71
Let 6; denote a random element of the interval (0, 1) for j = 1,2. Then

F(bon) = ftn + (£on— &)
(4.12) = fu&) + (& n— &) hile + 04— &)
= T(&s) + (6o n— &) 1(&5) + o(é - &l).
Similarly,
F(‘fp) =P = ﬁh(ép,h) = ﬁh(‘fp) + (ép,h - 6,,)?;,{5,, + 02(£p,h - gp)}’
and so
£, n— &, = {F(&,) — Bu(£,)}1(8,) 7" + o{IFu(£,) — F(&,)1).
Combining this with (4.12), we deduce that
o) = 1(85) = {F(£,) = Bu(&) ) F(£)1(8,) 7+ Fal8,) — 1(5,)
+o{|F(8,) - F(&,)|}-

For general x, for example, x = £,

Pa) = F@) =07 2 | [0 R ) - B{ [ K () )]

j=1 o0

+ [T H2) dz [CT R (y) &
(4.13) f f g

- Rt~ Ol b))

= (—-h)rri!an(’)(x) + 0{(n'1logn)1/2} + o(h")
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almost surely. Bernstein’s inequality can be used to obtain the first identity in
(4.13). Therefore,

£, n) = £(8,) = Ful&,) — £(&,) + (- 1)’“ xlf"‘”( £)1(8,)1(8,)

+ 0{(n'1 log n)1/2} + o(h")
almost surely, whence, by (4.11),

Fl£0) = 1(8,) "
- -21(,) (&) - 1(5,)

(4.14) N
() ) () 1(8) 7

O{(n‘l log n)l/z} + o(A")
almost surely. Y

Notice that (nh)/?[ f,(£,) — E{ fi(£,)}] is asymptotically N{0, x, f(£,)} and
that

o SR
E{ fh(gp)} - f(gp) = (_1) ;_!_Klf(r)(gp) + O(hr)°
Therefore, by (4.14),

fh(ép,h)_z - f(gp)—z

- —2f(gp)‘3[(nh)“l/2z + (—1)’%—

X 100E,) = 1)1 (6)1(6,) )|

+op{(nh)_1/2 + h'} .
Result (3.2) follows from this formula and (4.10).
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